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USING THIS MANUAL 
This is the User Manual for the Turbo PMAC family of motion and machine controllers from Delta Tau 
Data Systems, Inc.  The Turbo PMAC family combines power, flexibility, and ease of use in a wide 
variety of configurations to provide optimal solutions for machine builders. 

What is in this Manual 
This manual contains a step-by-step guide to setting up the Turbo PMAC application, starting with the 
overall system configuration, moving on to the setup of the individual motors and the grouping of the 
motors into coordinate systems, followed by the writing of motion programs, PLC programs, and host 
communications programs. 

The User Manual is divided into sections that are put in the order that most new users will need during the 
basic setup of their application.  In the later stages of development, the typical user will be going back and 
forth in this manual for more detailed information about particular subjects of interest. 

Other Manuals to Use 
Other manuals should be consulted during the development of the Turbo PMAC project.  The most 
important of these manuals are listed below: 
• Turbo PMAC Software Reference Manual 
• Hardware Reference Manuals 
• UMAC Quick Reference Guide 
• PMAC Executive Program Manual 
• Software Development Package Manuals 

Turbo PMAC Software Reference Manual 
The Software Reference Manual for the Turbo PMAC family of controllers contains detailed descriptions 
of all commands and setup variables, listed in alphabetical or numerical order for easy reference.  It also 
contains a detailed memory and I/O map for the Turbo PMAC family, plus suggested M-variable pointer 
definitions and a list of updates to the Turbo PMAC embedded firmware. 

If there is a specific question about the implementation of a particular Turbo PMAC setup variable, 
command, or register, consult the appropriate section of the Software Reference Manual for the quickest 
answer. 

Hardware Reference Manuals 
A particular Turbo PMAC hardware configuration will have its own Hardware Reference Manual for the 
controller, and any accessories will each have its own Hardware Reference (User) Manual.  These will be 
among the first manuals to consult, because they explain how to configure and install the Turbo PMAC. 

UMAC Quick Reference Guide 
New users of the UMAC rack-mounted configuration of the Turbo PMAC family will want to consult the 
UMAC Quick Reference Guide.  This guide provides a good overview of the hardware and software 
setup for the UMAC and its accessories, so less use is required of the more detailed manuals. 

PMAC Executive Program Manual 
Virtually all users will utilize a PMAC Executive program on a PC to start the development, even if there 
will not be a PC in the final application.  The most commonly used Executive program as of this writing 
is Pewin32 Pro (PMAC Executive program for 32-bit Windows, Pro Suite).  While the installation and 
use of this program suite is very intuitive and in accordance with industry standards, consult the manual 
for this package. 
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Actually, the Pewin32 Pro package is a suite of software programs, including step-by-step tutorial setup 
programs, tuning programs (interactive and auto-tuning), and plotting programs. 

The Pewin32 Pro suite automates or simplifies many of the setup steps that are explained in detail for 
low-level setup in this manual.  Utilize the Pro Suite tools for automated setup wherever possible. 

Software Development Package Manuals 
Delta Tau offers several software development packages to enable the quick and easy development of 
front-end software for communications with the Turbo PMAC and interface with the machine operator.  
Each of these packages has its own manual. 

The two most commonly used packages are the PComm32 Pro (PMAC Communications Library for 32-
bit Windows, Pro suite) library of communications routines, and the PHMI (PMAC Human-Machine 
Interface) GUI development package. 
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TURBO PMAC FAMILY  
The Turbo PMAC family of controllers is the newest generation of motion and machine controllers from 
Delta Tau Data Systems.  It is available in a wide variety of configurations, permitting the user to 
optimize the controller hardware and software to particular application needs.  This section provides a 
brief overview of the Turbo PMAC structure; all items mentioned here are covered in more detail 
elsewhere in the User Manual or in related reference manuals. 

Turbo PMAC vs. Non-Turbo PMAC 
The Turbo PMAC family of controllers is the next generation after the original PMAC family of 
controllers, differing only in having a faster and more powerful CPU section, but able to maintain the 
same interface circuitry.  Indeed, in some configurations it is possible to remove the old non-Turbo 
PMAC CPU board from a controller and install the Turbo PMAC CPU as a field upgrade. 

The Turbo PMAC family retains the same capabilities and programming styles as the original PMAC 
family, but adds important new capabilities as well.  These new capabilities are fully listed in a section of 
the Software Reference manual, and detailed in the appropriate sections of the User Manual and Software 
Reference; highlights are listed here: 
• 32-motor capability vs. 8-motor 
• 16-coordinate-system capability vs. 8-coordinate-system 
• Forward and inverse kinematic algorithms 
• Standard multi-move lookahead algorithms 
• 32,768 user variables vs. 4096 
• Simultaneous communication over multiple ports 

Turbo PMAC vs. Turbo PMAC2 
As with the original PMAC family, Turbo PMACs can come as Turbo PMAC or Turbo PMAC2 
controllers.  The difference is due to the nature of the “core” servo-interface ICs and in a few aspects of 
the firmware used to set them up.  Fundamentally, PMAC2-style Servo ICs permit programmable 
configuration of the frequency of the key clock signals that drive the hardware and software processes on 
the controllers; PMAC-style Servo ICs do not. 

Unlike the older non-Turbo PMACs, it is possible to mix PMAC-style and PMAC2-style Servo ICs in a 
single Turbo PMAC system.  The Turbo PMAC CPU will automatically recognize which types of ICs are 
present, and configure the setup I-variables appropriately. 

In this documentation, Turbo PMAC refers generically to both Turbo PMAC and Turbo PMAC2 
controllers.  Turbo PMAC and Turbo PMAC2 refer specifically to one type of controller.  If a specific 
product name (e.g. Turbo PMAC-PC) does not specify 1 or 2, it is a PMAC controller. 

Turbo PMAC is a Computer 
It is important to realize that Turbo PMAC is a full computer in its own right, capable of standalone 
operation with its own stored programs.  Furthermore, it is a real-time, multitasking computer that can 
prioritize tasks and have the higher priority tasks pre-empt those of lower priority (most personal 
computers are not capable of this). 

Even when used with a host computer, the communications should be thought of as those from one 
computer to another, not as computer to peripheral.  In these applications, Turbo PMAC’s ability to run 
multiple tasks simultaneously, properly prioritized, can take a tremendous burden off the host computer 
(and its programmer), both in terms of processor time, and of task-switching complexity. 
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What Turbo PMAC Does 
Turbo PMAC can handle all of the tasks required for machine control, constantly switching back and 
forth between the different tasks thousands of times per second.  The major tasks involved in machine 
control are summarized here. 

Executing Motion Programs 
The most obvious task of Turbo PMAC is executing sequences of motions given to it in a motion 
program.  When told to execute a motion program, Turbo PMAC works through the program one move at 
a time, performing all the calculations up to that move command (including non-motion tasks) to prepare 
for actual execution of the move.  Turbo PMAC is always working ahead of the actual move in progress, 
so it can blend properly into the upcoming move, if required.  See the Writing a Motion Program section 
for more details. 

Executing PLC Programs 
The sequential nature of motion program suits it well for commanding a series of moves and other 
coordinated actions; however these programs are not good at performing actions that are not directly 
coordinated with the sequence of motions.  For these types of tasks, Turbo PMAC provides the capability 
for users to write “PLC programs.” These are named after Programmable Logic Controllers because they 
operate in a similar manner, continually scanning through their operations as fast as processor time 
allows.  These programs are very useful for any task that is asynchronous to the motion sequences.  See 
the Writing a PLC Program section for more details. 

Servo Loop Update 
In an automatic task that is essentially invisible to the Turbo PMAC user, Turbo PMAC performs a servo 
update for each motor at a fixed frequency (usually around 2 kHz).  The servo update for a motor consists 
of incrementing the commanded position (if necessary) according the equations generated by the motion 
program or other motion command, comparing this to the actual position as read from the feedback 
sensor, and computing a command output based on the difference.  This task occurs automatically without 
the need for any explicit commands.  See the Setting up the Servo Loop section for more details. 

Commutation Update 
If Turbo PMAC is requested to perform the commutation for a multiphase motor, it will perform 
commutation updates automatically at a fixed frequency (usually around 9 kHz).  The commutation, or 
phasing, update for a motor consists of measuring and/or estimating the rotor magnetic field orientation, 
then apportioning the command that was calculated by the servo update among the different phases of the 
motor.  This task occurs automatically without the need for any explicit commands.  See the Setting up 
Commutation section for more details. 

Housekeeping 
Turbo PMAC regularly and automatically performs housekeeping tasks that make sure the system is in 
good working order.  These tasks include the safety checks, such as following error limits, hardware 
overtravel limits, software overtravel limits, and amplifier faults, plus general status updates.  They also 
include the update of the watchdog timer.  If any problem in hardware or software keeps these tasks from 
executing, the watchdog timer will trip, and the card will shut down.  See the Making an Application Safe 
section for more details. 

Communicating with the Host 
Turbo PMAC can communicate with one or more host computers at any time, even in the middle of a 
sequence of motions.  Turbo PMAC will accept a command, and take the appropriate action – putting the 
command in a program buffer for later execution, providing a data response to the host, starting a motor 
move, etc.  If the command is illegal, it will report an error to the host. 
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Task Priorities 
These tasks are ordered in a priority scheme that has been optimized to keep applications running 
efficiently and safely.  While the priority levels are fixed, the frequency at which various tasks are 
performed is under user control.  See Computational Features for more details. 

Key Hardware Components 
A Turbo PMAC controller is a combination of a computer processor section and specialized interface 
circuitry for motion, I/O, and communications.  Different configurations of Turbo PMAC controllers 
provide different combinations of these components.  The following block diagram shows the basic 
possibilities for combinations of the concepts in PMAC and Turbo PMAC control systems. 

PMAC Family Main Components

Serial Communications
Interface

RS-232
and / or
RS-422

Bus Communications
Interface

ISA / VME / PCI
PC104 / STD
USB
ETHERNET
(optional DPRAM)

CPU

Non-Turbo: DSP5600x
(16-bit addressing)
Turbo: DSP5630x
(24-bit addressing)

I/O Interface
Circuitry

PMAC(1)-style
PMAC2-style

Servo Interface
Circuitry

PMAC(1)–style ICs
PMAC2–style ICs
PMAC(1)–style connectors
PMAC2–style connectors
Mini / Lite / (full)

MACRO Ring
Interface

PMAC2 Ultralite
ACC-24P
ACC-5E (UMAC)

 

CPU Section 
The computer portion of a Turbo PMAC is often called the CPU (central processing unit).  It consists of a 
microprocessor, memory, and associated support circuitry.  In most Turbo PMAC configurations, the 
CPU is on a separate circuit board from the interface circuitry – a piggyback board on top of expansion-
slot controllers, or a dedicated board in the case of the rack-mounted UMAC controllers.  However, in the 
Lite and Ultralite controllers, this circuitry is integrated into the main circuit board. 

Processor 
Turbo PMAC controllers use a processor from Motorola’s DSP56300 family of digital signal processors 
(DSPs).  A DSP is a special type of microprocessor optimized for fast and repeated mathematical 
operations of the type found commonly in audio, video, and motion control.  They provide a more cost-
effective solution to these specific types of computations than do general-purpose microprocessors. 

Different members of the DSP56300 family are used depending on the CPU option ordered for the Turbo 
PMAC. 
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• Option 5Cx (the x specifies the external memory size – see below) provides an 80 MHz DSP56303 
with 8k 24-bit words of internal memory.  This is the default processor. 

• Option 5Dx provides a 100 MHz DSP56309 with 34k 24-bit words of internal memory. 
• Option 5Ex provides a 160 MHz DSP56311 with 128k 24-bit words of internal memory.  These 

options require firmware revision V1.939 or newer. 
• Option 5Fx (expected release in 3rd quarter 2003) provides a 240 MHz DSP56321 with 192k 24-bit 

words of internal memory.  These options require firmware revision V1.940 or newer. 
Not all of these options are available in all Turbo PMAC configurations. 

Note: 

Just because a processor is capable of operating at a particular frequency does not 
mean that it will actually be operating at that frequency.  The value of Turbo 
PMAC variable I52 at power-up/reset controls what the operating frequency of the 
processor will be: 10 MHz * (I52+1).  The default value of I52 is 7, for 80 MHz 
operation, regardless of the CPU speed option ordered.  The TYPE command will 
show the frequency at which the CPU is actually operating. 

To locate the CPU part number, issue the CPU on-line command.  Turbo PMAC will respond with the 
part number (e.g. 56311).  Internally, global status bits X:$000006 bit 21 and Y:$000006 bit 21 (part of 
the ??? global status query word) indicate which type of CPU is present. 

Active Memory 
Turbo PMAC uses static RAM (SRAM) ICs for its active memory.  This type of RAM is faster and more 
robust than the dynamic RAM (DRAM) that forms the bulk of the PC’s memory.  (SRAM ICs are used 
for the PC’s fast cache memory bank.) 

As with any RAM ICs, the contents of these SRAM ICs (as well as memory registers internal to the DSP, 
and memory-mapped registers in the ASICs) are lost when power is removed.  Settings that should be 
retained through a power-down must first be copied to non-volatile flash memory with the SAVE 
command. 

The Motorola DSPs employ a Harvard architecture, which uses separate memory banks for program 
(compiled or assembled machine code instructions) storage and data (everything else, including 
interpreted program commands) storage.  This is in contrast to the more common von Neumann 
architecture that the PC uses, in which any memory can be used for program or data storage. 

The standard memory configuration for a Turbo PMAC (Option 5x0, where “x” specifies the CPU speed, 
as explained above) provides 128k 24-bit words of program memory, and 128k 24-bit words (organized 
as 64k 48-bit words) of data memory, in addition to what is internal to the DSP.  This is the default 
configuration.  With the standard memory configuration, the total addressable memory is the sum of 
memory internal to the DSP and the external memory in the SRAM ICs; getting a DSP with more internal 
memory adds to your total memory capacity. 

If the extended memory configuration is ordered (Option 5x3), the Turbo PMAC comes with a total of 
512k 24-bit words of program memory, and 512k 24-bit words (organized as 256k 48-bit words) of data 
memory.  With the extended memory configuration, the total addressable memory is limited by the 
addressing space of the DSP; getting a DSP with more internal memory does not add to the total memory 
capacity (although it does substitute faster internal memory for slower external memory). 
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Status variable I4908 contains the address of the next register past last word of unreserved data memory.  
If no UBUFFER has been defined, this is the address one greater than the last word of data memory.  
With the standard memory configuration, no UBUFFER is defined on re-initialization.  With the extended 
memory configuration, a UBUFFER of 65,536 words – from X/Y:$030000 - $03FFFF – is defined 
automatically on re-initialization. 

Flash Memory 
Turbo PMAC’s non-volatile memory storage is contained in a flash-memory IC.  Flash-memory ICs 
retain their contents without applied power.  However, they are relatively slow in access times, so Turbo 
PMAC does not use the flash IC in ongoing operation.  Instead, during power-up/reset, it copies the 
contents of the flash memory into fast SRAM so the processor can access it quickly.  The flash memory is 
only written to upon a SAVE command, or when new firmware is downloaded. 

The flash memory provides non-volatile storage for both the firmware created by Delta Tau, and the 
programs, variable values, and other settings created by the user.  The flash memory IC is sized 
depending on the active memory capacity so as to be able to store the entire contents of the active 
memory.  Status variables I4904 and I4909 both contain information as to what size of flash memory is 
present. 

Copying user settings to flash memory with the SAVE command takes several seconds during which some 
other tasks, including several safety checks, are not performed; this should not be done while the machine 
is in actual operation.  As Turbo PMAC is copying saved data from flash memory to active SRAM during 
a power-up/reset, it is evaluating the checksum of this data and comparing it to the checksum calculated 
during the last SAVE operation.  If there is a discrepancy, it will revert the settings in active memory to 
factory default values, as if the card had been re-initialized, and set the Flash Read Error (a.k.a. “EAROM 
error) status bit at X:$000006 bit 21, part of the ??? global status query word. 

Optional Battery-Backed Parameter Memory 
If Option 16A is ordered, the Turbo CPU section is provided with an additional bank of 32k 24-bit words 
(mapped as 16k 48-bit words) of data-memory SRAM that is battery-backed (BBRAM) and can be used 
for parameter storage.  Typically, this memory bank is used to store machine-state information without 
the need for a lengthy SAVE command. 

The low-power SRAM that can be powered from batteries for lengthy periods is slower than the SRAM 
ICs used for the main memory, so the user should be aware that significant use of this memory bank 
might incur a noticeable computational speed penalty.  P-variable and/or Q-variable storage can be moved 
from fast main memory to the battery-backed memory by changing I46 from its default value of 0.  This 
provides automatic retention of the variable values at the cost of slower access.  More commonly, 
registers in the BBRAM are just accessed with M-variable as pointers.  BBRAM registers start at 
X/Y:$050000. 

Although the expected average battery life for the lithium battery that retains this memory is five years or 
more, a yearly replacement schedule is recommended.  There is a super-capacitor capable of retaining the 
contents of the memory for several minutes without the battery, so a battery change can be done without 
power applied to the controller. 

Turbo PMAC register X:$00003F contains the address of the end register of BBRAM.  It will report a 
value of $050000 if there is no BBRAM present.  It will report a value of $054000 if the Option 16A 
BBRAM is present.  It will report a value of $060000 if extended BBRAM is present (Turbo PMAC 
designs support this but it is not being sold at this time). 
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Machine Interface ICs 
The Turbo PMAC CPU communicates to the physical machine through several types of special ICs that 
have memory-mapped registers for easy processor access, and application-specific circuitry for the 
machine interface.  The most common of these are the Servo ICs, the MACRO ICs, and the I/O ICs, 
application-specific ICs (ASICs) designed by Delta Tau and manufactured in gate array technology to 
create a full feature set in a cost-effective manner. 

Servo ICs 
The Servo ICs contain all of the digital logic to provide the interface between the CPU and the motion 
(servo or stepper) channels.  Each Servo IC provides the interface to four motion channels.  There are 
presently two types of Servo ICs, one supporting the older PMAC-style interface (analog amplifier 
interface only), and the other supporting the newer PMAC2-style interface (analog or digital amplifier 
interfaces). 

Servo Channels:  Servo channels are a hardware structure in Turbo PMAC systems, a set of interfaces 
and registers in the Servo ICs and surrounding systems.  A channel consists of the interface and registers 
for a single amplifier, encoder, and set of flags.  While these channels are usable by Turbo PMAC motors, 
axes, and coordinate systems (which are software structures – see Key Software Components below) for 
various purposes, they can exist independently of any of those structures. 

Reporting Servo ICs Present:  Turbo PMAC variable I4900 reports how many Servo ICs are present, 
and at which addresses.  I4901 reports which type each Servo IC is.  The following table shows which 
Servo ICs can be present, their addresses, and the I-variables used to configure them: 

Servo IC # Base Address I Variables Servo IC # Base Address I Variables 
0 $078000 I7000 – I7049 5 $079300 I7500 – I7549 
1 $078100 I7100 – I7149 6 $07A200 I7600 – I7649 
2 $078200 I7200 – I7249 7 $07A300 I7700 – I7749 
3 $078300 I7300 – I7349 8 $07B200 I7800 – I7849 
4 $079200 I7400 – I7449 9 $07B300 I7900 – I7949 

Servo ICs 0 and 1 are on board a board-level Turbo PMAC or in a 3U-format stack.  Servo ICs 2 through 
9 are accessed through the expansion port, either the UMAC’s UBUS backplane expansion port, or a 
board-level Turbo PMAC’s JEXP cable expansion port, on an Acc-24x axis board, or an Acc-51x 
interpolator board. 

PMAC-Style DSPGATE ASIC:  The PMAC-style Servo IC is labeled the DSPGATE.  It is a 4-channel 
part with 32 memory-mapped registers.  Each channel supports the following features: 
• Serial output for 16-bit digital-to-analog converter 
• Input for digital quadrature or pulse-and-direction feedback with index 
• Four input flags (home, +/-limit, amp-fault) that can trigger hardware encoder capture 
• Amplifier-enable output 
• Hardware position-compare output 
• Input from 16-bit analog-to-digital converter (from accessory board) 
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The PMAC-style DSPGATE IC is provided on the following Turbo PMAC products: 
• Turbo PMAC PC 
• Turbo PMAC VME 
• Turbo PMAC PCI 
• Turbo PMAC PCI Lite 
• Acc-24P ISA-Format Axis-Expansion Board 
• Acc-51P ISA-Format Interpolator Board 

PMAC2-Style DSPGATE1 ASIC:  The PMAC2-style Servo IC is labeled the DSPGATE1.  It is a 4-
channel part with 64 memory-mapped registers.  Each channel supports the following features: 
• Three output command signal sets, configurable as either: 

• Two serial data streams to digital-to-analog converters of up to 18 bits, and one pulse-and-
direction pair, or 

• Three pulse-width-modulated (PWM) top and bottom pairs 
• Input for digital quadrature with index, pulse-and-direction, or MLDT feedback  
• Four input flags (home, +/-limit, user) that can trigger hardware encoder capture 
• Amplifier-fault input 
• Four supplemental input flags (T, U, V, W) for hall commutation sensors, sub-count data, fault codes, 

or general use 
• Amplifier-enable output 

• Hardware position-compare output 
• Input from two analog-to-digital converters of up to 18 bits (from amplifier or accessory board) 



 Turbo PMAC User Manual 

10 Turbo PMAC Family Overview 

The DSPGATE1 IC also has on-board software-configurable clock generation circuitry.  It can generate 
the servo and phase clocks for the entire Turbo PMAC system (only one IC will do this; the others will 
accept these as inputs).  It also generates the clock signals that drive its own circuitry: DAC, ADC, PWM 
and PFM (pulse-frequency-modulation). 

Clock, PLL
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Status & Control
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9
2
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9
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PMAC2 Gate Array IC
“DSPGATE1”

2

 
The PMAC2-style DSPGATE1 IC is provided on the following Turbo PMAC products: 
• Turbo PMAC2 PC 
• Turbo PMAC2 VME 
• Turbo PMAC2 PCI 
• Turbo PMAC2 PCI Lite 
• Acc-24P2 ISA-format Axis Expansion Board 
• Acc-24E2 UMAC PWM Axis Board 
• Acc-24E2A UMAC Analog Axis Board 
• Acc-24E2S UMAC Encoder/Stepper Board 
• Acc-51E UMAC Interpolator Board 
• Acc-24C2 UMAC-CPCI PWM Axis Board 
• Acc-24C2A UMAC CPCI Analog Axis Board 
• Acc-51C UMAC CPCI Interpolator Board 
• Acc-2E 3U-Format Stack Axis Board 

MACRO ICs 
The Turbo PMAC has two types of ASICs that support communication over the MACRO ring, the open-
architecture high-speed real-time communications ring that Delta Tau developed to simplify connection 
of distributed control hardware. 
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Turbo PMAC variable I4902 reports how many MACRO ICs are present, and at which addresses.  I4903 
reports which type each MACRO IC is, a DSPGATE2 or a MACROGATE (see below).  Variables I20 – 
I23 specify the addresses of the four MACRO ICs that are automatically configured with I-variables.  The 
following table summarizes this configuration: 

MACRO IC # I Variables Usual Base Address Usual Type 
0 I6800 – I6849 $078400 DSPGATE2 
1 I6850 – I6899 $079400 MACROGATE 
2 I6900 – I6949 $07A400 MACROGATE 
3 I6950 – I6999 $07B400 MACROGATE 

DSPGATE2 MACRO IC 
The DSPGATE2 IC provides both MACRO-ring functions and general-purpose I/O functions.  The I/O 
functions are described in the next section.  For the MACRO ring, the DSPGATE2 provides a 16-node bi-
directional interface.  Of these nodes, eight can be used as servo nodes, each of which can transfer all of 
the command and feedback data required for the servo and commutation of a motor.  Six of the nodes can 
be used for general-purpose I/O, each node supporting 72 bits of hard real-time I/O in each direction.  
Two of the nodes are for non-real-time communications, including broadcast mode in which a master 
controller can talk to all of its slave devices simultaneously. 

Turbo PMAC2 Ultralite controllers come standard with a single DSPGATE2 IC, for a 16-node MACRO 
interface.  The UMAC Acc-5E also comes standard with a single DSPGATE2 IC. 

MACROGATE MACRO IC 
The MACROGATE IC provides the same 16-node MACRO-ring interface as does the DSPGATE2 IC, 
but it does not have the I/O capability of a DSPGATE2.  Subsequent optional MACRO ICs (Options 1U1, 
1U2, and 1U3) on a Turbo PMAC2 Ultralite are MACROGATE ICs. 

I/O ICs 
The Turbo PMAC CPU accesses general-purpose digital I/O through a variety of I/O interface ICs.  On 
Turbo PMAC boards, these are modern equivalents of the classic 8255 IC design originally made by 
Intel.  These ICs are addressed by a Turbo PMAC CPU at Y:$078800 – Y:$078803. 

On Turbo PMAC2 boards, and UMAC I/O boards, these are Delta Tau-designed I/O ASICs, as described 
below. 

DSPGATE2 I/O IC 
The DSPGATE2 IC provides both MACRO-ring functions and general-purpose I/O functions.  The 
MACRO functions are described in the previous section.  Each board-level Turbo PMAC2 board and the 
UMAC’s Acc-5E board use the DSPGATE2 to support the non-servo I/O ports.  These ports are: 
• The JTHW multiplexer port 
• The JIO general-purpose I/O port 
• The JDISP display port 
• The JHW handwheel port 
The DSPGATE2 IC on a board-level Turbo PMAC2 is addressed at Y:$078400 – Y:$07843F.  On a 
UMAC Acc-5E board with the address DIP-switches in the default configuration, the DSPGATE2 IC is 
addressed at this same location. 
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IOGATE I/O IC 
The IOGATE IC is used to access general-purpose digital I/O on most of the UMAC I/O boards.  It 
provides 48 I/O points, addressed as 6 bytes in consecutive registers.  Different boards use different 
buffers and drivers around the IOGATE to provide the specific I/O features desired.  While on the 
IOGATE itself, each I/O point is individually selectable as to direction, on most of the I/O boards, each 
point’s direction is fixed by the external circuitry for that point.  The IOGATE must be set up at power-
on/reset to support the particular direction configuration of the board it is used on. 

Potentially, up to 16 boards with the IOGATE or similar ICs can be installed in a UMAC system.  The 
following table shows the possible addresses of these boards: 

DIP 
Switch 

Base 
Address 

DIP 
Switch 

Base 
Address 

DIP 
Switch 

Base 
Address 

DIP 
Switch 

Base 
Address 

0 $078C00 4 $079C00 8 $07AC00 12 $07BC00 
1 $078D00 5 $079D00 9 $07AD00 13 $07BD00 
2 $078E00 6 $079E00 10 $07AE00 14 $07BE00 
3 $078F00 7 $079F00 11 $07AF00 15 $07BF00 

Communications Ports 
Turbo PMAC controllers provide multiple communications ports.  These ports can be used 
simultaneously, permitting the use of a second port for debugging while the primary port is used in the 
actual application, or of a second port for an operator pendant. 

Bus Ports 
Each configuration of the Turbo PMAC supports a bus port for fast parallel communications.  These 
utilize the host port on the DSP, and optionally dual-ported RAM for communications through shared 
memory.  The buses can be either the traditional backplane buses, or the newer wire buses.   
The backplane buses currently supported are: 
• ISA (or the PC/104 stack version) 
• PCI 
• VME 

The wire buses currently supported are: 
• USB (1.1 or 2.0) 
• Ethernet (TCP/IP or UDP/IP protocols) at 10 Mbps 

Serial Ports 
Turbo PMACs also support serial-port communications, always with a single serial port, optionally with a 
second serial port as well. 

Main Serial Port 
Turbo PMAC controllers always come with a standard serial communications port.  In most 
configurations, this port can be used with either RS-232 signal format, or RS-422 signal format, jumper 
selectable.  Even if there are separate connectors for the two signal formats, this is a single port; only one 
of the connectors can be used at a time. 

Optional Auxiliary Serial Port 
If the Option 9T is ordered, a second serial port, always at RS-232 levels, is provided.  This port can be 
used for general communications.  It is possible to turn off the command parser for this port by setting 
variable I43 to 1, so Turbo PMAC does not try to interpret incoming characters as commands, making it 
possible for the user to parse incoming data as he pleases.  This port is required for setup and diagnostics 
if the IEC-1131 PMAC Ladder programs are used. 
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Key Software Components 
In any application, the Turbo PMAC will have software components provided both by Delta Tau and by 
the user.  The Delta Tau software components are known as the firmware (software embedded in the 
hardware).  These are not application-specific.  The user software components – primarily motion 
programs and PLC programs – are application-specific. 

Operational Firmware 
The operational firmware of the Turbo PMAC serves as both the operating system for the controller and 
as the PMAC-language interpreter.  As an operating system, it provides a hard-real-time multi-tasking 
environment with extremely fast task switching, providing a very high level of determinism for the high-
priority tasks such as servo-loop closure.  It also handles the sequencing of operations within motion 
programs automatically, so this sequencing of move-by-move operations does not have to be handled by 
the user. 

Typically, the operational firmware is updated once or twice a year to add new features and to fix 
problems.  Field upgrades of the firmware are easy to perform.  Simply power up the Turbo PMAC with 
the firmware reload jumper installed, and then launch the PMAC Executive program on the PC.  The 
Executive program will notice automatically that the Turbo PMAC is ready to install new firmware and 
query for the file to be downloaded.  It will download the new firmware automatically from the specified 
file into the Turbo PMAC. 

Bootstrap Firmware 
The operation of the bootstrap firmware is invisible to virtually all Turbo PMAC users.  Its function is 
very similar to that of a PC’s BIOS, providing a link between the hardware and the operating system, and 
permitting the operating system to load.  While Delta Tau may upgrade the bootstrap firmware from time 
to time (and each new hardware configuration of the CPU may require a different variation of the 
bootstrap firmware), Delta Tau does not support the field upgrade of the bootstrap firmware. 

In normal operation, the bootstrap firmware operates invisibly underneath the operational firmware, 
automatically loading the operational firmware on top of it at each power-up/reset.  However, if the Turbo 
PMAC is powered up or reset with the firmware-reload jumper on, the operational firmware will not be 
loaded from flash memory, and the host computer can communicate directly with the bootstrap firmware 
(through the main serial port or a bus that uses the CPU’s host port only).  If the operational firmware has 
not been loaded, Turbo PMAC’s response to the ?, ??, or ??? status query command is BOOTSTRAP 
PROM. 

Motors, Axes, and Coordinate Systems 
Motors, axes, and coordinate systems are software structures in a Turbo PMAC system.  While they 
usually utilize hardware channels to interface to the outside world, it is possible to use them as virtual 
structures, just for their computational features.   

Motors 
A motor in Turbo PMAC consists of the software structures necessary for basic moves, commanded-
position interpolation, servo-loop closure, commutation, and current-loop closure.  Every Turbo PMAC 
has the capability for executing the algorithms for 32 motors, even if only a few servo channels are 
provided.  These motors are specified by number (1 through 32), and their attributes are specified in terms 
of raw “counts”, milliseconds, and related units. 

A Turbo PMAC motor accesses hardware-channel functions for its various input and output needs 
through setup I-variables that contain the address of the register to be used.  This mapping functionality 
provides great power and flexibility in a simple manner. 
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Axes 
Generally, motions in a Turbo PMAC system are commanded through the use of axes.  An axis in Turbo 
PMAC consists of the software structures for programmed moves.  Axes are specified by letter (A, B, C, 
U, V, W, X, Y, and Z), and their attributes are specified in terms of user-specified units (e.g. millimeters, 
inches, degrees, seconds, minutes).   
Axes are assigned to motors through axis definition statements or kinematic subroutines.  While there is 
usually a one-to-one mapping between axes and motors (e.g. Motor 1 assigned to the X-axis and Motor 2 
assigned to the Y-axis), this does not have to be the case.  Multiple motors can be assigned to a single 
axis, as in a gantry configuration; there can be no motors assigned to an axis, creating a virtual axis; or 
there can be a complex relationship of multiple motors to multiple axes in a kinematic algorithm. 
An axis belongs to a coordinate system (see below).  Up to 9 axes may be used in a single coordinate 
system, one of each letter name. 
Coordinate Systems 
The coordinate system is Turbo PMAC’s structure for achieving tightly coordinated motion of multiple 
motors.  Turbo PMAC supports up to 16 separate coordinate systems.  A motor is assigned to an axis in a 
particular coordinate system.  Multiple axes in the same coordinate system that are commanded on the 
same line of a motion program are automatically coordinated. 
To make the motion of more than one motor coordinated, assign them to axes in the same coordinate 
system.  To have independent motion of motors (i.e. starting stopping, and changing speeds at arbitrary 
times with respect to each other, assign the motors to axes in separate coordinate systems. 
User Programs 
Turbo PMAC users can install several types of programs into the controller, each type with a specific 
purpose. 
Motion Programs 
Turbo PMAC motion programs provide an easy way to specify sequences of coordinated motion and the 
execution of any calculations that are synchronous with the programmed motions.  The motion program 
language combines features of the RS-274 standard G-code machine-tool programming language, which 
is good for specifying sequences of coordinated motion, and BASIC, which is good for the associated 
math and logic. 
PLC Programs 
PLC programs in Turbo PMAC are intended for actions and calculations that are asynchronous to the 
programmed motion.  PLC programs repeatedly scan in the fashion of regular programmable logic 
controllers.  They can be used for I/O control as a dedicated PLC would be, but because they have direct 
access to all registers in Turbo PMAC, they have many other uses as well. 
Turbo PMAC programs can either be written in a BASIC-like text language, or in IEC-1131 ladder logic 
or sequential function charts (extended memory option and special PC software required).  Text PLC 
programs can be run either as interpreted code, or as compiled code for greater efficiency.  See the User 
Manual section on PLC programs for more details. 
User-Written Servo and Phase Algorithms 
Virtually all users will be able to utilize Turbo PMAC’s built-in servo-loop-closure and phase-
commutation algorithms.  However, it is possible for the user to install custom algorithms for either or 
both of these to accomplish tasks not possible with the standard algorithms.  Some people will use these 
algorithms simply for high-speed, high-priority I/O or calculations by activating them on an otherwise 
unused motor. 
User-written servo algorithms can be written either in the high-level PMAC language (for ease of use) or 
in DSP56300 assembly language (for maximum efficiency).  User-written phase algorithms must be 
written in assembly language.  See the User Manual sections on commutation and servo loops for details. 
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Turbo PMAC Configurations 
Turbo PMAC controllers can come in a variety of different physical configurations.  Fundamentally, these 
break into three different types: board-level, rack-mounted, and boxed.  Each of these types is described 
below. 
Board-Level Designs 
There are multiple board-level implementations of the Turbo PMAC.  These designs can be used as 
expansion cards in a backplane bus, but they do not have to be installed in the bus, either for initial setup, 
or in the actual application.  All have serial communications links as well. 
Presently, there are Turbo PMAC designs for the ISA, VME and PCI buses.  These come with PMAC-
style or PMAC2-style interfaces.  Lite versions of the Turbo PMAC have only one on-board Servo IC, 
providing four channels of servo interface circuitry.  Ultralite versions of the Turbo PMAC2 replace on-
board servo interface circuitry with MACRO-ring interfaces; the actual servo interface circuitry is located 
in a remote MACRO Station or embedded in a MACRO drive. 
The following table summarizes the board-level Turbo PMAC implementations available as of this 
writing (mid-2003): 

Product Bus Type Max # On-Board  
Servo ICs (Channels) 

On-Board 
MACRO? 

Turbo PMAC PC ISA 2 (8) No 
Turbo PMAC VME VME 2 (8) No 
Turbo PMAC PCI PCI 2 (8) No 
Turbo PMAC PCI Lite PCI 1 (4) No 
Turbo PMAC2 PC ISA 2 (8) No 
Turbo PMAC2 PC Ultralite ISA 0 (0) Yes 
Turbo PMAC2 VME VME 2 (8) No 
Turbo PMAC2 VME Ultralite VME 0 (0) Yes 
Turbo PMAC2 PCI PCI 2 (8) No 
Turbo PMAC2 PCI Lite PCI 1 (4) No 
Turbo PMAC2 PCI Ultralite PCI 0 (0) Yes 

UMAC Rack-Mounted Designs 
Rack-mounted implementations of the Turbo PMAC are called UMAC (Universal Motion and 
Automation Control).  These implementations consist of a modular set of 3U-format (100mm x 160mm) 
Euro-cards installed in a common backplane and mounted in a Euro-rack.  The modular style permits the 
easy customization of the controller to the User precise needs.  The rack mounting provides easy 
installation and connection in industrial machines, without the difficulties of wiring into computer-
mounted controllers.  High-speed wire communications links such as USB and Ethernet provide 
communications speeds close to those of backplane buses. 
UMAC Turbo 
The UMAC Turbo is a rack-mounted Turbo PMAC system in which the 3U-format boards are connected 
across a backplane board that has the physical format of a VME bus (96-pin DIN connectors), but is not 
electrically or software compatible with the VME bus.  The field wiring comes out of the top, bottom, and 
(sometimes) front sides of the cards. 
There are a wide variety of UMAC boards.  This includes: 
• Turbo CPU board with PC/104 interface 
• Axis boards: PWM, analog, stepper/encoder 
• Sensor boards: Sinusoidal Encoder, SSI, Absolute Encoder, resolver 
• Digital I/O boards: TTL and Isolated 24V, sinking and sourcing 
• A/D converter boards: 12-bit and 16-bit 
• High-speed communications board: USB or Ethernet 
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• Fieldbus interface: DeviceNet and Profibus, master or slave 
• Backplanes for 4 to 18 boards plus power supply 
• AC-input (85 – 240VAC) and DC-input (24VDC) power supplies 

Compact UMAC Turbo 
The Compact UMAC Turbo (formerly called UMAC-CPCI Turbo) is a rack-mounted Turbo PMAC 
system in which the 3U-format boards are connected across a backplane board that has the physical 
format of a Compact PCI (CPCI) bus (110-pin high-density connectors), but is not electrically or software 
compatible with the CPCI bus.  The field wring comes out of pass-through connectors behind the 
backplane.  It is the User responsibility to devise a distribution scheme for the field wiring.  For this 
reason, the Compact UMAC is intended for high-volume users who can afford the investment in an 
application-specific distribution scheme. 
There is a small family of Compact UMAC boards.  This family presently includes: 
• Turbo CPU Board with optional USB or Ethernet interface 
• Acc-24C2 Digital (PWM/Stepper) 4-Axis Interface Board 
• Acc-24C2A Analog 4-Axis Interface Board 
• Acc-11C 48/96 Isolated Digital I/O Board 
• Acc-51C Sinusoidal Encoder Interpolator Board 
• Acc-C8 8-slot backplane board (plus power-supply slot) 
QMAC Boxed Design 
The QMAC is a boxed 4-channel Turbo PMAC2 with built-in power supply and front-panel connector 
board.  It is available with pulse-and-direction, analog, or direct-PWM outputs to amplifiers.   
QMAC has the following standard features: 
• 4 channels basic axis-interface circuitry, each including: 

• Quadrature encoder input with index and hall commutation sensor 
• Differential pulse-and-direction stepper outputs 
• Four isolated input flags (home, /-limit, user) 
• Isolated position-compare output flag 
• Encoder/stepper interface on DB-15 connector 
• Flag interface on removable terminal block 

• Two supplemental channels on DB-25 connector, each including: 
• Quadrature encoder input 
• Pulse output, configurable as PWM or PFM 

• General-purpose isolated digital I/O: 8 out, 16 in, on removable terminal blocks 
• RS-232 communications port 
• Multiplexer-port interface for I/O accessories 
• Display port interface 
QMAC has the following optional features: 
• Four channels single or dual analog amplifier interface 
• Four channels direct-PWM amplifier interface 
• USB communications interface 
• Ethernet communications interface 
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TURBO PMAC/PMAC2 SYSTEM CONFIGURATION AND 
AUTO-CONFIGURATION 
Turbo PMAC, and especially Turbo PMAC2, boards have extensive capabilities for automatically 
identifying and self-configuring their systems.  This is particularly important for UMAC Turbo systems, 
with their wide variety of configurations.  These capabilities provide ease of use and flexibility in getting 
started with a particular configuration. 

CPU Clock Frequency 
In any Turbo PMAC system, the clock frequency at which the CPU actually operates is set by software 
variable I52, expressed as a multiplication factor from the fixed clock-crystal frequency for the system.   

The clock-crystal frequency on a Turbo PMAC is 19.66 MHz (sometimes called 20 MHz as a close 
approximation).  The CPU divides this in half, to 9.83 MHz, and then multiplies the resulting frequency 
by an integer factor in a circuit called a phase-locked loop (PLL) to obtain its operating frequency.  The 
precise equation for the CPU operating frequency is: 

)152I(*83.9)MHz(CPUfreq +=  

In approximate terms, the equation is: 
)152I(*10)MHz(CPUfreq +=  

Note that the frequency at which the CPU is operating is not necessarily the same as the maximum rated 
frequency for the CPU.  Depending on the CPU option ordered, the maximum rated frequency will be 
different.  The following table shows the maximum rated frequencies for each CPU option and the 
maximum I52 values that can be used without exceeding these frequencies. 

CPU Option CPU Max. Rated Freq. Max. Rated I52 Value Operating Freq. at 
Max. Rated I52 

5Cx 80 MHz 7 78.64 MHz 
5Dx 100 MHz 9 98.30 MHz 
5Ex 160 MHz 15 157.28 MHz 
5Fx 240 MHz 23 235.92 MHz 

The factory default value for I52 is 7, producing an 80 MHz CPU frequency, regardless of the CPU 
option present.  I52 is used only at power-up/reset time, so to change the CPU frequency, change the 
active value of I52, store this new value to non-volatile flash memory with a SAVE command, and reset 
the card (usually with a $$$ command).  During the power-up/reset cycle, Turbo PMAC will read the 
saved value of I52, set the PLL circuitry to generate the proper operating frequency, and make other 
settings (e.g. baud rate dividers, memory and I/O wait states) appropriate for that frequency. 

Usually, I52 is set for the CPU to run at the maximum rated frequency.  However, there are some cases in 
which a lower frequency may be desired.  If serial communications using either the main or auxiliary 
serial port at 115,200 baud is desired, the CPU frequency must be an exact multiple of 30 MHz (29.49 
MHz) to generate the baud rate accurately enough.  So the Option 5Dx 100 MHz CPU might be operated 
at 90 MHz to do this. 

Note:  

It may be possible to operate a CPU at a frequency higher than its rated frequency, 
particularly at moderate ambient temperatures.  However, safe operation cannot be 
guaranteed under these conditions, and any such operation is done entirely at the 
user’s own risk. 
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System clock frequencies such as the phase and servo clocks, plus the clock frequencies driving hardware 
circuits, are generated directly from the clock-crystal frequency through a Servo IC or a MACRO IC and 
are not dependent on the CPU operating frequency.  These clock frequencies are covered in the following 
sections. 

Turbo PMAC2 System Clock Source 
In a Turbo PMAC2 system, the system phase and servo clocks, which interrupt the processor and latch 
key input and output data for the servos, come from one (and only one) of the Servo ICs or MACRO ICs 
in the system, or possibly from an external source.  There must be a unique source of the phase and servo 
clocks for an entire Turbo PMAC2 system.  This section explains how to specify that clock source.  A 
later portion of this section, Setting System Clock Frequencies, explains how to set the frequencies once 
the source has been determined. 

Default Clock Source 
The factory-default source for these clock signals is appropriate in almost all applications.  Only in 
specialized cases will another source be used.  The Turbo Setup program will walk you through the setup 
of the frequencies for the source selected.  Setting the frequencies is discussed in the next section. 

Note: 

A Turbo PMAC board uses fixed, discrete logic to generate its phase and servo 
clocks.  If accessory boards with Servo ICs or MACRO ICs that can generate their 
own clock signals are added to a Turbo PMAC, they must be set up to use the 
Turbo PMAC’s phase and servo clock signals.  Turbo PMAC systems also do 
support external clock sources in the same way that Turbo PMAC2 systems do. 

IC Clock Generation Facilities 
Each PMAC2-style Servo IC (DSPGATE1 IC) and DSPGATE2-type MACRO IC has the capability for 
generating its own phase and servo clock signals, or for accepting external phase and servo clock signals.  
(Exception: MACROGATE-type MACRO ICs can generate their own phase clock, but not servo clock.  
Therefore, they cannot be used to generate clocks for the entire system.)  At most one of these ICs in a 
system may generate its own clock signals – none if the signals come from an external source. 

Variables I7m07 and I7m57 control the clock direction for Servo ICs ‘m’ and ‘m*’, respectively.  
Variables I6807, I6857, I6907, and I6957 control the clock direction for MACRO ICs 0, 1, 2, and 3, 
respectively.  If the variable value is 0, the IC generates its own clock signals and outputs them.  If the 
variable value is 3, the IC accepts the clock signals from a source external to it.  At most one of these ICs 
can have this variable at a value of 0; the rest must be set to 3. 

Note:  

If more than one of these ICs is set up to use its own clock signals and to output 
them, the processor will be interrupted by multiple sources and will not operate 
normally – it is possible that the watchdog timer will trip.  (Because the outputs are 
open-collector types, there will be no hardware damage from signal contention, but 
system software operation will be compromised.) 
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Typical Clock-Source ICs 
On a board-level Turbo PMAC2 controller that is not an Ultralite MACRO-only controller, usually the 
system clock source is Servo IC 0, the first on-board Servo IC.  This means that I7007 is set to 0, so that 
I7000, I7001, and I7002 control the system clock frequencies.  Other clock-direction I-variables should be 
set to 3.  The same is true for 3U Turbo Stack controllers. 

On a Turbo PMAC2 Ultralite controller, or a UMAC Turbo system utilizing the MACRO ring, usually 
the system clock source is MACRO IC 0, the first MACRO IC.  This means that I6807 is set to 0, so that 
I6800, I6801, and I6802 control the system clock frequencies.  Other clock-direction I-variables should be 
set to 3. 

On a UMAC Turbo system that does not utilize the MACRO ring (which is most UMAC Turbo systems), 
usually the system clock source is Servo IC 2, the first Servo IC on the UBUS backplane.  This means 
that I7207 is set to 0, so that I7200, I7201, and I7202 control the system clock frequencies.  Other clock-
direction I-variables should be set to 3. 

External Clock Sources 
It is possible to set up a Turbo PMAC or Turbo PMAC2 system to use externally generated phase and 
servo clock signals brought in through extra pins on the main serial port.  Sometimes these clock signals 
will come from another Turbo PMAC that is part of the same system in order to keep all of the controllers 
fully synchronized.  Other times they may come from a video system in order to fully synchronize the 
motion to the video frames.  Still other times they may come from a reference clock much more precise 
than Turbo PMAC’s own clock crystal; this is common in the tracking control of telescopic systems. 

On a Turbo PMAC system, if any of the jumpers E40 – E43 are removed, it will expect externally 
generated phase and servo clocks.  On a Turbo PMAC2 system, this function is determined by jumper E1 
on board-level Turbo PMACs and jumpers E1A and E1B on the CPU board of a UMAC system. 

It is recommended that the servo and phase clock signals provided to a Turbo PMAC each are differential 
5V pairs (RS-422 levels).  However, single-ended 5V signals can be accepted into the “+” inputs; the “-” 
inputs should be left unconnected and will be held at 2.5V internally.  The phase clock signal should have 
a 50% duty cycle.  The servo clock must be synchronous with the phase clock, with a period of n phase 
clock periods, where n is a positive integer.  The falling edge of the SERVO+ signal must be coincident 
with the falling edge of the PHASE+ signal, and the SERVO+ signal should be low for at most 1 phase-
clock cycle. 

For more details on the use of external clock signals, refer to the Synchronizing Turbo PMAC to External 
Events section of this manual. 

Distribution of Clock Signals 
Whatever the source of the phase and servo clock signals, these signals must be available to the processor 
and all Servo ICs and MACRO ICs, plus any other circuits that use these signals in their functioning 
(such as I/O cards that are used for parallel or serial feedback).  Note that the hardware clock signals – the 
DAC clock, ADC clock, encoder sample clock, and PFM clock – are generated locally inside each Servo 
IC and MACRO IC, and are not shared between ICs. 

Board-Level Turbo PMACs 
On a board-level Turbo PMAC, the clock source must be one of the on-board Servo ICs or MACRO ICs, 
and the clock signals are just transmitted over circuit traces on the board, and if there is a piggyback CPU 
board, up to the CPU board.  The servo and phase clock signals are always present as outputs (never 
inputs) on the JEXP expansion port for accessory boards connected to this port.  These signals are also 
available as buffered differential outputs on extra pins on the RS-422 serial port connector for other 
devices. 
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UMAC Systems 
In UMAC systems (including Compact UMAC), the phase and servo clocks are shared across the UBUS 
backplane board among the different 3U-format cards inserted into that backplane.  Each card has buffer 
ICs for these signals as they interface to the backplane.  On cards that are potential sources of the phase 
and servo clock signals, such as the Acc-24E/C axis boards or the Acc-5E MACRO board, these buffers 
can be configured as either inputs or outputs. 

On each UMAC board that could be a clock source, there is a jumper that controls the configuration of the 
clock-direction buffers.  In one setting, the board can only input the clock signals.  This setting is required 
for the UMAC MACRO, in which the clock signals always come from the MACRO interface board.  It is 
permissible, but not recommended, for boards in UMAC Turbo systems that will be not be generating 
their own phase and servo clock signals.  This setting is not permissible for the UMAC board that is 
generating the system phase and servo clocks. 

In the other setting, the direction of the clock-signal buffers can be reversed by the Turbo CPU.  This 
setting is required for the board that is generating the system clocks; it is recommended for the other 
boards as well (so the source can be changed without moving any buffers).  At power-up/reset, the CPU 
will configure the buffers the board containing the Servo IC or MACRO IC that is specified by I19 to 
generate the system clocks as outputs to the UBUS backplane; it will configure the buffers on all other 
boards to be inputs from the UBUS backplane. 

Missing Clock Signals 
If the phase and/or servo clock signals are not present, this is a serious failure, and the Turbo PMAC 
system will not be able to operate properly.  This section explains how Turbo PMAC systems respond to 
such a failure. 

Board-Level Turbo PMACs 
On board-level Turbo PMACs, if the CPU does not receive the phase and servo clock signals at any time, 
the watchdog timer will immediately trip and shut down the system completely.  If this happens 
immediately at power-up/reset due to improper configuration of the clock-source setup, install the re-
initialization jumper and power up the system again to restore a valid clock source from one of the on-
board Servo ICs or MACRO ICs. 

UMAC Systems 
In a UMAC system (including Compact UMAC), if the CPU does not receive any phase or servo clock 
signals over the UBUS backplane immediately after configuring the clock source, it will go into a special 
mode in which it generates its own phase and servo clocks at the factory default frequencies of 9.03 kHz 
and 2.26 kHz, respectively.  In this case, it sets the global status bit No hardware clocks found at 
X:$000006 bit 3 to 1.   

This mode is intended to keep the system alive to permit the user to set up the clock configuration 
information properly for their setup.  It is not intended for the UMAC to be able to do actual control in 
this mode.  In firmware revisions V1.940 and newer, no motor can be enabled if this error bit is set, with 
the Turbo PMAC reporting an ERR018 to an enabling command if I6 is set to 1 or 3. 

If the UMAC CPU stops receiving the phase or servo clock signals after this time, the watchdog timer 
will trip and immediately shut down the system completely. 

Re-Initialization Actions 
On re-initialization of a Turbo PMAC2 ($$$*** command, or power-on/reset with re-initialization 
jumper E3 ON), the CPU searches all possible locations of Servo ICs and MACRO ICs to see which are 
present.  If the system is not set up for an external clock source, it then makes a decision as to which of 
these ICs it will use to generate the system’s phase and servo clocks, using the first IC that it finds in the 
following list: 



Turbo PMAC User Manual 

Turbo PMAC System Configuration and Auto Configuration 21 

1. Servo IC 0 (On-board or 3U Stack) (I19=7007) 
2. MACRO IC 0 (On-board or Acc-5E) (I19=6807) 
3. Servo IC 1 (On-board or 3U Stack) (I19=7107) 
4. Servo IC 2 (Acc-24E2, 51E)  (I19=7207) 
… 
11. Servo IC 9 (Acc-24E2, 51E)  (I19=7907) 
12. Servo IC 2* (Acc-24E2, 51E)  (I19=7257) 
… 
19. Servo IC 9* (Acc-24E2, 51E)  (I19=7957) 
20. MACRO IC 1 (On-board or Acc-5E) (I19=6857) 
21. MACRO IC 2 (On-board or Acc-5E) (I19=6907) 
22. MACRO IC 3 (On-board or Acc-5E) (I19=6957) 
(MACRO ICs must be DSPGATE2 ICs to be used as a clock source.) 
Next, it sets I19 to the number of the clock-direction I-variable for the first of these ICs it finds 
automatically.  For example, if it finds Servo IC 0, it will set I19 to 7007.  Finally, it will set this clock-
direction I-variable to 0, and the clock-direction I-variable for all of the other Servo and MACRO ICs that it 
finds to 3. 

However, if it finds on re-initialization that the E1 jumpers are configured to use external phase and servo 
clocks, I19 is set to 0 and all of the clock-direction I-variables are set to 3. 

Note:  

Once the system has been set up to take external phase and servo clock signals, 
these signals must always be present while the system is powered, or the watchdog 
timer will trip immediately.   

To change a system set up for external clocks back to internal clocks, it is necessary to power it up with 
the E3 re-initialization jumper ON, the E1 external-clock jumper OFF, and with the external clock signals 
present.  Once the new configuration for internal-clock source is established, either by the automatic re-
initialization actions, or user-set configuration (see below), these settings must be stored to flash memory 
with the SAVE command.  Then the system can be powered down, the E3 re-initialization jumper 
removed, and the external clock signals removed.  Finally, the system can be powered up again normally. 

Note:  

If a Turbo PMAC2 is on a MACRO ring, but it is not the ring controller 
synchronizing master, it must be set up to have its phase clock adjusted by receipt 
of the sync packet over the MACRO ring.  This is done by setting bit 7 of I6840 to 
1, and bits 16 – 19 of I6841 to the node number of the sync packet (usually $F 
[=15]).  In this case, the phase and servo clocks are still generated internally, 
although they are locked to receipt of this sync packet.  Systems of this type should 
have I6807 set to 0 (I19 set to 6807) to use MACRO IC 0 as the source of the 
phase and servo clocks.  If re-initialization does not automatically cause this to 
happen, it must be done manually (see below). 

User-Customized Clock-Source Specification 
The procedure to change the clock source is slightly different for 3U-format Turbo PMAC2 systems and 
other Turbo PMAC2 systems.   
In a 3U-format Turbo PMAC2 system (UMAC Turbo or 3U Turbo Stack), to change the clock source, 
simply follow this 3-step procedure: 
1. Set I19 to the number of the clock-source I-variable of the IC you want to be the source. 
2. Store this value to non-volatile flash memory with the SAVE command. 
3. Reset the system normally (not re-initialization). 
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Do not try to set the clock-direction I-variables directly. 

In other Turbo PMAC2 systems, change the clock-direction I-variables themselves in a single command 
(e.g. I6807=0 I7007=3).  It is best to change I19 to the number of the I-variable that just set to 0 
(I19=6807 in this example), but this is not necessary.  Store these new values to non-volatile flash 
memory with the SAVE command.  They will then be used automatically on every subsequent power-
up/reset. 

Servo and phase clock lines are bi-directional on the UBUS backplane expansion port in UMAC Turbo 
systems, so these signals can go either from or to the CPU board.  However, on the JEXP flat-cable 
expansion port, these clock lines are uni-directional and can only be output from the main PMAC board 
or CPU board. 

If I19 is set to an improper value, the watchdog timer will trip immediately on reset.  To recover, power 
down, install the E3 re-initialization jumper, and power up again. 

The most common reason to change from the default setting is tying a Turbo PMAC2 that has Servo IC 0 
and/or 1 to a MACRO ring where it is not the ring controller.  In this case, MACRO IC 0 should be the 
clock source, but the re-initialization procedure will decide on Servo IC 0.  In this case, change I19 from 
7007 to 6807, SAVE, and reset. 

Normal Reset Actions 
On a normal power-up or reset sequence, the Turbo PMAC2 CPU reads the value of I19 that was 
previously saved to flash memory and sets the I-variable whose number it finds there to 0, specifying that 
this IC uses its own phase and servo clocks and outputs them to the system.  For example, if I19 were 
6807, I6807 would be set to 0.  It would then set the clock-direction I-variables automatically for all of 
the other Servo and MACRO ICs that it finds at power-up/reset to 3, so these ICs accept servo and phase 
clock signals as inputs. 

MACRO IC Selection 
Starting in Turbo PMAC firmware version 1.936, I-variables I20 – I23 must be set to specify the 
addresses of the MACRO IC(s) used for automatic firmware functions.  This is not compatible with older 
firmware versions.  If updating an application from an older version, after loading the old I-variable file, 
issue the command I20..23=*, followed by a SAVE command, followed by a $$$ reset command. 

Some Turbo PMAC2 systems (presently UMAC Turbo) can address up to 16 MACRO ICs.  However, 
there is automatic firmware support for only four of these ICs at any given time.  These ICs are referred to 
as MACRO ICs 0, 1, 2, and 3.  Variables I20 through I23 specify the base addresses of MACRO ICs 0 
through 3, respectively.  These variables must be set properly to use the desired ICs for any automatic 
firmware functions. 

MACRO IC 0, specified by I20, has several functions that require automatic firmware support: 
• Display port functions (can be changed dynamically) 
• Multiplexer port functions (can be changed dynamically) 
• I-variables I6800 – I6849 (values automatically assigned only at power-up/reset) 
• MACRO nodes 0 – 15 (can be changed dynamically) 
• MACRO Type 1 auxiliary communications if I84=0 

MACRO IC 1, specified by I21, has several functions that require automatic firmware support: 
• I-variables I6850 – I6899 (values automatically assigned only at power-up/reset) 
• MACRO nodes 16 – 31 (can be changed dynamically) 
• MACRO Type 1 auxiliary communications if I84=1 

MACRO IC 2, specified by I22, has several functions that require automatic firmware support: 
• I-variables I6900 – I6949 (values automatically assigned only at power-up/reset) 
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• MACRO nodes 32 – 47 (can be changed dynamically) 
• MACRO Type 1 auxiliary communications if I84=2 

MACRO IC 3, specified by I23, has several functions that require automatic firmware support: 
• I-variables I6950 – I6999 (values automatically assigned only at power-up/reset) 
• MACRO nodes 48 – 63 (can be changed dynamically) 
• MACRO Type 1 auxiliary communications if I84=3 

On re-initialization, Turbo PMAC2 searches for the MACRO ICs with the lowest base addresses.  I20 is 
assigned the lowest base address (if one is found); I21 is assigned the next (if found), and so on.  Also, the 
same action is taken when assigning the default value to one of these variables (e.g. I20=*). 

Dual-Ported RAM IC Selection 
Starting in Turbo PMAC firmware version 1.936, it is possible to specify the base address of the dual-
ported RAM IC used for automatic firmware communications functions.  This permits support for new 
accessories such as the Acc-54E USB/Ethernet communications board.  In firmware versions V1.935 and 
older, the base address was fixed at $060000 for the “on-board” DPRAM. 

New variable I24 specifies the base address of the DPRAM IC used for the automatic firmware 
communications functions.  For backward compatibility, if I24 is set to 0, the DPRAM will be assumed to 
have a base address of $060000. 

I24 is used only at power-up/reset.  To use other than the on-board DPRAM IC, follow the instructions of 
the accessory such as the Acc-54E to set the value of I24 to match the hardware settings on the accessory.  
Then issue the SAVE command and the $$$ command so the accessory can be used for communications.  
On re-initialization, I24 is set to the lowest base address of any DPRAM IC found.  Most commonly, I24 
will be set to $060000 for use with backplane-bus communications, or to $06C000 for use with the 
DPRAM on a UMAC Acc-54E USB/Ethernet Communications Board. 

System Configuration Status Reporting 
Turbo PMAC systems can detect and report significant information about their configuration 
automatically.  They do this by having the processor query possible address locations for interface ICs – 
Servo ICs, MACRO ICs, DPRAM ICs, and I/O ICs.  This information can be very useful in the initial 
setup of a Turbo PMAC system, and subsequently to verify that the configuration has not changed. 

Servo IC Configuration 
On power-up/reset, the Turbo PMAC CPU automatically tests for the presence and type of all possible 
Servo ICs and reports the results in I4900 and I4901.  I4900 is a collection of 20 independent bits, in 
which bits 0 – 9 report the presence of Servo ICs 0 – 9, respectively, and bits 10 – 19 report the presence 
of Servo ICs 0* to 9*, respectively.  A bit value of 1 indicates the IC is present; a bit value of 0 indicates 
the IC is absent. 

I4901 is also a collection of 20 independent bits, in which bits 0 – 9 report the type of Servo ICs 0 – 9, 
respectively, and bits 10 – 19 report the type of Servo ICs 0* to 9*, respectively.  A bit value of 1 
indicates a PMAC2-style “DSPGATE1” IC; a bit value of 0 indicates a PMAC1-style “DSPGATE” IC 
(or no IC present if the corresponding bit of I4900 is 0). 

MACRO IC Configuration 
On power-up/reset, the Turbo PMAC CPU tests for the presence and type of all possible MACRO ICs 
automatically and reports the results in I4902 and I4903.  I4902 is a collection of 16 independent bits, 
each reporting the presence of a MACRO IC at one of the 16 possible locations.  A bit value of 1 
indicates the IC is present; a bit value of 0 indicates the IC is absent. 
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I4903 is also a collection of 16 independent bits, each reporting the type of MACRO IC at one of the 16 
possible locations.  A bit value of 1 indicates a DSPGATE2 IC; a bit value of 0 indicates a 
MACROGATE IC (or no IC present if the corresponding bit of I4900 is 0). 

While it is possible for up to 16 MACRO ICs to be installed in a Turbo PMAC system, only four of these 
can be supported at any time by automatic firmware functions.  I20 – I23 contain the base addresses of 
these four ICs.  When the system is re-initialized, these variables are set to values for the four ICs found 
with the lowest base addresses. 

DPRAM IC Configuration 
On power-up/reset, the Turbo PMAC CPU automatically tests for the presence of all possible dual-ported 
RAM ICs and reports the results in I4904.  I4904 is a collection of eight independent bits, each reporting 
the presence of a DPRAM IC at one of the eight possible locations.  Only one of these ICs can be 
supported at any time by automatic firmware functions.  I24 contains the base address of this IC. 

CPU Section Configuration 
On power-up/reset, the Turbo PMAC automatically tests for the configuration of its own CPU section and 
reports the results in I4908.  I4908 is a 36-bit value reporting the CPU type, active memory size, DPRAM 
size, battery-backed RAM size, flash memory size, presence of auxiliary serial port, part number, and 
vendor ID. 

UBUS Accessory Board Identification 
The Turbo PMAC can report detailed information about accessory boards installed on the UBUS 
expansion port in UMAC Turbo systems.  This information is reported in variable I4910 – I4965.  Each is 
a 36-bit variable with the following contents: 

Vendor ID: 8 bits 
Options present: 10 bits 
Revision number: 4 bits 
Card ID (part number): 14 bits 

Each variable can report one part or all parts of this information, depending on the setting of I39.  If I39 is 
set to 5, the variable reports the base address of the accessory board instead. 
I4910 – I4925 report this information for the 16 possible accessory boards with Servo ICs, such as the 
Acc-24E2, 24E2A, 24E2S, and 51E. 
I4926 – I4941 report this information for the 16 possible accessory boards with MACRO ICs, such as the 
Acc-5E. 
I4942 – I4949 report this information for the 8 possible accessory boards with DPRAM ICs, such as the 
Acc-54E USB/Ethernet interface. 
I4950 – I4965 report this information for the 16 possible accessory boards with I/O ICs, such as the Acc-
14E, 28E, 36E, 53E, and 59E.  (The Acc-9E, 10E, 11E, and 12E I/O boards currently cannot provide this 
information.) 

Setting System Clock Frequencies 
The phase clock and servo clock signals set the heartbeat for the entire Turbo PMAC system, 
synchronizing both hardware and software operations.  While the factory default frequencies – 9.04 kHz 
for the phase clock and 2.26 kHz for the servo clock – are suitable for most applications, some 
applications will either require changes, or could benefit from changes in one or both of these frequencies. 
The hardware tasks that are driven by the phase and servo clock signals include: 
• Latching of encoder counters 
• Latching of parallel feedback registers 
• Strobing of A/D converters and latching of resulting data 
• Output to D/A converters 
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• Output to PWM circuits 
• Communication over MACRO ring 
The software tasks that are driven by the phase and servo clock signals include: 
• Digital current loop closure (phase clock) 
• Motor phase commutation (phase clock) 
• Demuxing of muxed A/D converters (phase clock) 
• Encoder conversion table pre-processing (servo clock) 
• Trajectory interpolation (servo clock) 
• Position/velocity loop closure (servo clock and Ixx60) 
• PLC 0 and PLCC 0 execution (servo clock and I8) 
• Checking for motion program move planning  (servo clock and I8) 
The sections on commutation and servo-loop closure discuss the selection of optimal frequencies for these 
signals.  In general, higher frequencies can lead to higher performance (although there are points of 
diminishing returns, and other system limitations can cap performance no matter how fast the Turbo 
PMAC is running), at the cost of increase processor usage. 

Setting Turbo PMAC Phase and Servo Clock Frequencies 
On a Turbo PMAC controller, the system clock frequencies are determined by the setting of E-point 
jumpers.  While some E-point numbers are specific to a particular controller, the clock-frequency jumper 
numbers are common to all Turbo PMAC controllers and so can be summarized here.  Consult the 
Hardware Reference Manual for the particular controller to get the location for these jumpers on the 
board. 

PMAC(1) Clock Dividing Circuitry
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E98 DCLK Frequency Control 
E98 controls the frequency of the DCLK clock signal that controls the bit rate into all the D/A converters 
on the board and out of all the Acc-28 A/D converters connected to the board.  The factory default setting 
connects pins 1 and 2 of E98, setting a DCLK frequency of 2.46 MHz.  It should be left in this setting 
unless any Acc-28 A/D converter is connected to the board.  In this case, the jumper should be moved to 
connect pins 2 and 3, reducing the frequency to 1.23 MHz. 
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E29 – E33 Phase Clock Frequency Control 
The jumper set E29 – E33 determines the phase clock frequency, controlling its division from the DCLK 
signal set by E98.  Only one jumper in this set may be installed at any time.  The maximum possible 
phase clock frequency is 1/68 of the DCLK frequency – 36.14 kHz for the 2.46 MHz DCLK, or 18.07 
kHz for the 1.23 MHz DCLK.  This is the frequency selected by E33.  The following table shows the 
possible phase-clock frequencies that can be selected: 

Jumper Selected 2.46 MHz DCLK (E98 1-2) 1.23 MHz DCLK (E98 2-3) 
E33 36.14 kHz 18.07 kHz 
E32 18.07 kHz 9.04 kHz 

E31 (default) 9.04 kHz 4.52 kHz 
E30 4.52 kHz 2.26 kHz 
E29 2.26 kHz 1.13 kHz 

E3 – E6 Servo Clock Frequency Control 
The jumper set E3 – E6 determines the servo clock frequency, controlling its division from the phase 
clock signal set by E29 – E33 and E98.  These four jumpers create a binary number N specifying that the 
phase clock frequency be divided by N+1 to obtain the servo clock frequency.  A jumper ON creates a 0-
bit; a jumper OFF creates a 1-bit, with E3 as the least significant bit.  The following table shows the 
possible settings: 

E3 E4 E5 E6 Division 
Factor N+1 

E3 E4 E5 E6 Division  
Factor N+1 

ON ON ON ON 1 ON ON ON OFF 9 
OFF ON ON ON 2 OFF ON ON OFF 10 
ON OFF ON ON 3 ON OFF ON OFF 11 
OFF OFF ON ON 4* OFF OFF ON OFF 12 
ON ON OFF ON 5 ON ON OFF OFF 13 
OFF ON OFF ON 6 OFF ON OFF OFF 14 
ON OFF OFF ON 7 ON OFF OFF OFF 15 
OFF OFF OFF ON 8 OFF OFF OFF OFF 16 

* Default 

Setting Turbo PMAC2 Phase and Servo Clock Frequencies 
On a Turbo PMAC2 controller (including UMAC and QMAC systems), the system clock frequencies are 
determined by the setting of I-variables for the Servo IC or MACRO IC that has been selected as the 
clock source for the system.  Selection of this IC (usually the first Servo IC in a system without the 
MACRO ring, or the first MACRO IC in a system with the MACRO ring) is covered in the preceding 
section, and the factory default selection is usually acceptable. 

When Servo IC m is selected as the clock source, I-variables I7m00, I7m01, and I7m02 control these 
system clock frequencies.  When MACRO IC 0 is selected as the clock source, as on Ultralite Turbo 
PMAC2 boards, I-variables I6800, I6801, and I6802 control these system clock frequencies. 
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PMAC2 Gate Array IC Clock Control
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I7m00/I6800 MaxPhase Frequency Control 
I7m00 for Servo IC m (or I6800 for MACRO IC 0) for the IC selected as system clock source sets the 
frequency of the internal MaxPhase clock signal, the maximum possible phase clock frequency.  It does 
so according to the formula: 

300m7I*2

8.964,117
)kHz(MaxPhase

+
=  

At the default value of 6527, it sets a 9.04 kHz frequency for MaxPhase. 

I7m00 also sets the PWM output frequency for all channels on Servo IC m; this frequency is equal to 
exactly half of the MaxPhase frequency. 

I7m01/I6801 Phase Clock Frequency Control 
I7m01 for Servo IC m (or I6801 for MACRO IC 1) for the IC selected as system clock source sets the 
frequency of the phase clock signal for the system, controlling its division from the MaxPhase clock 
frequency.  It does so according to the formula: 

101m7I

)kHz(MaxPhase
)kHz(Phase

+
=  

At the default value of 0 (divide by 1) and the default MaxPhase frequency of 9.04 kHz, this sets a phase 
clock frequency of 9.04 kHz (110 µsec period). 

I7m02/I6802 Servo Clock Frequency Control 
I7m02 for Servo IC m (or I6802 for MACRO IC 1) for the IC selected as system clock source sets the 
frequency of the servo clock signal for the system, controlling its division from the phase clock 
frequency.  It does so according to the formula: 

102m7I

)kHz(Phase
)kHz(Servo

+
=  



 Turbo PMAC User Manual 

28 Turbo PMAC System Configuration and Auto Configuration 

At the default value of 3 (divide by 4) and the default phase clock frequency of 9.04 kHz, this sets a servo 
clock frequency of 2.26 kHz (442 µsec period). The following diagram shows the relationship between 
the PWM counter, whose frequency is set by the I7m00/I6800 Max Count parameter, the resulting 
MaxPhase clock signal, and the Phase and Servo clock signals that are derived from MaxPhase. 

PMAC2 Clock Signal Example

PWM
Counter

+ Max
Count

- Max
Count

t

Max
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Phase

Servo  

Setting I10 Servo Update Time Parameter 
On any Turbo PMAC system, set the I10 servo update time parameter to match the servo frequency 
selected.  I10 is used by the interpolation algorithms to decide how far to increment position each servo 
cycle and it must be set correctly to get trajectories at the proper speed.  I10 is scaled such that a value of 
223 (8,388,608) matches a servo update type of 1 millisecond (1 kHz servo clock frequency). 
The equation for setting I10 as a function of the servo update period is: 

)kHz(eFreqServoUpdat

608,388,8
sec)m(ePeriodServoUpdat*608,388,810I ==  

The default value for I10 of 3,713,707 matches the default servo period of 442 µsec, so if you keep this 
default period, you will not have to change I10.  Refer to the description of I10 in the Software Reference 
manual for detailed instructions on the setting of I10.  To get a new value of I10 to take effect, issue a 
%100 command for each coordinate system used or a SAVE command and reset the Turbo PMAC. 

Setting up a Turbo PMAC2 on the MACRO Ring 
Turbo PMAC2 controllers can command axes and I/O over the MACRO ring.  Most commonly, this is 
done with an Ultralite board-level Turbo PMAC2 controller that is installed as an expansion card in the 
host computer, communicating to MACRO Stations, MACRO-based drives, and/or MACRO peripheral 
devices over the MACRO ring.  However, it is also possible for a UMAC Turbo with the Acc-5E 
MACRO interface, or a QMAC with the MACRO-interface option installed, to command devices over 
the MACRO ring. 

Several variables must be set up properly for proper ring operation.  Usually, this is done automatically 
through use of the Turbo Setup program on a PC.  The following instructions permit direct manual setting 
of these variables. 
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MACRO Ring Frequency Control Variables 
The MACRO ring update frequency is the phase clock frequency of the ring master controller.  If there is 
more than one Turbo PMAC2 controller on the ring, only one of them can be the ring master controller 
(others are masters, but not ring masters).  Of course, if there is only one Turbo PMAC2 controller on the 
ring, it will be the ring master controller.  Determining which Turbo PMAC2 (technically, which 
MACRO IC on a Turbo PMAC2) is ring master is explained below. 

While the ring master has the capability to force the clock generation of other devices on the ring into 
synchronization, it is strongly recommended that all devices on the ring, both other Turbo PMAC2 
controllers, and any slave devices, be set up for the same phase clock frequency.  Determining which IC 
sets the phase clock frequency and the actual setting the phase clock frequency for a Turbo PMAC2 
controller is explained above.   

For a Turbo PMAC2 driving a MACRO ring, MACRO IC 0 should generate the phase clock signal.  This 
means that I19 should be set to 6807 (which it will be by default on virtually any Turbo PMAC2 capable 
of driving a MACRO ring), and that I6800 and I6801 set the phase clock frequency. 
I7: Phase Cycle Extension 
On the Turbo PMAC2 board, it is possible to skip hardware phase clock cycles between executions of the 
phase update software.  A Turbo PMAC2 board will execute the phase update software – commutation 
and/or current-loop closure – every (I7+1) hardware phase clock cycles.  The default value for I7 is 0, so 
normally Turbo PMAC2 executes the phase update software every hardware phase clock cycle. 

If the Turbo PMAC2 board is closing the current loop for direct PWM control over the MACRO ring, it is 
desirable to have two hardware ring update cycles (which occur at the hardware phase clock frequency) 
per software phase update.  This eliminates one ring cycle of delay in the current loop, which permits 
slightly higher gains and performance.  To do this, I7 would be set to 1, so the phase update software 
would execute every second hardware phase clock cycle, and ring update cycle. 

Normally it is desirable to close the current loop at an update rate of about 9 kHz (the default rate).  If two 
ring updates were desired per current loop update, the ring update frequency would need to be set to 18 
kHz.  This is possible if there are no more than 40 total active nodes on the ring.  To implement this, 
I6800 would be set to one-half of the default value, and I6801 to the default value of 0. 

Note:  
When making this change, change the Turbo PMAC2’s I6800 variable first, then 
the MACRO Station’s MI992.  Changing the MACRO Station’s MI992 alone, 
followed by an MSSAVE command and an MS$$$, could cause the Station’s 
watchdog timer to trip. 

I6840: MACRO IC 0 Master Configuration 
Any MACRO IC on a Turbo PMAC2 talking to a MACRO Station must be configured as a master on the 
ring.  For purposes of the MACRO protocol, each MACRO IC is a separate logical master with its own 
master number, even though there may be multiple MACRO ICs on a single physical Turbo PMAC2.   

Each ring must have one and only one ring controller (synchronizing master).  This should be the 
MACRO IC 0 one and only one of the Turbo PMAC2 boards on the ring. 

On a Turbo PMAC2, set I6840 to $30 to make the card’s MACRO IC 0 the ring controller.  This sets bits 
4 and 5 of the variable to 1.  Setting bit 4 to 1 makes the IC a master on the ring; setting bit 5 to 1 makes 
the IC the ring controller” starting each ring cycle by itself. 

On a Turbo PMAC2 whose MACRO IC 0 will be a master but not ring controller, I6840 should be set to 
$90.  This sets bits 4 and 7 of the variable to 1.  Setting bit 4 to 1 makes the IC a master on the ring; 
setting bit 7 to 1 will cause this IC to be synchronized to the ring controller IC every time it receives a 
ring packet specified by I6841. 
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I6890/I6940/I6990: MACRO IC 1/2/3 Master Configuration 
A Turbo PMAC2 Ultralite may have additional MACRO ICs if Options 1U1, 1U2, and/or 1U3 are 
ordered.  A UMAC Turbo system may have additional MACRO ICs if Option 1 on an Acc-5E is ordered, 
or if multiple Acc-5E boards are ordered.  These additional ICs should be set to be masters but not ring 
controllers by setting I6890, I6940, and I6990, respectively to $10.  This sets bit 4 of the variable to 1, 
making the IC a master on the ring.  These ICs should never be synchronizing masters, and since they do 
not control the clock signals on their own board, their internal clocks do not need to be synchronized to 
the ring (only MACRO IC 0 needs to do this). 
I6841/I6891/I6941/I6991: MACRO IC 0/1/2/3 Node Activation Control 
I6841, I6891, I6941, and I6991 on Turbo PMAC2 control which of the 16 MACRO nodes for MACRO 
ICs 0, 1, 2, and 3, respectively, on the card are activated.  They also control the master station number for 
their respective ICs, and the node number of the packet that creates a synchronization signal.  The bits of 
these I-variables are arranged as follows: 
Bits 0-15: Activation of MACRO Nodes 0 to 15, respectively (1 = active, 0 = inactive).  These 16 bits 
(usually read as four hex digits) individually control the activation of the MACRO nodes in the MACRO 
IC on a Turbo PMAC2.  Each node that is active on the matching MACRO Station, whether for servo, 
I/O, or auxiliary communications, should have its node activation bit set to 1.   
When working with a Delta Tau MACRO Station, Node 15 of each MACRO IC on a Turbo PMAC2 
must be activated to permit auxiliary communications, so bit 15 of this variable should always be set to 1 
if the IC is used to communicate with a MACRO Station. 
Bits 16-19: Packet Sync Node Slave Number.  These four bits together (usually read as one hex digit) 
form the slave number (0 to 15) of the packet whose receipt by the PMAC2 will set the Sync Packet 
Received status bit in the MACRO IC.  Usually, this digit is set to $F (15), because Node 15 is always 
activated. 
Turbo PMAC2 must see this bit set regularly; otherwise it will assume ring problems and shut down servo 
and I/O outputs on the ring.  Bit 7 of I6840 must be set to 1 on the MACRO IC 0 of all Turbo PMAC2s 
that are not ring controllers to enable the synchronization of their phase clocks to that of the ring 
controller based on receipt of the sync packet. 
Bits 20-23: Master Number.  These four bits together form the master number (0 to 15) of the MACRO 
IC on the MACRO ring.  Each MACRO IC acting as a master on the ring, whether on the same card or 
different cards, must have its own master number, and acts as a separate master station for the purposes of 
the ring protocol.  This master number forms half of the address byte with each packet sent by the 
PMAC2 over the MACRO ring. 
The master number can be the same number as the MACRO IC number (e.g. MACRO IC 0 has master 
number 0, MACRO IC 1 has master number 1, and so on), and if there is only one Turbo PMAC2 in the 
ring, this probably will be the case.  However, this is not required.  The MACRO IC that is the ring 
controller must have master number 0 if Type 1 master-to-master auxiliary communications are to be used. 

Bit

Hex ($) 00 0 00 0

Slave node Enables

Sync node Address

Master Address (0-15)

(0-15)
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The table shown in an above section and in the Hardware Reference Manual for the 3U MACRO 
Station’s SW1 switch setting provides a starting point for the Turbo PMAC2’s I6841/I6891/I6941/I6991 
value.  Additional bits of these I-variables may be set to 1 if I/O nodes are enabled or if more than one 3U 
MACRO station is commanded from a single MACRO IC. 

I70/I72/I74/I76: MACRO IC 0/1/2/3 Node Auxiliary Function Enable 
I70, I72, I74, and I76 are 16-bit I-variables (bits 0 - 15) in which each bit controls the enabling or 
disabling of the auxiliary flag function for the MACRO node number matching the bit number for 
MACRO ICs 0, 1, 2, and 3, respectively.  A bit value of 1 enables the auxiliary flag function; a bit value 
of 0 disables it.  If the function is enabled, PMAC automatically copies information between the MACRO 
interface flag register and RAM register $00344n, $00345n, $00346n, and $00347n (where n is the IC’s 
node number 0 – 15) for MACRO ICs 0, 1, 2, and 3, respectively.   

Note that Turbo PMAC MACRO node numbers (as opposed to individual MACRO IC node numbers) go 
from 0 to 63, with board nodes 0 – 15 on MACRO IC 0, board nodes 16 – 31 on MACRO IC 1, board 
nodes 32 – 47 on MACRO IC 2, and board nodes 48 – 63 on MACRO IC 3. 

Each MACRO node n that is used for servo functions should have the corresponding bit n of I70, I72, 
I74, or I76 set to 1.  Ixx25 for the Motor x that uses Node n should then address $00344n, $00345n, 
$00346n, or $00347n, not the address of the MACRO register itself (see below).  If Register 3 of a 
MACRO node n is used for other purposes, such as direct I/O, the corresponding bit n of I70, I72, I74, or 
I76 should be set to 0, so this copying function does not overwrite these registers. 

Typically, non-servo I/O functions with a MACRO Station do not involve auxiliary flag functions, so this 
flag copy function should remain disabled for any node used to transmit I/O between the Turbo PMAC2 
and the MACRO Station.  If any auxiliary communications is done between the Turbo PMAC2 and the 
MACRO Station on Nodes 14 and/or 15, bits 14 and 15 of these variables must be set to 0. 
Examples: 
I70=$3 ; Enabled for MACRO IC 0 Nodes 0 and 1 
I72=$30 ; Enabled for MACRO IC 1 Nodes 4 and 5 
I74=$3300 ; Enabled for MACRO IC 2 Nodes 8,9,12,13 
I76=$3333 ; Enabled for MACRO IC 3 Nodes 0,1,4,5,8,9,12,13 

I71/I73/I75/I77: MACRO IC 0/1/2/3 Node Protocol Type Control 
I71, I73, I75, and I77 are 16-bit I-variables (bits 0 - 15) in which each bit controls whether PMAC uses 
the uses MACRO Type 0 protocol or the MACRO Type 1 protocol for the node whose number matches 
the bit number for the purposes of the auxiliary servo flag transfer for MACRO ICs 0, 1, 2, and 3, 
respectively.  A bit value of 0 sets a Type 0 protocol; a bit value of 1 sets a Type 1 protocol. 

All 3U MACRO Station nodes use the Type 1 protocol, so each MACRO node n used for servo purposes 
with a MACRO Station must have bit n of I1002 set to 1.  Generally I71 = I70, I73 = I72, I75 = I74, and 
I77 = I76 on a Turbo PMAC2 communicating with a MACRO Station. 

Remember that if servo nodes for more than one MACRO Station are commanded from a single MACRO 
IC, the protocol must be selected for all of the active servo nodes on each station. 

I78: MACRO Master/Slave Auxiliary Communications Timeout 
If I78 is set greater than 0, the MACRO Type 1 Master/Slave Auxiliary Communications protocol using 
Node 15 is enabled.  Turbo PMAC implements this communications protocol using the MACROSLAVE 
(MS), MACROSLVREAD (MSR), and MACROSLVWRITE (MSW) commands.   

If this function is enabled, I78 sets the timeout value in PMAC servo cycles.  In this case, if PMAC does 
not get a response to a Node 15 auxiliary communications command within I78 servo cycles, it will stop 
waiting and register a MACRO auxiliary communications error, setting Bit 5 of global status register 
X:$000006. 
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I78 must be set greater than 0 if any auxiliary communications is desired with a MACRO Station.  This 
reserves Node 15 for the Type 1 Auxiliary Communications.  A value of 32 is suggested.  If I78 is set 
greater than 0, bit 15 of I70, I72, I74, and I76 must be set to 0, so Node 15 is not used for flag transfers also.   

I79: MACRO Master/Master Auxiliary Communications Timeout 
If I79 is set greater than 0, the MACRO Type 1 Master/Master Auxiliary Communications protocol using 
Node 14 is enabled.  Turbo PMAC implements this communications protocol using the MACROMASTER 
(MM), MACROMSTREAD (MMR), and MACROMSTWRITE (MMW) commands.  Only the Turbo PMAC that is 
the “ring controller” can execute these commands; other Turbo PMACs that are masters on the ring can 
respond to these commands from the ring controller. 

If this function is enabled, I79 sets the “timeout” value in PMAC servo cycles.  In this case, if the Turbo 
PMAC does not get a response to a Node 14 master/master auxiliary communications command within 
I79 servo cycles, it will stop waiting and register a “MACRO auxiliary communications error,” setting Bit 
5 of global status register X:$000006. 

I79 must be set greater than 0 if any auxiliary communications is desired with a MACRO Station.  A 
value of 32 is suggested.  If a value of I79 greater than 0 has been saved into PMAC’s non-volatile 
memory, then at subsequent power-up/resets, bit 14 of I70 is set to 0, the node-14 broadcast bit (bit 14 of 
I6840) is set to 1, and activation bit for node 14 (bit 14 of I6841) is set to 1, regardless of the value saved 
for these variables.  This reserves Node 14 of MACRO IC 0 for the Type 1 Master/Master Auxiliary 
Communications. 

I80, I81, I82: MACRO Ring Check Period and Limits 
If I80 is set to a value greater than zero, Turbo PMAC will monitor for MACRO ring breaks or repeated 
MACRO communications errors automatically.  A non-zero value sets the error detection cycle time in 
Turbo PMAC servo cycles.  Turbo PMAC checks to see that “sync node” packets (see I6840 and I6841) 
are received regularly, and that there have not been regular communications errors. 

The limits for these checks can be set with variables I81 and I82.  If less than I82 sync node packets have 
been received and detected during this time interval, or if I81 or more ring communications errors have 
been detected in this interval, Turbo PMAC will assume a major ring problem, and all motors will be shut 
down.  Turbo PMAC will set the global status bit “Ring Error” (bit 4 of X:$000006) as an indication of 
this error. 

Turbo PMAC looks for receipt of sync node packets and ring communications errors once per real-time 
interrupt – every (I8 + 1) servo cycles).  The time interval set by I80 must be large enough that I82 real-
time interrupts in PMAC can execute within the time interval, or false ring errors will be detected.  
Remember that long motion program calculations can cause skips in the real-time interrupt.  Typically 
values of I80 setting a time interval of about 20 milliseconds are used.  I80 can be set according to the 
formula: 
 I80 = Desired cycle time (msec) * Servo update frequency (kHz) 
For example, with the default servo update frequency of 2.26 kHz, to get a ring check cycle interval of 20 
msec, I80 would be set to 20 * 2.26 ≅ 45. 

MACRO Node Addresses 
The MACRO ring operates by copying registers at high speed across the ring.  Therefore, each Turbo 
PMAC2 master controller on the ring communicates with its slave stations by reading from and writing to 
registers in its own address space.  MACRO hardware handles the data transfers across the ring automatically. 
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Starting in Turbo firmware version 1.936, the base addresses of the up to 4 MACRO ICs must be 
specified in I20 – I23, for MACRO IC 0 – 3 respectively.  Before this, the base addresses were fixed at 
$078400, $079400, $07A400, and $07B400, respectively.  Only UMAC Turbo systems can support any 
other configuration, and only rarely will another configuration be used. 

The following table gives the addresses of the MACRO ring registers for Turbo PMAC2 controllers.   

Note: 

It is possible, although unlikely, to have other addresses in a UMAC Turbo system.  
In these systems, the fourth digit does not have to be 4; it can also take the values 
5, 6, and 7. 

Register Addresses for MACRO IC 0 with I20=$078400 (default) 
 Turbo PMAC2 Addresses: MACRO IC 0  

Node # Reg. 0 Reg. 1 Reg. 2 Reg. 3 
0 Y:$078420 Y:$078421 Y:$078422 Y:$078423 
1 Y:$078424 Y:$078425 Y:$078426 Y:$078427 
2 X:$078420 X:$078421 X:$078422 X:$078423 
3 X:$078424 X:$078425 X:$078426 X:$078427 
4 Y:$078428 Y:$078429 Y:$07842A Y:$07842B 
5 Y:$07842C Y:$07842D Y:$07842E Y:$07842F 
6 X:$078428 X:$078429 X:$07842A X:$07842B 
7 X:$07842C X:$07842D X:$07842E X:$07842F 
8 Y:$078430 Y:$078431 Y:$078432 Y:$078433 
9 Y:$078434 Y:$078435 Y:$078436 Y:$078437 

10 X:$078430 X:$078431 X:$078432 X:$078433 
11 X:$078434 X:$078435 X:$078436 X:$078437 
12 Y:$078438 Y:$078439 Y:$07843A Y:$07843B 
13 Y:$07843C Y:$07843D Y:$07843E Y:$07843F 
14 X:$078438 X:$078439 X:$07843A X:$07843B 
15 X:$07843C X:$07843D X:$07843E X:$07843F 

Register Addresses for MACRO IC 1 with I21=$079400 (default) 
 Turbo PMAC2 Addresses: MACRO IC 1  

Node # Reg. 0 Reg. 1 Reg. 2 Reg. 3 
0 Y:$079420 Y:$079421 Y:$079422 Y:$079423 
1 Y:$079424 Y:$079425 Y:$079426 Y:$079427 
2 X:$079420 X:$079421 X:$079422 X:$079423 
3 X:$079424 X:$079425 X:$079426 X:$079427 
4 Y:$079428 Y:$079429 Y:$07942A Y:$07942B 
5 Y:$07942C Y:$07942D Y:$07942E Y:$07942F 
6 X:$079428 X:$079429 X:$07942A X:$07942B 
7 X:$07942C X:$07942D X:$07942E X:$07942F 
8 Y:$079430 Y:$079431 Y:$079432 Y:$079433 
9 Y:$079434 Y:$079435 Y:$079436 Y:$079437 

10 X:$079430 X:$079431 X:$079432 X:$079433 
11 X:$079434 X:$079435 X:$079436 X:$079437 
12 Y:$079438 Y:$079439 Y:$07943A Y:$07943B 
13 Y:$07943C Y:$07943D Y:$07943E Y:$07943F 
14 X:$079438 X:$079439 X:$07943A X:$07943B 
15 X:$07943C X:$07943D X:$07943E X:$07943F 
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Register Addresses for MACRO IC 2 with I22=$07A400 (default) 
 Turbo PMAC2 Addresses: MACRO IC 2  

Node # Reg. 0 Reg. 1 Reg. 2 Reg. 3 
0 Y:$07A420 Y:$07A421 Y:$07A422 Y:$07A423 
1 Y:$07A424 Y:$07A425 Y:$07A426 Y:$07A427 
2 X:$07A420 X:$07A421 X:$07A422 X:$07A423 
3 X:$07A424 X:$07A425 X:$07A426 X:$07A427 
4 Y:$07A428 Y:$07A429 Y:$07A42A Y:$07A42B 
5 Y:$07A42C Y:$07A42D Y:$07A42E Y:$07A42F 
6 X:$07A428 X:$07A429 X:$07A42A X:$07A42B 
7 X:$07A42C X:$07A42D X:$07A42E X:$07A42F 
8 Y:$07A430 Y:$07A431 Y:$07A432 Y:$07A433 
9 Y:$07A434 Y:$07A435 Y:$07A436 Y:$07A437 

10 X:$07A430 X:$07A431 X:$07A432 X:$07A433 
11 X:$07A434 X:$07A435 X:$07A436 X:$07A437 
12 Y:$07A438 Y:$07A439 Y:$07A43A Y:$07A43B 
13 Y:$07A43C Y:$07A43D Y:$07A43E Y:$07A43F 
14 X:$07A438 X:$07A439 X:$07A43A X:$07A43B 
15 X:$07A43C X:$07A43D X:$07A43E X:$07A43F 

Register Addresses for MACRO IC 3 with I23=$07B400 (default) 
 Turbo PMAC2 Addresses: MACRO IC 3  

Node # Reg. 0 Reg. 1 Reg. 2 Reg. 3 
0 Y:$07B420 Y:$07B421 Y:$07B422 Y:$07B423 
1 Y:$07B424 Y:$07B425 Y:$07B426 Y:$07B427 
2 X:$07B420 X:$07B421 X:$07B422 X:$07B423 
3 X:$07B424 X:$07B425 X:$07B426 X:$07B427 
4 Y:$07B428 Y:$07B429 Y:$07B42A Y:$07B42B 
5 Y:$07B42C Y:$07B42D Y:$07B42E Y:$07B42F 
6 X:$07B428 X:$07B429 X:$07B42A X:$07B42B 
7 X:$07B42C X:$07B42D X:$07B42E X:$07B42F 
8 Y:$07B430 Y:$07B431 Y:$07B432 Y:$07B433 
9 Y:$07B434 Y:$07B435 Y:$07B436 Y:$07B437 

10 X:$07B430 X:$07B431 X:$07B432 X:$07B433 
11 X:$07B434 X:$07B435 X:$07B436 X:$07B437 
12 Y:$07B438 Y:$07B439 Y:$07B43A Y:$07B43B 
13 Y:$07B43C Y:$07B43D Y:$07B43E Y:$07B43F 
14 X:$07B438 X:$07B439 X:$07B43A X:$07B43B 
15 X:$07B43C X:$07B43D X:$07B43E X:$07B43F 

Note:  

With the MACRO station, only nodes that map into Turbo PMAC2 Y registers (0, 
1, 4, 5, 8, 9, 12, and 13) can be used for servo control.  These nodes are unshaded 
in the above table.  The nodes that map into X registers (2, 3, 6, 7, 10, 11, and 14) 
can be used for I/O control.  Node 15 is reserved for Type 1 auxiliary 
communications.  Node 14 is often reserved for broadcast communications. 
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Resetting and Re-Initializing Turbo PMAC 
It is important to understand how a Turbo PMAC system can be reset or re-initialized and what actions 
are performed in each case. 
Methods of Resetting 
There are fundamentally three ways a Turbo PMAC system can be reset: 
1. Cycling power to the digital circuits 
2. Hardware reset 
3. Software reset 
Cycling Power 
Removing power to the digital circuits of a Turbo PMAC, then re-applying that power, forces the Turbo 
PMAC to go through its reset cycle.  On most Turbo PMACs, this supply is 5V power, regulated down as 
needed for lower-voltage components such as the CPU and RAM.  As of this writing, only the UMAC-
CPCI takes a separate 3.3V supply for the CPU section. 
Removal and re-application of the +/-12V to +/-15V supply for analog circuits, whether or not these 
circuits are optically isolated from the digital circuitry, does not cause a Turbo PMAC system to reset 
(although it may cause a fault condition). 
Hardware Reset 
A hardware reset of a Turbo PMAC system is accomplished by taking a special digital input line (INIT/) 
low, then releasing it high again (it has a internal pull-up resistor).  There are several possible sources for 
this signal.  On board-level Turbo PMAC controllers, this signal is available on the JPAN control-panel 
port (Turbo PMAC only) and the JTHW multiplexer ports.  On the modular UMAC and UMAC-CPCI 
systems, it is an input on the CPU board. 
For Turbo PMAC boards that install in an ISA or VME bus, the bus reset line can be tied to the Turbo 
PMAC’s reset line through the installation of jumper E39 on the Turbo PMAC, so that a reset of the main 
computer also forces a hardware reset of the Turbo PMAC. 
While the hardware reset line is held low, the CPU ceases to operate, and the Servo, MACRO, and I/O 
ASICs in the system are held in their reset state, which forces all discrete outputs to their OFF state, and 
all continuously variable outputs to their zero state. 
Software Reset 
A software reset of a Turbo PMAC system is accomplished by issuing the $$$ on-line reset command. 

Actions on a Normal Reset 
If any of the above methods for resetting is used when the Turbo PMAC is configured for a normal reset, 
the standard actions described in this section will occur.  A Turbo PMAC is configured for a normal reset 
when both of the following conditions are true: 

1. The re-initialization jumper (E51 on a Turbo PMAC, E3 on a Turbo PMAC2) is not installed. 
2. The four bootstrap mode jumpers for the CPU (E4 – E7 on the piggyback Turbo CPU board, E20 – 

E23 on UMAC and UMAC-CPCI CPU boards) are in their standard configuration (outer two jumpers 
OFF, inner two jumpers ON). 

For a Turbo PMAC configured in this manner, when digital power is applied, or the hardware reset line is 
released to go high, or the $$$ software reset command is given, the following actions occur: 
1. The installed firmware is loaded from the flash memory into active memory. 



 Turbo PMAC User Manual 

36 Turbo PMAC System Configuration and Auto Configuration 

2. The last-saved user configuration – variable values and definitions, user programs, tables, and buffers 
– are loaded from the flash memory into active memory and registers.  During this loading, the 
checksums of the saved data are evaluated.  If the checksum for the saved I-variables does not match 
the data, all I-variables in active memory are returned to their factory default values.  If the checksum 
for the programs and buffers does not match the data, all of these programs and buffers are 
completely cleared from active memory. 

3. The basic configuration of the system – memory capacity, ASIC presence, location, and type – is 
checked and logged.  Counters in all ASICs are cleared. 

4. All motors with Ixx80 bit 0 set to 1 are enabled. 
5. All existing PLC programs whose operation is permitted by the saved value of I5 are activated. 

Actions on Reset with Re-Initialization 
If any of the above methods for resetting is used when the Turbo PMAC is configured for re-initialization, 
the actions described in this section will occur.  A Turbo PMAC is configured for re-initialization when 
both of the following conditions are true: 
1. The re-initialization jumper (E51 on a Turbo PMAC, E3 on a Turbo PMAC2) IS installed. 
2. The four bootstrap mode jumpers for the CPU (E4 – E7 on the piggyback Turbo CPU board, E20 – 

E23 on UMAC and UMAC-CPCI CPU boards) are in their standard configuration (outer two jumpers 
off, inner two jumpers on). 

For a Turbo PMAC configured in this manner, when digital power is applied, or the hardware reset line is 
released to go high, or the $$$ software reset command is given, the following actions occur: 
1. The installed firmware is loaded from the flash memory into active memory. 
2. The factory default I-variables are loaded from firmware into active memory and registers. (The last 

saved values in flash are not lost; they are simply not used.)  The last saved user programs, table and 
buffers are loaded into active memory, but none will be active because of the default I-variable 
settings.  If the checksum for the programs and buffers does not match the data, all of these programs 
and buffers are completely cleared from active memory. 

3. The basic configuration of the system – memory capacity, ASIC presence, location, and type – is 
checked and logged.  The CPU will make some decisions about default I-variable values based on this 
configuration information.  Counters in all ASICs are cleared. 

4. Because of the default I-variable configuration, no motors are enabled, and no programs are activated. 

Actions on Reset for Firmware Reload 
If any of the above methods for resetting is used when the Turbo PMAC is configured for firmware 
reload, the actions described in this section will occur.  A Turbo PMAC is configured for firmware reload 
when the four bootstrap mode jumpers for the CPU (E4 – E7 on the piggyback Turbo CPU board, E20 – 
E23 on UMAC and UMAC-CPCI CPU boards) are in their firmware-reload configuration (first jumper 
OFF, last three jumpers ON). 

For a Turbo PMAC configured in this manner, when digital power is applied, or the hardware reset line is 
released to go high, or the $$$ software reset command is given, only the bootstrap firmware is loaded 
into active memory.  At this point, it is ready to accept the download of new operational firmware into its 
flash memory through either the main serial port or a bus port that operates through the host port of the 
DSP (not VME or DPRAM). 

The PMAC Executive program, when it establishes communications with a Turbo PMAC reset into this 
mode, will detect that the Turbo PMAC is in bootstrap mode and ready to accept new firmware 
automatically.  It will ask for the name of the file containing the firmware to download. 
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Updating the firmware will cause Turbo PMAC to revert to default I-variables.  Make sure the 
configuration is backed up before the new firmware is downloaded. 

If writing a custom application to perform this function, detect that the Turbo PMAC is in bootstrap mode 
by sending the ? query command.  In this mode, it will respond with the string BOOTSTRAP PROM 
instead of a hexadecimal status word.  Sending the <CTRL-O> character will prepare the Turbo PMAC 
for the downloading of the binary firmware file.  Wait at least five seconds after sending this character to 
make sure that the flash IC is ready to accept data.  Sending the <CTRL-R> command will take the Turbo 
PMAC out of bootstrap mode and cause it to take the actions of a normal reset. 

Re-Initialization and Clear Command 
The $$$*** command causes a reset and full re-initialization of Turbo PMAC.  In addition to loading 
default I-variable values, it also clears out all of the buffers in active RAM: motion program, PLC 
program, tables, etc. 

Some users will always have the card set up to re-initialize and clear during the reset cycle; they then 
download all parameter settings and programs immediately after each cycle.  The logic behind this 
strategy is that the same startup sequence of operations is used even if a new replacement board has just 
been put in.  It is also useful for those applications that do not wish to rely in any way on Turbo PMAC’s 
own non-volatile flash storage. 

For a complete re-initialization of Turbo PMAC to known state, the following commands can be added: 
P0..8191=0 
Q0..8191=0 
M0..8191->* 
UNDEFINE ALL 

Remember that these commands directly affect only active memory (RAM).  To copy new settings into 
non-volatile flash memory, use the SAVE command. 
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TALKING TO TURBO PMAC 
This section covers the basic aspects of communicating with Turbo PMAC from a host computer.  At this 
level, we are assuming that there is a program for the host computer that processes these communications.  
The PMAC Executive Program (Pewin32 Pro) is the most common of these programs. 

If there will be a host computer in the final application, write custom communications routines for the 
host computer as part of the front-end software for the application.  That is a more advanced topic, and it 
is covered in the Writing a Host Communications Program section.  Delta Tau provides communications 
libraries for use under Microsoft Windows operating systems.   

At a basic level, Turbo PMAC can communicate to a host dumb terminal, over any of the ports.  The 
communications mostly consists of lines of ASCII characters sent back and forth.  Of course, most of the 
time the host will be a computer with considerably more intelligence, but at root it will talk to the card as 
if it were a terminal.  The PMAC Executive PC program has a terminal emulator mode to do this directly. 

Communications Ports 
Each version of Turbo PMAC has available multiple communications ports: one or two serial ports, a bus 
port, and an optional dual-ported RAM shared-memory communications interface.  Different 
configurations of the Turbo PMAC will have different types of these interfaces. 

Turbo PMAC can communicate simultaneously over multiple ports, without the communications on 
different ports interfering with each other (the original PMAC family does not have this capability).  This 
gives the user useful capabilities such as employing both a host computer and an operator pendant, or 
using one port for the applications communications and another for simultaneous monitoring and 
debugging. 

Serial Communications Ports 
Turbo PMAC controllers have one or two serial communications ports that provide a simple 
communications interface to host computers, terminals, or other devices.  Depending on the particular 
configuration and port, the port can use RS-232 or RS-422 signal levels. 

Main Serial Port 
Each configuration of Turbo PMAC comes standard with a serial communications port.  Depending on 
the configuration, this may be available at RS-232 levels (single-ended +/-10V) only, RS-422 levels 
(differential 5V) only, or user-selectable by jumpers between the two levels.  The RS-422 circuits on a 
Turbo PMAC are capable of interfacing directly to an RS-232 port on a computer, but noise margins are 
significantly reduced, so communications may be quite susceptible to electromagnetic noise.  If both 
levels are available, it is important to realize that this is only a single port, and that only one voltage level 
may be used at any given time. 

The baud rate for the main serial port is set by variable I54.  At power-up reset, Turbo PMAC sets the 
active baud-rate-control register based on the setting of I54 and the CPU speed as set by I52, as the baud-
rate frequency is divided down from the CPU’s operational frequency.  The factory default baud rate is 
38,400.  This baud rate will be selected automatically on re-initialization of the Turbo PMAC, either 
through use of the re-initialization jumper or the $$$*** command.  To change the baud rate, change the 
setting of I54, copy this new setting to non-volatile memory with the SAVE command, then reset the 
Turbo PMAC.  Re-establish communications at the new baud rate.   
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The values of I54 and the baud rates they produce are: 
I54 Baud Rate I54 Baud Rate I54 Baud Rate I54 Baud Rate 

0 600 4 2400 8 9600 12 38,400 
1 900 5 3600 9 14,400 13 57,600 
2 1200 6 4800 10 19,200 14 76,800 
3 1800 7 7200 11 28,800 15 115,200 

The baud rates produced by odd-number settings of I54 are only exact if the CPU frequency is an exact 
multiple of 30 MHz (technically, of 29.4912 MHz).  This is because the baud rates are created by dividing 
the CPU frequency by (256 * N), where N is an integer taken from a lookup table.  The frequency is not 
an exact match for odd settings of I54 and CPU frequencies that are not multiples of 30 MHz.  For lower 
baud rates of this type, the error is not significant.  However, serial communications at 115,200 baud is 
possible only if the CPU is running at an exact multiple of 30 MHz (actually an exact multiple of 29.4912 
MHz).  So to communicate at this rate, run an Option 5Cx 80 MHz CPU at 60 MHz, an Option 5Dx 100 
MHz CPU at 90 MHz, and an Option 5Ex 160 MHz CPU at 150 MHz by setting I52 to a lower value than 
the CPU is capable of. 

It is possible to download new operational firmware through the main serial port (see Resetting Turbo 
PMAC). 

Auxiliary Serial Port 
If Option 9T for the Turbo PMAC is ordered, directly or as part of an option package (as for the PMAC 
Ladder programming environment), a second serial port is provided on the Turbo PMAC.  This port is 
required for programming and monitoring the PMAC Ladder IEC-1131 PLC programs. 

Auxiliary Port Baud Rate 
The baud rate for the auxiliary serial port is set by variable I53.  At power-up reset, Turbo PMAC sets the 
active baud-rate-control register based on the setting of I53 and the CPU speed as set by I52, as the baud-
rate frequency is divided down from the CPU’s operational frequency.  The factory default baud rate is 
38,400.  If you wish to change the baud rate, you must change the setting of I53, copy this new setting to 
non-volatile memory with the SAVE command, then reset the Turbo PMAC.  Then you must re-establish 
communications at the new baud rate.  The values of I53 and the baud rates they produce are: 

I53 Baud Rate I53 Baud Rate I53 Baud Rate I53 Baud Rate 
0 600 4 2400 8 9600 12 38,400 
1 900 5 3600 9 14,400 13 57,600 
2 1200 6 4800 10 19,200 14 76,800 
3 1800 7 7200 11 28,800 15 115,200 

The baud rates produced by odd-number settings of I53 are only exact if the CPU frequency is an exact 
multiple of 30 MHz (technically, of 29.4912 MHz).  This is because the baud rates are created by dividing 
the CPU frequency by (256 * N), where N is an integer taken from a lookup table.  The frequency is not 
an exact match for odd settings of I53 and CPU frequencies that are not multiples of 30 MHz.  For lower 
baud rates of this type, the error is not significant.  However, serial communications at 115,200 baud is 
only possible if the CPU is running at an exact multiple of 30 MHz (actually an exact multiple of 29.4912 
MHz).  So to communicate at this rate, run an Option 5Cx 80 MHz CPU at 60 MHz, an Option 5Dx 100 
MHz CPU at 90 MHz, and an Option 5Ex 160 MHz CPU at 150 MHz by setting I52 to a lower value than 
the CPU is capable of. 
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Auxiliary Port Parser Disable 
It is possible to turn off the automatic command parser on the auxiliary serial port by setting I43 to 1.  
With I43 set to the default value of 0, Turbo PMAC will try to interpret any characters coming in the 
auxiliary serial port as part of Turbo PMAC commands.  However, with I43 set to 1, these characters are 
just placed in the rotary command queue at X:$1C00 – X:$1CFF, where a user’s application program can 
interpret them. 

It is not possible to download new operational firmware through the auxiliary serial port. 

Signal Format 
Since serial interfaces vary from system to system, Turbo PMAC provides a simple but flexible interface.  
In addition to the signal ground line, only four lines are required (eight if counting the complements in an 
RS-422 interface): data-transmit, data-receive, clear-to-send, and ready-to-send.  Turbo PMAC serial 
ports simply short together the DSR and DTR handshake lines to provide an automatic return signal on 
this strobe for those systems that require it. 

The send and receive signals, for both data and handshake, are placed on the connector in the Data 
Terminal Equipment (DTE) configuration (on the Turbo PMAC-PC, this can be changed using jumpers 
E9 – E16).  This permits a straight-across connection to the serial port configured as Data 
Communications Equipment (DCE), which is the configuration found on virtually all modern computers.  
However, if connecting the serial port to another device configured as DTE, such as a handheld 
terminal/pendant, cross the data and handshake signals. 

The pin-outs of the box-header connectors used for the serial ports on most Turbo PMACs are designed 
so that a flat-cable connection to a D-sub connector on the other end will provide the proper connection if 
the other end is in DCE configuration. 

Data Format and Handshaking 
The serial communications data format for each character is 8 bits, 1 start bit, 1 stop bit, no parity.  (There 
may be an option to permit parity in future firmware revisions.)  No full-duplex echoing of characters is 
supported. 

RTS/CTS handshaking is enabled by default.  Because of Turbo PMAC’s very high speed in handling 
communications, it will never hold off a character unless it is locked in a reset or watchdog state.  Turbo 
PMAC will ignore the CTS handshake from the host computer on the main serial port if I1 is set to 1 or 3, 
but in this case ensure high-priority monitoring of the serial port to make sure that no characters are lost 
(standard Microsoft Windows serial drivers do not have high enough priority for this).   

Most Turbo PMAC serial ports short together the DSR and DTR lines to provide an echo handshake on 
those ports that require this.  No XON/XOFF software handshaking is supported.   

Multi-Drop Communications 
With an RS-422 serial port, it is possible to communicate with multiple daisy-chained Turbo PMACs 
over a single multi-drop cable.  Up to 16 Turbo PMACs can be addressed on a single cable. 

I-Variable Enabling 
Turbo PMAC variable I0 determines the controller’s software address on a multi-drop serial cable.  I0 has 
a range of 0 to 15 (0 to F hex).  Each controller on the cable must have a unique value of I0.  Variable I1 
on each Turbo PMAC must be set to 2 or 3 to enable the serial software addressing. 
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Serial Controller Addressing 
A controller is addressed with the @n command, where n is a hex digit from 0 to F.  When the @n 
command is sent over the serial cable, the controller whose value of I0 is equal to n becomes the 
addressed controller; all others become unaddressed.  Only the addressed controller will respond to 
commands and acknowledge them, driving its output data and handshake lines (which are tri-stated on the 
unaddressed controllers to prevent signal contention). 

If the @@ command is sent over the serial cable, all controllers on the cable will respond to action 
commands.  Commands requiring a data response are not permitted in this mode.  The Turbo PMAC 
whose I0 value is 0 will drive its output data and handshake lines (all others tri-state theirs) and 
acknowledge host commands. 

Optional Clock Sharing 
It is possible to share servo and phase clock signals over additional lines on the RS-422 multi-drop cable.  
This can prevent long-term drift in continuous motion between controllers due to tolerances in the clock-
crystal frequency of each.  Jumpers on each Turbo PMAC determine whether the controller will generate 
its own servo and phase clock signals and output them on its serial port, or whether it will expect them as 
inputs from its serial port.  Only one controller on a multi-drop cable can be outputting its servo and 
phase clocks.  Only the frequency-control variables or jumpers on this controller affect the frequency of 
the servo and phase clocks for all controllers on the cable. 

If the servo and phase clock signals are not being shared between controllers, these signals should not be 
connected between controllers through the cable. 

Bus Communications Port 
Each configuration of Turbo PMAC has a bus port that provides faster communications than the serial 
port.  There are both the traditional backplane buses (ISA, PCI, VME) and the newer wire buses (USB, 
Ethernet).   

Most of these bus ports use the host port on the Turbo PMAC’s CPU (the VME bus uses a set of mailbox 
registers instead).  Many of them can also use optional dual-ported RAM (DPRAM) as an alternate path 
to communicate with the CPU, although this communications uses the same physical path between the 
host computer and the Turbo PMAC.   

It is possible to download new operational firmware through a bus communications port that uses the host 
port on the Turbo PMAC’s CPU (see Resetting Turbo PMAC).  This excludes the VME bus and any wire 
bus interfaces that are using DPRAM communications only. 

Backplane Buses 
Several types of backplane buses are supported in various Turbo PMAC configurations.  These buses 
provide the highest-speed and lowest-latency communications, due to their high raw data rates (compared 
to simple serial interfaces) and absence of intermediate processors (compared to the wire buses). 

ISA (and PC/104) Bus 
The ISA bus interface comes standard on board-level Turbo PMAC controllers with the –PC suffix (e.g. 
Turbo PMAC-PC, Turbo PMAC2-PC).  The PC/104 bus interface, a stack version of the ISA bus 
(equivalent electrically and in software), comes standard on the 3U-format UMAC Turbo CPU board 
(formerly Option 2 for this board, now always included). 

The basic communications on the ISA bus goes through the host port on the Turbo PMAC’s CPU. Dual-
ported RAM is an optional addition to this bus interface (see below).  The address of the host port 
communications in the I/O space of the ISA bus is selected by a bank of jumpers or DIP switches on the 
Turbo PMAC board.  The factory default setting is for base I/O address 528 (210 hex), and the interface 
occupies 16 consecutive addresses in the PC’s I/O space. 
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The following table shows how the jumpers (Turbo PMAC boards) or DIP switches (Turbo PMAC2) set 
the base address on the ISA or PC/104 port.  A PMAC jumper that is OFF or a PMAC2 DIP-switch that is 
OPEN adds the associated bit value to the base address; a jumper that is ON or a DIP-switch that is 
CLOSED adds nothing to the base address value. 

Address Bit # 15 14 13 12 11 10 9 8 7 6 5 4 
PMAC1 Jumper x x x x E91 E92 E66 E67 E68 E69 E70 E71 
PMAC2 Switch 12 11 10 9 8 7 6 5 4 3 2 1 

Bit Val (Dec) 32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 
Bit Val (Hex) $8000 $4000 $2000 $1000 $800 $400 $200 $100 $80 $40 $20 $10 

Default Jumper - - - - ON ON OFF ON ON ON ON OFF 
Default Switch CLS CLS CLS CLS CLS CLS OPN CLS CLS CLS CLS OPN 

PCI Bus 
The PCI bus interface comes standard on board-level Turbo PMAC controllers with the –PCI suffix (e.g. 
Turbo PMAC-PCI, Turbo PMAC2-PCI).  The UMAC-CPCI Turbo CPU board has been designed to 
accept a daughter board that implements the Compact PCI interface, a rack-mounted version of the PCI 
bus (equivalent electrically and in software), but as of this writing the CPCI daughter board has not been 
implemented. 

The basic communications on the PCI bus goes through the host port on the Turbo PMAC’s CPU. Dual-
ported RAM is an optional addition to this bus interface (see below).  The address of the host port 
communications in the I/O space of the PCI bus is selected by the host computer’s operating system.  
Recent Microsoft Windows operating systems do this on a plug-and-play basis.  The design of the PCI 
bus interface on Turbo PMACs was implemented to be as much as possible like the older ISA bus 
interface, to minimize any transition problems from users changing over from ISA.  Other than the 
automatic address setting, the software interface to the PCI bus on Turbo PMACs is identical to that for 
the ISA bus. 

VME Bus 
The VME bus interface comes standard on board-level Turbo PMAC controllers with the –VME suffix 
(e.g. Turbo PMAC-VME, Turbo PMAC2-VME).  It is a slave interface on the bus, and can be used with 
16, 24, and 32-bit addressing on the bus.  The address, bus width, and other details of the interface are set 
by the values of Turbo PMAC variables I90 – I99 at power-up/reset.  The factory default setting is for 24-
bit addressing, with a base address of $7FA000 on the VME bus. 

The most basic communications on the VME bus goes through a set of 16 mailbox registers in the VME 
interface IC on the Turbo PMAC, each capable of holding one character.  Note that unlike the other 
buses, this communications does not go through the Turbo CPU’s host port, so it is not possible to 
download new operational firmware in bootstrap mode to the Turbo PMAC over the VME bus.  Dual-
ported RAM is an optional addition to this bus interface (see below), but one that is virtually always used.  
If DPRAM is present, usually it is easier to send text commands through the DPRAM, and the mailbox 
registers are typically not used. 

The following table shows how I90 – I99 should be set for 24-bit and 32-bit addressing (16-bit is almost 
never used), with and without dual-ported RAM.  The values in the table are for a mailbox base address 
on the bus of $abcdef00, and a DPRAM base address of $abg00000 (a and b are not used in 24-bit 
addressing). 

I Variable I90 I91 I92 I93 I94 I95 I96 I97 I98 I99 
24-bit, no DPRAM $29 $04 * $cd $ef ** ** * $60 $10 
24-bit, w/ DPRAM $29 $04 * $cd $ef ** ** $0g $E0 $90 
32-bit, no DPRAM $39 $04 $ab $cd $ef ** ** * $60 $10 
32-bit, w/ DPRAM $39 $04 $ab $cd $ef ** ** $0g $E0 $90 
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* Don’t care, not used 
** System dependent setting 

Delta Tau’s software packages for the PC, such as the Executive and Setup programs, and the PComm32 
communications library, do not support VME bus communications, because there is no standard VME 
communications method under the Microsoft Windows operating systems, even for PC-compatible VME-
bus computers. 

Wire Buses 
Recently, high-speed wire links have become cost-effective and widespread enough to provide an 
economical but high-bandwidth link between host computer and controller.  Delta Tau presently supports 
two of these links: USB and Ethernet.  These links essentially match the speed of backplane buses for the 
transfer of large data sets in either direction, but are only about half as fast in response time to short 
commands, due to added delays from the processors at each end of the link. 

USB 
Several Turbo PMAC configurations support the use of Universal Serial Bus (USB) communications.  
Initial implementations used 12Mbit/sec USB1.1 links; newer implementations use the 480Mbit/sec 
USB2.0 links.  Remember that USB1.1 devices can be used on 100 Mbit/sec buses. 

Ethernet 
Several Turbo PMAC configurations support the use of Ethernet communications.  Initial 
implementations used 10Mbit/sec Ethernet links; there are plans to upgrade to 100Mbit/sec.  Remember 
that 10Mbit/sec devices can be used on 100Mbit/sec networks. 

Both TCP/IP and UDP/IP protocols are supported.  The simpler UDP/IP protocol is strongly 
recommended, as it is more efficient, and the additional packet information and handshaking 
acknowledgments of TCP/IP are not required for the point-to-point communications used here.  Use of 
the TCP/IP protocol with a computer running a Microsoft Windows operating system is particularly 
inefficient, due to an operating system time-out on every command/response event. 

Dual-Ported RAM 
The bus communications ports, both backplane and wire, provide optional support for communications 
through a shared-memory interface using dual-ported RAM.  ASCII text commands can be issued through 
the DPRAM, but the main virtue of DPRAM is its binary data structures that permit direct parallel access 
to many pieces of data.   

These structures include data-reporting buffers, in which Turbo PMAC repeatedly updates fixed registers 
in DPRAM with commonly desired position information, such as motor positions; data gathering buffers, 
permitting the real-time uploading of synchronously gathered data; background variable data copying 
buffers, which permit the repeated copying to and from user-specified Turbo PMAC registers; binary 
rotary motion-program download buffers for the fastest possible downloading of motion program files; 
and user-defined structures. 

For the ISA and VME buses, Turbo PMAC variables I93 and I94 set the address of the DPRAM on the 
bus at power-up/reset.  For the PCI bus, the host computer’s operating system sets this address 
automatically.  For the wire buses, the DPRAM does not directly map into the host computer’s memory 
space; software routines such as Delta Tau’s PComm32 library create a virtual image of the DPRAM in 
the host computer’s memory, making the remoteness of the DPRAM transparent to the applications 
program.   

Several communications structures in DPRAM can individually be enabled with I-variables: 
• DPRAM ASCII Communications: I58 and I56 
• DPRAM Motor Data Foreground Reporting: I48 and I47 
• DPRAM Motor Data Background Reporting: I57 and I50 
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• DPRAM Coordinate System and Global Background Data Reporting: I49 and I50 
• DPRAM Background Variable Buffers: I55 
• DPRAM Binary Rotary Buffer Foreground Transfer: I45 
It is possible to have multiple DPRAM ICs in some Turbo PMAC systems, especially in UMAC systems.  
However, only one of these ICs can be used at any given time with any of the automatic data structures.  
Turbo PMAC variable I24 determines which of the DPRAM ICs will support these automatic functions 
by specifying the base address of this IC in Turbo PMAC’s own address space.  On re-initialization of the 
Turbo PMAC, I24 is set to the address of the first DPRAM IC found (the one with the lowest base 
address).  I4904 shows which DPRAM ICs have been found by the Turbo PMAC CPU. 
The DPRAM IC associated with the main bus communications port has a base address of $060000 in 
Turbo PMAC’s memory map.  DPRAM ICs that are accessed by the Turbo PMAC CPU over the JEXP or 
UBUS expansion port, such as those on the Acc-54E USB/Ethernet communications card for the UMAC, 
can have base addresses of $06C000, $06D000, $06E000, $06F000, $074000, $075000, $076000, or 
$077000. 

Giving Commands to Turbo PMAC 
Turbo PMAC is fundamentally a command-driven device, unlike other controllers that are register driven.  
Turbo PMAC can do things if ASCII command text strings are issued and generally Turbo PMAC 
provides information to the host in ASCII text strings. 

Note: 
If the Option 2 dual-ported RAM is present, Turbo PMAC can be commanded by 
writing values to specific registers in the DPRAM and Turbo PMAC can provide 
information by placing binary values in these registers, but the ASCII commands 
must be sent to Turbo PMAC that cause it to take the proper action when these 
values are received and to place the values in these registers. 

Turbo PMAC Processing of Commands 
When Turbo PMAC receives an alphanumeric text character over one of its ports, it does nothing but 
place the character in its command queue.  It requires a control character (ASCII value 1 to 31) to cause it 
to take some actual action.  The most common control character used is the carriage return (<CR>; ASCII 
value 13), which tells Turbo PMAC to interpret the preceding set of alphanumeric characters as a 
command and to take the appropriate action. 
Other control characters cause Turbo PMAC to take an action independent of the alphanumeric characters 
sent before it.  These control characters can be sent in the middle of a line of alphanumeric command 
characters without disturbing the flow of the command.  Turbo PMAC will respond first to the control-
character command, storing the text string until the <CR> character is received. 

Command Acknowledgement 
The exact nature of Turbo PMAC’s acknowledgement of commands and its data response is controlled by 
I-variables I3, I4, and I9, with I3 as the most important.  If I3 is 1, PMAC acknowledges a valid 
alphanumeric command by sending the line-feed (<LF>; ASCII value 10) character back to the host.  If 
I3 is 2 or 3, it uses the <ACK> character (ASCII value 6) instead.  If I3 is 0, it does not provide any 
acknowledging character.  Regardless of the setting of I3, Turbo PMAC responds to an invalid command 
by returning the <BELL> character (ASCII value 7). 
When working interactively with Turbo PMAC in a dumb terminal mode, it is often nice to use the <LF> 
as acknowledgement because it spaces commands and responses on the terminal screen automatically.  

Data Response 
When the command received requires a data response, Turbo PMAC will precede each line of the data 
response with a line feed character if I3 is set to 1 or 3.  It will not do so if I3 is set to 0 or 2.  Turbo 
PMAC will terminate each line of the data response with a carriage-return character regardless of the 
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setting of I3.  For these commands, the command acknowledgement character – <LF> or <ACK> – is sent 
after the data response, serving as an end-of-transmission character.  For computer parsing of the 
response, it is nice to have the <ACK> serve as a unique EOT character. 

Data Integrity 
Variable I4 determines some of the data integrity checks Turbo PMAC performs on the communications, 
the most important of which is a line-by-line checksum.  The Writing a Host Communications Program 
section covers this feature in detail. 

Data Response Format 
Variable I9 controls some aspects of how Turbo PMAC sends data to the host.  Its setting determines 
whether Turbo PMAC lists program lines back to the host in long or short form, whether it reports I-
variable values and M-variable definitions as full command statements or not, and whether address I-
variable values are reported in decimal or hexadecimal form. 

On-Line (Immediate) Commands 
Many of the commands given to Turbo PMAC are on-line commands; that is, they are executed 
immediately by Turbo PMAC, to cause some action, change some variable, or report some information 
back to the host.  The command itself is thrown away after executing (so cannot be listed back), although 
its effects may stay in Turbo PMAC. 

Some commands, such as P1=1, are executed immediately if there is no open program buffer, but are 
stored in the buffer if one is open.  Other commands, such as X1000 Y1000, cannot be on-line 
commands; there must be an open buffer – even if it is a special buffer for immediate execution.  These 
commands will be rejected by Turbo PMAC (reporting an ERR005 if I6 is set to 1 or 3) if there is no 
buffer open.  Still other commands, such as J+, are on-line commands only, and cannot be entered into a 
program buffer (unless in the form of CMD"J+", for instance). 

Types of On-Line Commands 
There are four basic classes of on-line commands:  
• Port-specific commands, which only affect the action of subsequent commands on the same port;  
• Motor-specific commands, which affect only the motor that is currently addressed by the host;  
• Coordinate-system-specific commands, which affect only the coordinate system that is currently 

addressed by the host;  
• Global commands, which affect the card regardless of any addressing modes.  In the reference section 

of the manual, each command is classified into one of these types under the Scope descriptor. 
Note:  

Each program that can use the COMMAND statement to issue on-line commands 
from within the card has its own motor and coordinate system addressing, 
independent of which motor and coordinate system the host is addressing.  
Changing a port’s addressing modes does not affect the program’s mode, or vice 
versa.   
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Port-Specific Commands 
To maintain truly independent communications among the multiple communications ports, it is necessary 
for certain commands that affect subsequent commands to only affect commands on the same port.  For 
this reason, addressing commands – #n for motors and &n for coordinate systems – as well as buffer 
OPEN and CLOSE commands, affect only subsequent commands on the same port. 

Motor-Specific Commands 
A motor is addressed for a port by a #n command, where n is the number of the motor, with a range of 1 
to 32, inclusive.  This motor stays the one addressed by this port until another #n is received by the card 
over the same port.  For instance, the command line #1J+#2J- tells Motor 1 to jog in the positive 
direction, and Motor 2 to jog in the negative direction (like most commands, the jog command does not 
take effect until the carriage return character is received, so both axes start acting on the command at 
roughly the same time in this case). 

There are only a few types of motor-specific commands.  These include the jogging commands, a homing 
command, an open loop command, and requests for motor position, velocity, following error, and status. 

Note: 

An on-line motor action command, such as jogging, homing, open-loop output, is 
not permitted if the addressed motor is in a coordinate system that is running a 
motion program, even if the motion program is not directly commanding any axis 
assigned to that motor.  Such a command will be rejected with an error. 

Coordinate-System-Specific Commands 
A coordinate system is addressed for a port by an &n command, where n is the number of the coordinate 
system, with a range of 1 to 16, inclusive.  This coordinate system remains the one addressed until 
another &n command is received by the card over the same port.  For instance, the command line 
&1B6R&2B8R tells Coordinate System 1 to run Motion Program 6 and Coordinate System 2 to run 
Motion Program 8.   

There are a variety of types of coordinate-system-specific commands.  Axis definition statements act on 
the addressed coordinate system, because motors are matched to an axis in a particular coordinate system.  
Since it is a coordinate system that runs a motion control program, all program control commands act on 
the addressed coordinate system.  Q-variable assignment and query commands are also coordinate system 
commands, because the Q-variables themselves belong to a coordinate system. 

Note that a command to a coordinate system can affect several motors if more than one motor is assigned 
to that coordinate system.  For instance, if motor 4 is assigned to coordinate system 1, a command to 
coordinate system 1 to run a motion program can start motor 4 moving. 

Global Commands 
Some on-line commands do not depend on which motor or coordinate system is addressed.  For instance, 
the command P1=1 sets the value of P1 to 1 regardless of what is addressed.  Among these global on-line 
commands are the buffer management commands.  Turbo PMAC has multiple buffers, one of which can 
be open at a time.  When a buffer is open, commands can be entered into the buffer for later execution.   

Control character commands (those with ASCII values 0 - 31D) are always global commands.  Those that 
do not require a data response act on all cards on a serial daisy-chain.  These characters include carriage 
return <CR>, backspace <BS>, and several special-purpose characters.  This allows, for instance, 
commands to be given to several locations on the card in a single line, and have them take effect 
simultaneously at the <CR> at the end of the line (&1R&2R<CR> causes both Coordinate Systems 1 and 2 
to run). 
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Buffered (Program) Commands 
As their name implies, buffered commands are not acted on immediately, but held for later execution.  
Sending a buffered program command to Turbo PMAC merely cause the command to be loaded into the 
open program buffer; the command will not actually be executed until that program is run.   

Turbo PMAC has many program buffers – 224 regular motion program buffers, 16 rotary motion 
program buffers (1 for each coordinate system), 16 forward-kinematic subroutine buffers (1 for each 
coordinate system), 16 inverse-kinematic subroutine buffers (1 for each coordinate system), and 32 
uncompiled PLC program buffers.  (Buffers for compiled or assembled programs – compiled PLCs, user-
written servo algorithms, and user-written phase algorithms – do not take text commands; instead they 
take DSP machine code.)   

Before commands can be entered into a buffer, that buffer must be opened (e.g. OPEN PROG 3, OPEN 
PLC 7, &1 OPEN FORWARD).  Note that buffered commands can only be entered into the buffer 
through the same port that issued the OPEN command.  Only one port at a time may have an open 
program buffer. 

Each program command is added onto the end of the list of commands in the open buffer; if you wish to 
replace the existing buffer, use the CLEAR command immediately after opening to erase the existing 
contents before entering the new ones.  After finishing entering the program statements, use the CLOSE 
command to close the opened buffer. 

The rotary motion program buffer for a coordinate system is a special program buffer that can execute 
motion programs at the same time it is open for entry of program commands from the host computer.  If 
an open rotary program buffer is executing, but has already executed every command sent to it, it will 
execute the next buffered program command sent to it almost immediately. 

Note that certain commands will be treated as on-line commands if no buffer is open on the port over 
which it is sent, or as buffered program commands if a buffer is open on this port.  For example, the 
command P1=1 will be executed immediately if no buffer is open on the port, but it will be entered into a 
program buffer for later execution as part of the program if a buffer is open on the port.  Some of these 
commands will have completely different meanings if a buffer is open on the port or if it is not.  The 
command M10 is a query for the value of variable M10 if no buffer is open on the port; it is a call to an 
M-code subroutine if a motion program buffer is open on the port. 
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SETTING UP FEEDBACK AND MASTER POSITION SENSORS 
Turbo PMAC systems can interface to a wide variety of position sensors for both feedback and master 
use, either on the main control boards or through a variety of accessory boards.  This section summarizes 
the basic hardware and software setup issues; more details can be found in the appropriate hardware 
reference manuals and the Turbo PMAC Software Reference Manual. 

Note that the initial setup for feedback or master sensors is independent of any motor or coordinate 
system.  A motor or coordinate system may use the numerical value resulting from the initial hardware 
and/or software processing of a position signal, but this is not required.  It is also possible for user 
programs or commands to access these position values directly, without a motor or coordinate-system 
automatic function using them at all. 

Setting Up Quadrature Encoders 
Digital quadrature encoders are the most common position sensors used with Turbo PMACs.  Interface 
circuitry for these encoders comes standard on board-level Turbo PMAC controllers, UMAC axis-
interface boards, and QMAC control boxes. 

Signal Format 
Quadrature encoders provide two digital signals that are a function of the position of the encoder, each 
nominally with 50% duty cycle, and nominally one-quarter cycle apart.  This format provides four distinct 
states per cycle of the signal, or per line of the encoder.  The phase difference of the two signals permits 
the decoding electronics to discern the direction of travel, which would not be possible with a single 
signal. 

 
Typically, these signals are at 5V TTL/CMOS levels, whether single-ended or differential.  The input 
circuits are powered by the main 5V supply for the controller, but they can accept up to +/-12V between 
the signals of each differential pair, and +/-12V between a signal and the GND voltage reference. 

Differential encoder signals can enhance noise immunity by providing common-mode noise rejection.  
Modern design standards virtually mandate their use for industrial systems, especially in the presence of 
PWM power amplifiers, which generate a great deal of electromagnetic interference. 

Hardware Setup 
This section describes Turbo PMAC encoder hardware interface in general terms.  Consult the Hardware 
Reference Manual for your particular configuration for details. 

Turbo PMAC’s encoder interface circuitry employs differential line receivers, but is configured at the 
factory to accept either single-ended or differential encoders.  In this configuration, the main (+) line is 
pulled up to 5V, and the complementary (-) line is tied to 2.5V with a voltage divider.  With a single-
ended encoder, the single signal line for each channel is then compared to this reference voltage as it 
changes between 0 and 5V. 
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Note: 

When using single-ended TTL-level digital encoders, the complementary line input 
should be left open, not grounded or tied high; this is required for PMAC's 
differential line receivers to work properly.   

It is possible to pull the complementary line as well to 5V.  On most Turbo PMAC boards, this is done by 
changing the setting of a 3-point jumper for the encoder channel.  On Turbo PMAC2 boards and systems 
(including UMAC), this is done by reversing a SIP resistor pack in its socket. 

PMAC Encoder Input Circuitry

Connect pin 1 to 2 to tie differential line to +2.5V
Connect pin 2 to 3 to tie differential line to +5V (Reversible socketed SIP on PMAC2)
Tie to +2.5V when no connection
Tie to +2.5V for single-ended encoders
Do not care for differential line driver encoders
Tie to +5V for complementary open-collector encoders (obsolete)
Tie to +5V to support external XOR loss of encoder circuitry  

Encoder-Loss Detection Circuitry 
The main reason to pull up the complementary line is to enable the encoder-loss detection circuitry that is 
present on many Turbo PMAC and interface boards.  This circuitry uses exclusive-or (XOR) logic that 
requires that the signals of each pair be in opposite logical states for it to consider the encoder present.  If 
the encoder fails or the cable becomes disconnected, both inputs of the pair pull high to a logical 1, and 
the circuitry indicates encoder loss.  Check the appropriate hardware reference manual to see if your 
device has encoder-loss detection and how it is implemented. 

Termination Resistors 
When driving the encoder signals over a long cable (10 meters or more), it may be desirable to add 
termination resistors between the main and complementary lines to reduce the ringing on transitions.  
PMAC provides sockets for resistor packs for this purpose.  The optimum value of the termination 
resistor is system dependent; ideally matching the characteristic impedance of the cable, but 330 ohms is 
a good starting point. 
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Power Supply and Isolation 
In the basic configuration of a Turbo PMAC, the encoder circuitry is not isolated from Turbo PMAC’s 
digital circuitry and the signals are referenced to Turbo PMAC’s digital common level GND.  Typically, 
the encoders in this case are powered from PMAC’s +5V lines with a return on GND.  The total encoder 
current draw must be considered in sizing the Turbo PMAC power supply. 

It is also possible to use a separate supply for the encoders with non-isolated signals connected to Turbo 
PMAC.  In this case, the return of the supply should be connected to the digital common GND on Turbo 
PMAC to give the signals a common reference.  The +5V lines of separate supplies should never be tied 
together, as they will fight each other to control the exact voltage level. 

Isolated Encoder Signals 
In some systems, it is desired to optically isolate the encoder circuitry from PMAC’s digital circuitry.  
This is common in systems with long distances from the encoder to the controller (> 10m or 30 ft) and/or 
systems with very high levels of electrical noise.  Isolation can be achieved using the Acc-8D Opt 6 4-
channel encoder isolator board.  With an isolated encoder, a separate power supply is required for the 
encoders to maintain isolation, and the return on the supply must not be connected to the digital common 
GND, or the isolation will be defeated. 

Simulated Encoder Signals 
Special consideration must be given to systems that have a simulated encoder signal provided from a 
resolver-to-digital converter in a brushless motor amplifier.  In these systems, the encoder signals are 
referenced to the amplifier's signal return, which in turn is connected to Turbo PMAC’s analog common 
AGND.  The best setup in these cases is to isolate the simulated encoder signal from the PMAC digital 
circuitry with the Acc-8D Opt 6 isolator board or similar module.  This will keep full isolation between 
the Turbo PMAC digital circuitry and the amplifier. 

If isolation of the simulated encoder signals is not feasible, Turbo PMAC’s digital circuitry and the 
amplifier signal circuitry (including Turbo PMAC’s analog circuitry) must be well tied together to 
provide a common reference voltage.  Do this by putting jumpers on the Turbo PMAC or interface board 
(E-Points E85, E87, and E88 on many boards), tying the digital and analog circuits on Turbo PMAC 
together, and therefore also the analog signal circuits.  What must be avoided is having the simulated 
encoder cables providing the only connection between the circuits.  This can result in lost signals from 
bad referencing, or even component damage from ground loops. 

Wiring Techniques 
There are several important techniques in the wiring of the encoders that are important for noise 
mitigation.  First, the encoder cable should be kept physically separate from the motor power cable if at 
all possible.  Second, both of these cables should be shielded, the motor cable to prevent noise from 
getting out, and the encoder cable to prevent noise from getting in.  These shields should be grounded at 
the inward end only, that is, to the device that is itself tied to a ground. 

A third important noise mitigation technique is to twist the leads of the complementary pairs around each 
other.  With these twisted pairs, what noise does get in tends to cancel itself out in opposite halves of the 
twist. 

Turbo PMAC Hardware-Control Parameter Setup 
The Turbo PMAC ASICs are set up by default to accept quadrature feedback, but some settings may need 
to be tweaked to optimize operation. 
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Encoder Sampling Clock Frequency: E34 – E38, I7m03, I6803, MI903, MI907 
After the front-end processing through the differential line receivers, the quadrature encoder inputs are 
sampled by digital logic in the Turbo PMAC Servo IC or MACRO IC at a rate determined by the 
frequency of the SCLK encoder sample clock” which is user settable.  The higher the SCLK frequency, 
the higher the maximum permissible count rate; the lower the SCLK frequency, the more effective the 
digital delay noise filter is. 

Each encoder input channel has a digital delay filter consisting of three cascaded D-flip-flops on each 
line, with a best two-of-three voting scheme on the outputs of the flip-flops.  The flip-flops are clocked by 
the SCLK signal.  This filter does not pass through a state change that only lasts for one SCLK cycle; any 
change this narrow should be a noise spike.  In doing this, the filter delays actual transitions by two SCLK 
cycles – a trivial delay in virtually all systems.   

If both the A and B channels change state at the decode circuitry (post-filter) in the same SCLK cycle, an 
unrecoverable error to the counter value will result.  The ASIC hardware notes this problem by setting 
and latching the “encoder count error” bit in the channel’s status word.  The problem can also be detected 
by capturing the count value each revolution on the index pulse and seeing whether the correct number of 
counts have elapsed. 

Encoder Digital Delay Filter

 
The SLCK frequency must be at least four times higher than the maximum encoder cycle (line) frequency 
input, regardless of the quadrature decoding method used (with the most common times-4 decode, the 
SCLK frequency must be at least as high as the count rate).  In actual use, due to imperfections in the 
input signals, a 20 – 25% safety margin should be used. 

The default SCLK frequency of 9.83 MHz is acceptable for virtually all applications.  It can accept 
encoder signal cycle frequencies of up to about 2 MHz (8 MHz count rates) – with safety margin – and 
still provide decent digital filtering.  This frequency may be changed by factors of two, up to 19.66 or 
39.32 MHz on most designs, or down to as low as 1.25 MHz or 306 kHz on most designs.  On some 
designs, an external SCLK signal can be provided.  If very high encoder count rates are required, the 
SCLK frequency may have to be raised; if better filtering is required to prevent count errors, the SCLK 
frequency may have to be lowered. 
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Turbo PMAC Servo IC SCLK Frequency Control 
On a Turbo PMAC board, or an Acc-24x with PMAC-style Servo ICs (Acc-24P or 24V), the SCLK 
frequency is set by the configuration of jumpers E34 – E38.  Only one of these jumpers may be on in any 
given configuration.  This SCLK frequency is common to all Servo ICs and channels on the board. 

Turbo PMAC2 Servo IC SCLK Frequency Control 
On a Turbo PMAC2 board, or an accessory board with PMAC2-style Servo ICs or MACRO ICs (e.g. 
Acc-24P2, 24E2, 24E2A, 24E2S, 24C2, 24C2A, 5E), the SCLK frequency is set by an I-variable for the 
Servo IC.  This variable sets the frequency for all channels in the IC, but each IC has an independent 
setting.  Consult the description of the variable in the Software Reference manual for details. 

For a PMAC2-style Servo IC m, IC variable I7m03 determines the SCLK frequency.  This variable also 
determines three other clock frequencies for the IC.  If the IC is on a MACRO Station, MI903 or MI907 
determines the SCLK frequency. 

For a MACRO IC on a Turbo PMAC2 board or UMAC Acc-5E board (for the handwheel encoders), 
I6803 determines the SCLK frequency in the same manner for both channels on the IC.  If the IC is in a 
MACRO Station with an Acc-1E stack 2-axis board, MI993 determines the SCLK frequency. 

All of these variables work in the same manner.  The other three clock frequencies that each controls are 
virtually never changed, so the following table may be useful for setting the SCLK frequency with the 
others left at the default frequency: 

Variable Value SCLK Frequency Variable Value SCLK Frequency 
2256 39.32 MHz 2260 2.46 MHz 
2257 19.66 MHz 2261 1.23 MHz 

2258* 9.83 MHz* 2262 612 kHz 
2259 4.92 MHz 2263 306 kHz 

*Default 

Encoder Decode Control: I7mn0, I68n0, MI910 
The decoding of the encoder signal, both as to resolution and direction, is determined by a channel-
specific I-variable.  For Servo ICs of both PMAC-style and PMAC2-style, this is I7mn0 (for Servo IC m 
Channel n).  For MACRO IC 0 Channel n* on a Turbo PMAC (a “handwheel” port encoder), this is 
I68n0.  For encoder channels on a MACRO Station, this is node-specific variable MI910. 

This variable is set for “times-4” decode, which derives four counts per signal cycle, one for each signal 
edge.  This requires a variable value of 3 or 7.  The difference between these two values is the direction 
sense – which direction of motion causes the counter to count up.  Remember that for a feedback encoder, 
the encoder’s direction sense must match the servo-loop output’s direction sense – a positive servo output 
must cause the counter to count in the positive direction – otherwise a dangerous runaway condition will 
occur when the servo loop is closed. 

Conversion Table Processing Setup – Turbo PMAC Interface 
Digital quadrature encoders are processed in the conversion table with the “1/T extension” method 
(method digit $0), which uses timers associated with the counter to compute fractional count information 
that enhances smoothness of motion.  The source address specified is that of the base address of the 
channel (e.g. $78200 for Servo IC 0 Channel 1); Turbo PMAC will use several registers of that channel to 
assemble the enhanced position information automatically. 

It is also possible to disable the 1/T extension (method digit $C) in the table processing.  For details of 
setting up the encoder conversion table to process quadrature encoders, consult the Setting up the Encoder 
Conversion Table section and the specification for variables I8000 – I8191 in the Software Reference 
Manual. 
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Conversion Table Processing Setup – MACRO Station Interface 
If the quadrature encoder is connected to a remote MACRO Station, the conversion table processing 
(usually 1/T extension) is done in the MACRO Station, and the resulting enhanced position information is 
passed back to the Turbo PMAC, where it is processed by the Turbo PMAC’s encoder conversion table as 
unshifted parallel data (usually method digit $2, mode switch bit = 1), because it already has fractional 
count information, before use by the servo.  For details of setting up the encoder conversion table to 
process quadrature encoders, consult the MACRO Station manuals, the section Setting up the Encoder 
Conversion Table in the Turbo PMAC User Manual, and the specification for variables I8000 – I8191 in 
the Software Reference Manual. 

Scaling the Feedback Units 
The decoding scheme you select in the Servo IC or MACRO IC determines what a count is.  For example, 
if selecting times-4 decode, a count is defined as ¼ of an encoder line.  If the encoder has 2000 lines per 
revolution, a count is defined as 1/8000 of a revolution.  All subsequent position, velocity, and 
acceleration units are based on this definition of a count. 

Setting Up Digital Hall Sensors 
Three-phase digital hall-effect position sensors (or their equivalent) are popular for commutation 
feedback.  They can also be used with Turbo PMAC as low-resolution position/velocity sensors.  As 
commutation position sensors, typically they are just used by Turbo PMAC for approximate power-up 
phase position; typically, ongoing phase position is derived from the same high-resolution encoder that is 
used for servo feedback.  (Many controllers and amplifiers use these hall sensors as their only 
commutation position feedback, starting and ongoing, but that is a lower-performance technique. 

Many optical encoders have hall tracks.  These commutation tracks provide signal outputs equivalent to 
those of magnetic hall commutation sensors, but use optical means to create the signals. 

Note: 

These digital hall-effect position sensors should not be confused with analog hall-
effect current sensors used in many amplifiers to provide current feedback data for 
the current loop. 

Signal Format 
Digital hall sensors provide three digital signals that are a function of the position of the motor, each 
nominally with 50% duty cycle, and nominally one-third cycle apart.  (This format is often called 120o 
spacing.  Turbo PMAC has no automatic hardware or software features to work with 60o spacing.)  This 
format provides six distinct states per cycle of the signal.  Typically, one cycle of the signal set 
corresponds to one electrical cycle, or pole pair, of the motor.  These sensors, then, can provide absolute 
(if low resolution) information about where the motor is in its commutation cycle, and eliminate the need 
to do a power-on phasing search operation. 
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Hardware Setup 
If just used for power-up commutation position feedback, typically the hall sensors are wired into the U, 
V, and W supplemental flags for a PMAC2-style interface channel.  These are single-ended 5V digital 
inputs on all existing hardware implementations.  They are not optically isolated inputs; if isolation is 
desired from the sensor, this must be done externally. 

Note: 

In the case of magnetic hall sensors, the feedback signals often come back to the 
controller in the same cable as the motor power leads.  In this case, the possibility 
of a short to motor power must be considered; safety considerations and industrial 
design codes may make it impermissible to connect the signals directly to the 
Turbo PMAC TTL inputs without isolation. 

If used for servo position and velocity feedback (PMAC2-style Servo ICs only), the three hall sensors are 
connected to the A, B, and C encoder inputs, so that the signal edges can be counted.  As with quadrature 
encoders, these inputs can be single-ended or differential.  They are not optically isolated inputs; if 
isolation is desired from the sensor, this must be done externally.  There may be applications in which the 
signals are connected both to U, V, and W inputs (for power-on commutation position) and to A, B, and C 
inputs (for servo feedback). 

Turbo PMAC Hardware-Control Parameter Setup 
Hall Sensor Demux Control: I7mn5, I68n5, MI915 
If the hall sensors are connected to the channel’s U, V, and W inputs, you must make sure that bit 1 of the 
channel’s Hall Sensor Demux Control variable is set to the default of 0.  If this bit is set to 1, the 
information in the U, V, and W bits of the channel’s status register is de-multiplexed from the C-channel 
of the encoder input based on the states of the A and B inputs, as with Yaskawa incremental encoders.  
This variable is I7mn5 for Servo ICs, I68n5, for MACRO ICs, and node-specific variable MI915 on a 
MACRO Station. 

Encoder Decode Control: I7mn0, I68n0, MI910 
If the hall sensors are wired into the encoder inputs A, B, and C, the decoding of the signal is determined 
by a channel-specific I-variable.  For (PMAC2-style) Servo ICs, this is I7mn0 (for Servo IC m Channel 
n).  For MACRO IC 0 Channel n* on a Turbo PMAC (a handwheel port encoder), this is I68n0.  For 
encoder channels on a MACRO Station, this is node-specific variable MI910. 
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For the 3-phase hall sensors, the decode must be set to times-6 decode, which derives six counts per 
signal cycle, one for each signal edge.  This requires a variable value of 11 or 15.  The difference between 
these two values is the direction sense – which direction of motion causes the counter to count up.  
Remember that for a feedback sensor, the sensor’s direction sense must match the servo-loop output’s 
direction sense – a positive servo output must cause the counter to count in the positive direction – 
otherwise a dangerous runaway condition will occur when the servo loop is closed. 

Power-Up Phasing Usage 
The most common use of these hall sensors with a Turbo PMAC2 is to establish an approximate absolute 
position for the phase commutation algorithms.  In this case, motor variable Ixx81 contains the address of 
the flag register for these U, V, and W inputs.  Ixx91 must be set to a value from $800000 to $FF0000; 
the actual value is dependent on the direction and phasing of the sensors relative to the motor 
commutation cycle. 

Conversion Table Processing Setup – Turbo PMAC Interface 
If the hall sensors are connected to the encoder inputs on Turbo PMAC and therefore to the encoder 
counter, the count information should be processed in the conversion table with the 1/T-extension method 
(method digit $0) as for a quadrature encoder.  The sub-count estimation of this method is particularly 
important here because of the low resolution of the sensors.  For details of setting up the encoder 
conversion table to process hall sensors used as encoders, consult the section Setting up the Encoder 
Conversion Table section in this manual and the specification for variables I8000 – I8191 in the Software 
Reference Manual. 

Note:  

If the hall sensors are used for ongoing commutation feedback, probably it will be 
better to use the extended result data from the conversion table instead of the raw 
counter information that usually is used with encoders.  This will provide smoother 
commutation.  In this case, there will be 6 * 32 = 192 counts per commutation 
cycle instead of just 6. 

Conversion Table Processing Setup – MACRO Station Interface 
If the hall sensors are connected to the encoder inputs on a MACRO Station and therefore to the encoder 
counter, the count information should be processed in the Station’s conversion table with the 1/T-
extension method (method digit $0), just as for a quadrature encoder.  The sub-count estimation of this 
method is particularly important here because of the low resolution of the sensors.  The resulting 
enhanced position information is passed back to the Turbo PMAC, where it is processed by the Turbo 
PMAC’s encoder conversion table as unshifted parallel data (usually method digit $2, mode switch bit = 
1), because it already has fractional count information, before use by the Turbo PMAC servo and/or 
commutation algorithms.   

For details of setting up the encoder conversion table to process hall sensors used as encoders, consult the 
MACRO Station manuals, the section Setting up the Encoder Conversion Table section in this manual 
and the specification for variables I8000 – I8191 in the Software Reference Manual. 

Scaling the Feedback Units 
For purposes of the motor’s servo loop and associated functions, the hall sensors will provide six counts 
per electrical cycle; a 4-pole motor would therefore have 12 counts per revolution.  If using the 1/T-
extended count data for the commutation, the commutation cycle size (Ixx71/Ixx70) will be 192 counts. 



Turbo PMAC User Manual 

Setting Up Feedback and Master Position Sensors 57 

Setting up Sinusoidal Encoders 
Turbo PMAC systems can accept signals from sinusoidal (sine/cosine) encoders and generate position 
data of very high resolution.  This is done through special accessory boards and dedicated firmware 
algorithms.  Presently there are two classes of interpolators: low-resolution ones producing 128 or 256 
states per line, and high-resolution ones producing 4096 states per line. 

Note:  

Many Turbo PMAC users will utilize sinusoidal encoders for position feedback, 
but with the interpolation function performed in an external interpolator module, 
which generates a high-frequency synthesized digital quadrature signal for the 
controller that is connected to the Turbo PMAC.  In this case, the Turbo PMAC 
treats the feedback just as if a real digital quadrature encoder were used. 

Hardware Setup 
The sine and cosine channels of the encoder are connected either as single-ended or differential inputs 
(differential is strongly recommended) into the interpolator accessory according to the instructions for the 
interpolator.  Optionally, the index channel may be connected as well.  Consult the hardware reference 
manual of the particular accessory for details. 

If connecting a low-resolution interpolator into a Turbo PMAC or accessory with PMAC-style Servo ICs, 
the fractional-count data is brought into the Servo IC at TTL levels on the flag signals for the channel 
numbered one higher than that of the encoder signal itself.  Normally, these signals are 12-24V isolated 
flags to use the interpolator, the isolators must be removed and replaced with conducting shunts. 

Turbo PMAC Hardware-Control Parameter Setup 
Encoder Sampling Clock Frequency: E34 – E38, I7m03, MI903, MI907 
For the low-resolution interpolator, the Turbo PMAC’s SCLK encoder-sampling clock drives the analog 
conversion on the interpolator, as well as the encoder functions in the Servo IC.  This clock must be set to 
a frequency of 2.46 MHz.  If the interpolator is connected to a Turbo PMAC or accessory with PMAC-
style Servo ICs, this frequency is set by jumpers on the PMAC or accessory: of the E-points E34 – E38, 
there should only be a jumper on E36. 

If the low-resolution interpolator is connected to a Turbo PMAC2 or accessory with PMAC2-style Servo 
ICs, Servo IC m’s variable I7m03 sets this frequency.  If it is connected into a MACRO Station, Station 
variable MI903 or MI907 sets this frequency.  These variables also set other clock frequencies, but if the 
other frequencies are left at their default (as they usually are), setting the SCLK frequency to 2.46 MHz 
simply requires changing the variable value from its default of 2258 to 2260. 

For an Acc-51x high-resolution interpolator, the SCLK signal just drives the sampling of the synthesized 
quadrature in the interpolator’s own Servo IC.  The default frequency of 9.83 MHz is virtually always 
fine.  On the Acc-51P, the frequency is set permanently to this value.  On high-resolution interpolators 
with PMAC2-style Servo ICs (e.g. Acc-51E, Acc-51C), IC variable I7m03 sets this frequency if the 
interpolator is connected directly to a Turbo PMAC, or by MACRO Station variable MI903 or MI907 if 
the interpolator is installed in a MACRO Station. 

Encoder Decode Control: I7mn0, MI910 
Both styles of interpolator create a digital quadrature signal from the sine/cosine inputs.  This digital 
signal goes into the encoder decoding and count circuitry to produce the whole-count data.  To match the 
whole-count and fractional count resolution properly, the decode-control variable must be set up to times-
4 quadrature decode.  This variable is I7mn0 for Servo IC m Channel n in a Turbo PMAC system.  On a 
MACRO Station, it is node-specific variable MI910. 
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In addition, the direction sense of the whole-count data must match that of the fractional-count data.  For 
the low-resolution interpolators, this requires that the decode variable be set to 7.  If this value does not 
produce the direction sense needed, change the wiring of the encoder into the accessory (exchange sine 
and cosine signals, or the plus and minus lines of one channel). 

For the high-resolution interpolators, the conversion table will check the direction sense of the encoder 
decode at power-up/reset and adjust the direction sense of the fractional data accordingly.  This permits 
the setting of the direction sense as needed by setting the decode variable to 3 or 7, but if this variable 
setting is changed, save the setting and reset the card before the fractional direction sense matches. 

Encoder Filter Bypass: I7mn1 (PMAC-style ICs) 
If a low-resolution interpolator is connected to a PMAC-style Servo IC, the encoder’s digital delay filter 
must be bypassed for both the channel with the encoder signal, and the channel with the flags, in order to 
keep the whole-count and fractional-count data properly synchronized.  The same is true if using the Acc-
51P high-resolution interpolator with its own PMAC-style Servo IC on board.  Bypassing the delay filter 
is selected by setting channel variable I7mn1 to 1. 

Conversion Table Processing Setup – Turbo PMAC Interface 
Sinusoidal encoders wired into a high-resolution (x4096) Acc-51x interpolator connected to a Turbo 
PMAC are processed in the Turbo PMAC’s conversion table by a hi-res interpolator entry (method digit 
$F), in which the fractional-count data is computed mathematically from the readings of the sine and 
cosine A/D converters.  The least significant bit (LSB) of the result represents 1/4096 of an encoder line. 

Encoder Interpolation: High Resolution
Analog “SIN / COS” Encoders
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Sinusoidal encoders wired into a low-resolution (x128/x256) interpolator connected to a Turbo PMAC are 
processed in the Turbo PMACs conversion table by a parallel extension of incremental encoder entry 
(method digit $C), in which the fractional-count data has been computed externally in the interpolator’s 
look-up table and is just appended to the whole count data by the conversion table.  The LSB of the result 
represents 1/128 or 1/256 of an encoder line, depending on the setting of the resolution jumper on the 
interpolator. 
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For details of setting up the encoder conversion table to process sinusoidal encoders, consult the section 
Setting up the Encoder Conversion Table section in this manual and the specification for variables I8000 
– I8191 in the Software Reference Manual. 

Encoder Interpolation: Analog SIN/COS Encoders
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Conversion Table Processing Setup – MACRO Station Interface 
Sinusoidal encoders wired into a high-resolution (x4096) Acc-51x interpolator connected to a MACRO 
Station CPU are processed in the MACRO Station CPU’s conversion table by a hi-res interpolator entry 
(method digit $F), in which the fractional-count data is computed mathematically from the readings of the 
sine and cosine A/D converters.  The least significant bit (LSB) of the result represents 1/4096 of an 
encoder line.  This data is then passed over the MACRO ring to the Turbo PMAC, where it is processed 
as unshifted parallel data (method digit $2). 

Sinusoidal encoders wired into a “low-resolution (x128/x256) interpolator connected to a MACRO 
Station CPU are processed in the MACRO Station CPU’s conversion table by a parallel extension of 
incremental encoder entry (method digit $C), in which the fractional-count data has been computed 
externally in the interpolator’s look-up table and is just appended to the whole count data by the 
conversion table.  The LSB of the result represents 1/128 or 1/256 of an encoder line, depending on the 
setting of the resolution jumper on the interpolator.  This data is then passed over the MACRO ring to the 
Turbo PMAC, where it is processed as unshifted parallel data (method digit $2). 

For details of setting up the encoder conversion table to process sinusoidal encoders, consult the MACRO 
Station manuals and the Setting up the Encoder Conversion Table section in this manual and the 
specification for variables I8000 – I8191 in the Software Reference Manual. 

Scaling the Feedback Units 
Turbo PMAC automatically considers the data it reads for the servo with Ixx03, Ixx04, and Ixx05 to be in 
units of 1/32 of a count (i.e. to have 5 bits of fractional count resolution).  With data processed in the 
conversion table from a sinusoidal-encoder interpolator, be very careful to understand what a count is. 
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High-Resolution (x4096) Interpolators 
For the high-resolution interpolators, the interpolation algorithm produces data with the LSB representing 
1/4096 of an encoder line.  Since the Turbo PMAC motor software considers this data to be in units of 
1/32 of a count, this means that the software considers there to be 128 counts per encoder line.  Other 
motor and axis position, velocity, and acceleration values are based on this definition of a count which we 
will call a software count. 

Note that the hardware counter in the Servo IC of the high-resolution interpolator only contains four 
counts per line of the encoder.  If using the encoder for Turbo PMAC-based commutation, use the 
hardware counter register as the commutation position source, not the interpolated result, and this 
hardware count resolution should be known. 

Low-Resolution (x128/x256) Interpolators 
For the low-resolution interpolators, the interpolation algorithm produces data with the LSB representing 
1/128 or 1/256 of an encoder line, and the hardware counter for the channel has data with the LSB 
representing 1/4 or 1/8 of an encoder line, depending on the setting of the resolution jumper for the 
interpolator.  Since the Turbo PMAC motor software considers this data to be in units of 1/32 of a count, 
the software considers there to be four or eight counts per encoder line, matching the resolution of the 
encoder counter.  However, compared to 1/T timer-based sub-count estimation, this method produces real 
fractional-count position data (i.e. command and hold final position to resolution less than a count). 

Setting up Resolvers 
A Turbo PMAC system can interface directly to resolvers through an Acc-8D Option 7 resolver-to-digital 
(R/D) converter board.  This board can create the AC excitation signal for up to four resolvers, accept the 
modulated sine and cosine signals back from these resolvers, demodulate the signals and derive the 
position of the resolver from the resulting information, in an absolute sense if necessary. 

Note:  

Many Turbo PMAC users will utilize resolvers for position feedback, but with the 
resolver-to-digital conversion performed in the servo amplifier, which uses the 
resulting position information for its commutation functions.  This style of 
amplifier generates a synthesized digital quadrature signal for the controller, which 
is connected to the Turbo PMAC.  In this case, the Turbo PMAC treats the 
feedback just as if a real digital quadrature encoder were used. 

Hardware Setup 
The details of the hardware setup are covered in the hardware reference manual for the R/D converter 
board.  Fundamentally, the R/D board connects three differential analog signal pairs to each resolver: a 
single excitation signal pair, and two feedback signal pairs.  It has two different digital connections to the 
Turbo PMAC: one for serial absolute position to the JTHW Multiplexer port (common for all channels on 
the board, optional in use), and one with synthesized digital quadrature for each channel, connected to a 
normal quadrature encoder interface. 

Turbo PMAC Hardware-Control Parameter Setup 
Encoder Decode Control: I7mn0, I68n0, MI910 
To match the resolution and direction sense of the ongoing position information derived from the 
synthesized quadrature with absolute position read through the Multiplexer port, set the channel’s encoder 
decode variable to 7 (times-4 decode, counterclockwise).  If not using absolute position, set the decode 
resolution and direction as wanted.  For Servo ICs of both PMAC-style and PMAC2-style, this is I7mn0 
(for Servo IC m Channel n).  For MACRO IC 0 Channel n* on a Turbo PMAC (a handwheel port 
encoder), this is I68n0.  For encoder channels on a MACRO Station, this is node-specific variable MI910. 
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Conversion Table Processing Setup – Turbo PMAC Interface 
Usually, digital quadrature signals, even if synthesized, are processed in the conversion table with the 1/T 
extension method (method digit $0), which uses timers associated with the counter to compute fractional 
count information that enhances smoothness of motion.  The source address specified is that of the base 
address of the channel (e.g. $78200 for Servo IC 0 Channel 1); Turbo PMAC will use several registers of 
that channel to assemble the enhanced position information automatically. 

For details of setting up the encoder conversion table to process synthesized quadrature encoder signals, 
consult the section Setting up the Encoder Conversion Table section in this manual and the specification 
for variables I8000 – I8191 in the Software Reference Manual. 

Conversion Table Processing Setup – MACRO Station Interface 
If the synthesized quadrature signal is connected to a remote MACRO Station, the conversion table 
processing (usually 1/T extension) is done in the MACRO Station, and the resulting enhanced position 
information is passed back to the Turbo PMAC, where it is processed by the Turbo PMAC’s encoder 
conversion table as unshifted parallel data (usually method digit $2, mode switch bit = 1), because it 
already has fractional count information, before use by the servo.  For details of setting up the encoder 
conversion table to process synthesized quadrature encoder signals, consult the MACRO Station manuals, 
the Setting up the Encoder Conversion Table section in this manual, and the specification for variables 
I8000 – I8191 in the Software Reference Manual. 

Setting Up for Power-On Absolute Position 
It is possible to get absolute position directly from the Acc-8D Option 7 through the multiplexer port.  
Most commonly, this is just the absolute position within one motor revolution or even one commutation 
cycle to establish the commutation phase reference position without any motion.  This section 
summarizes the variable settings for this technique; refer to the Software Reference Manual for details. 

Absolute Phase Power-On Position Address and Format: Ixx81, Ixx91, MI11x 
To read an R/D converter for absolute phase position from a board directly connected to the Turbo 
PMAC, Ixx81 must be set to the address of the converter board on the multiplexer port (not directly in 
Turbo PMAC’s address space).  Bits 16 – 23 of Ixx91 must be set to the location of the converter on the 
board at that address.   

If the R/D board is connected to a MACRO Station, Ixx81 is set to the MACRO node number, and Ixx91 
is set to $730000.  On the MACRO Station, MI11x is set to specify the address of the converter board on 
the multiplexer port in bits 0 – 7, and the location of the converter on the board in bits 16 – 23. 

Motor phase offset variable Ixx75 contains the difference between the absolute resolver position and the 
resulting phase angle position (if any). 

Absolute Servo Power-On Position Address and Format: Ixx10, Ixx95, MI11x 
To read one, two, or three R/D converters for absolute phase position from a board directly connected to 
the Turbo PMAC, Ixx81 must be set to the address of the first converter board on the multiplexer port 
(not directly in Turbo PMAC’s address space).  Bits 16 – 23 of Ixx91 must be set to the location of the 
first (fine) converter used on the board at that address.   

If the R/D board is connected to a MACRO Station, Ixx81 is set to the MACRO node number, and Ixx91 
is set to $730000.  On the MACRO Station, MI11x is set to specify the address of the converter board on 
the multiplexer port in bits 0 – 7, and the location of the converter on the board in bits 16 – 23. 

If a second resolver, geared down from the first by an integer factor of n, is used to get multi-turn absolute 
position, motor variable Ixx99 must be set to this value of n.  If a third resolver, geared down from the 
second by an integer factor of m, is used to extend the range of the multi-turn absolute position, motor 
variable Ixx98 must be set to this value of m. 
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Motor offset variable Ixx26 contains the difference between the absolute resolver position and the 
resulting motor position (if any). 

Scaling the Feedback Units 
The Acc-8D Option 7 R/D converter is a 12-bit converter.  It reports 4096 separate states per electrical 
cycle of the resolver (per mechanical revolution for a typical 2-pole resolver, per half revolution for a 4-
pole resolver).  It reports this as a 12-bit binary number if queried for absolute position over the 
multiplexer port.  For ongoing position, it generates 1024 digital quadrature cycles per electrical cycle, 
which creates 4096 counts per cycle after times-4 decode. 

Setting Up MLDTs 
A Turbo PMAC with PMAC2-style ICs can provide direct interface to magnetostrictive linear 
displacement transducers (MLDTs), such as MTS’s Temposonics brand.  MLDTs can provide absolute 
position information in rugged environments; they are particularly well suited to hydraulic applications.  
In this interface Turbo PMAC provides a periodic excitation pulse output to the MLDT, receives the echo 
pulse that returns at the speed of sound in the transducer, and very accurately measures the time between 
these pulses, which is directly proportional to the distance of the moving member from the stationary base 
of the transducer.  The timer therefore contains a position measurement. 

MLDT Interface Type 
MLDTs are available with several different interface formats; for this interface, a format with external 
excitation is required, because Turbo PMAC provides the excitation pulse.  Usually, this format has an 
RS-422 interface, because the excitation and echo pulses are at RS-422 levels.  The Turbo PMAC MLDT 
interface inputs and outputs are at RS-422 levels. 

Some MLDTs come with internal excitation and computation of position, providing a position value in a 
format such as Synchronous Serial Interface (SSI) or an analog voltage.  In these cases, setting up the 
Turbo PMAC interface is dependent only on the data format, not on the underlying principle of the 
sensor.  Refer to the appropriate feedback-format section for details. 

Signal Formats 
There are two common signal formats of the external excitation type; MTS calls them RPM and DPM.  In 
the RPM format there are two short pulses returned from the MLDT: an immediate start pulse, and a 
delayed stop pulse. 

RPM Signal Format

Pulse Out

Return

Start Stop  
Since Turbo PMAC uses the first rising signal edge returned after the falling edge of the output pulse to 
latch the timer, the key setup issue in this format is to make sure that the output pulse width is large 
enough so that the falling edge of the output pulse occurs after the rising edge of the return line’s start 
pulse (see PFM Pulse Width below). 

In the DPM format, there is only one long pulse returned from the MLDT. 
DPM Signal Format

Pulse Out

Return

Start Stop  
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The rising edge of the return pulse in the DPM format is the equivalent of the rising edge of the start pulse 
in the RPM format.  The falling edge of the return pulse in the DPM format is the equivalent to the rising 
edge of the stop pulse in the RPM format.  Because Turbo PMAC is expecting a rising signal edge to 
latch the timer, in this signal format the return signals should be inverted so that the ‘+’ output of the 
MLDT is wired into Turbo PMAC’s ‘-’ input, and vice versa. 

Hardware Setup 
The PULSEn output that is used commonly to command stepper drives is used as the excitation signal for 
the MLDT; typically the CHAn input that is part of encoder feedback is used to accept the response.  The 
PULSEn output is an RS-422 style differential line-drive pair.  The CHAn input is an RS-422 style 
differential line receiver pair.  The use of differential pairs for both inputs and outputs is strongly 
encouraged for the common-mode noise rejection it provides. 

On some interface boards (e.g. Acc-24E2A, Acc-24E2S), the PULSEn+/- signals are output on lines that 
otherwise would be supplemental flag inputs, and jumper(s) must be installed to enable the outputs on 
these lines.  Consult the user manual for the board for details. 

Remember that in the DPM signal format or equivalent (see above), the ‘+’ output of the MLDT should 
be wired into the CHAn- input, and the ‘-’ output of the MLDT should be wired into the CHAn+ input. 

Turbo PMAC Hardware-Control Parameter Setup 
PFM Clock Frequency: I7m03, I6803, MI903, MI907, MI993 
The pulse output uses Turbo PMAC’s pulse frequency modulation (PFM) feature.  The PFM circuitry 
generates periodic output pulses by repeatedly adding a command value into an accumulator.  When the 
accumulator overflows, an output pulse is generated. 
The addition of the command value into the accumulator is performed once per PFM clock (PFMCLK) 
cycle.  The PFMCLK frequency is governed by I7m03 for the channels on Servo IC m, I6803 for the 
supplemental channels on MACRO IC 0, and MI903, MI907, or MI993 for channels on a MACRO 
Station.  The default frequency of the PFMCLK for all channels is 9.83 MHz; this frequency should be 
suitable for all MLDT applications. 
PFM Output Frequency: Mxx07, MI926 
The pulse output frequency for a channel is controlled by both the PFMCLK frequency and the PFM 
command value for the channel, which is the C-output register for that channel.  When used for stepper 
motor applications, the PFM command value is determined by the instantaneous command velocity and 
the gains of the simulated servo loop on Turbo PMAC; Ixx02 tells Turbo PMAC to write this to the PFM 
command register.   
For MLDT use, we will write to the PFM command register once on power-up/reset with an M-variable.  
(If the interface is on a MACRO Station, the Station’s firmware will do this automatically, using the 
saved value of node-specific variable MI926.)  The suggested M-variable definition for this register is 
Mxx07.  The following table shows the registers for these suggested definitions: 
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PFM Pulse Output Addresses (Y-registers) 
IC# - Chan# 0 - 1 0 - 2 0 - 3 0 - 4 1 - 1 1 - 2 1 - 3 1 - 4 
Mxx07->Y: $078004 $07800C $078014 $07801C $078104 $07810C $078114 $07811C 

IC# - Chan# 2 - 1 2 - 2 2 - 3 2 - 4 3 - 1 3 - 2 3 - 3 3 - 4 
Mxx07->Y: $078204 $07820C $078214 $07821C $078304 $07830C $078314 $07831C 

IC# - Chan# 4 - 1 4 - 2 4 - 3 4 - 4 5 - 1 5 - 2 5 - 3 5 - 4 
Mxx07->Y: $079204 $07920C $079214 $07921C $079304 $07930C $079314 $07931C 

IC# - Chan# 6 - 1 6 - 2 6 - 3 6 - 4 7 - 1 7 - 2 7 - 3 7 - 4 
Mxx07->Y: $07A204 $07A20C $07A214 $07A21C $07A304 $07A30C $07A314 $07A31C 

IC# - Chan# 8 - 1 8 - 2 8 - 3 8 - 4 9 - 1 9 - 2 9 - 3 9 - 4 
Mxx07->Y: $07B204 $07B20C $07B214 $07B21C $07B304 $07B30C $07B314 $07B31C 

IC# - Chan# M0 – 1* M0 – 2*       
Mxx07->Y: $078414 $07841C       

Servo ICs 0 and 1 are on the Turbo PMAC2 itself or on Acc-2E 3U-format stack boards. 
Servo ICs 2 – 9 are on Acc-24x2 boards. 
On dual-IC boards, IC channels 1 – 4 for odd-numbered Servo ICs are board channels 5 – 8. 
MACRO IC channels are on the handwheel port 

A sample M-variable definition is: 
M107->Y:$078004,8,16,S ; Servo IC 0 Chan 1 PFM (C) cmd val 

Note:  
The PFM command registers are actually 24-bit registers; the suggested definitions 
just use the high 16 bits, providing enough resolution for our purposes here.  If you 
use the register as a 24-bit value, e.g. M107->Y:$078004,0,24,S, it takes 
numerical values 256 times higher than the equations shown here.  When using the 
MACRO Station, MI926 is a 24-bit, not 16-bit value. 

The frequency of the pulse output should produce a period just slightly longer than the longest expected 
response time for the echo pulse.  For MLDTs, the response time is approximately 0.35 µsec/mm (9 
µsec/inch).  On an MLDT 1500 mm (~60 in) long, the longest response time is approximately 540 µsec; a 
recommended period between pulse outputs for this device is 600 µsec, for a frequency of 1667 Hz. 

To produce the desired pulse output frequency from a Turbo PMAC IC, the following formula can be 
used (assuming a 16-bit M-variable definition): 

)kHz(Freq_PFMCLK
536,65

07Mxx)kHz(OutputFreq =  

or: 

)kHz(Freq_PFMCLK

)kHz(OutputFreq
*536,6507Mxx =  

To produce a pulse output frequency of 1.667 kHz with the default PFMCLK frequency of 9.83 MHz, we 
calculate: 

11
830,9

667.1
*536,6507Mxx ≅=  

To write this value to the register, a power-on PLC routine is suggested; this can also be done with on-
line commands from the host computer.  Turbo PMAC firmware will not write this value to the register 
automatically. 
To produce the desired pulse output frequency from a channel on the MACRO Station, the following 
formula can be used for node-specific 24-bit variable MI926: 

)kHz(Freq_PFMCLK
216,777,16

926MI
)kHz(OutputFreq =  
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or: 

)kHz(Freq_PFMCLK

)kHz(OutputFreq
*216,777,16926MI =  

To produce a pulse output frequency of 1.667 kHz with the default PFMCLK frequency of 9.83 MHz, we 
calculate: 

982,2
830,9

667.1
*216,777,16926MI ==  

Note:  
The servo update time for the motor using the MLDT should be at least as high as 
the output time set here (the servo frequency should be as low as or lower than the 
output frequency).   

PFM Pulse Width: I7m04, I6804, MI904, MI908, MI994 
The width of the output pulse is controlled by the PFMCLK frequency with I7m04 for the channels on 
Servo IC m, I6804 for the channels on MACRO IC 0, or MI904, MI908, or MI994 for the ICs on a 
MACRO Station.  This I-variable specifies the pulse width as the number of PFMCLK cycles.  At the 
default PFMCLK frequency of 9.83 MHz, the default value of 15 produces a 1.5-µsec output pulse width.  
This should be satisfactory for most MLDT devices.  When using the RPM format or equivalent (see 
Signal Format, above), the pulse width must be large enough to enclose the rising edge of the returned 
start pulse – that is, it must be longer than the delay between the output pulse and the returned start pulse. 

PFM Format Select: I7mn6, I68n6, MI916 
The output format of channel signals is controlled by variable I7mn6 for Servo IC m Channel n, by I68n6 
for MACRO IC 0 Channel n, or by node-specific variable MI916 on a MACRO Station. In order for the 
C-register circuitry of Channel n to output a PFM pulse train rather than a PWM pulse train, this variable 
must be set to 2 or 3.  Most commonly, it will be set to 3, so that the A and B registers for Channel n 
output DAC signals rather than PWM. 

Note:  
One channel of Turbo PMAC cannot be used simultaneously for direct PWM 
control of a motor and for MLDT pulse generation.  Direct PWM control of a 
motor writes to the channel’s A, B, and C registers every phase cycle 
automatically. 

MLDT Feedback Select: I7mn0, I68n0, MI910 
The decoding of the signals on the encoder inputs is controlled by I7mn0 for Servo IC m Channel n, I68n0 
for MACRO IC 0 Channel n, or by node-specific variable MI910 for a channel on a MACRO Station. For 
proper decoding of the MLDT signal, this variable must be set to 12.  With this setting, the pulse timer is 
cleared to zero at the falling edge of the output pulse.  It then counts up at 117.96 MHz until a rising edge on 
the return pulse is received, at which time the timer’s value is latched into a memory-mapped register that 
the processor can read.  This register is the X-register at the base address of each channel.   

Note:  
The MLDT feedback uses the same circuitry that would be used for quadrature 
encoder feedback on that channel, so an encoder and MLDT cannot be connected 
simultaneously to the same channel’s feedback on Turbo PMAC.  In this mode, it 
is the pulse timer that is used as a position measurement for feedback, not the pulse 
counter that is used with encoders.  The counter still registers the number of pulses 
returned, but does not represent a position measurement here. 



 Turbo PMAC User Manual 

66 Setting Up Feedback and Master Position Sensors 

Conversion Table Processing Setup – Turbo PMAC Interface 
The timer registers are processed in the conversion table as parallel feedback representing the position, 
just as an absolute encoder would be.  The filtered parallel read (method digit $3) should be used to reject 
errors due to extra or missing echo pulses.  Consult the Setting up the Encoder Conversion Table section 
in this manual and the specification for variables I8000 – I8191 in the Software Reference Manual. 

Conversion Table Processing Setup – MACRO Station Interface 
If the MLDT is connected to the MACRO Station, the data must be processed through conversion tables 
on both the Station and the Turbo PMAC (although the table on the Turbo PMAC really just copies the 
data off the ring).  The conversion table on the MACRO Station is contained in setup variables MI120 – 
MI151.  This table should do a filtered parallel read of the timer register, the filtering able to reject errors 
due to extra or missing echo pulses.  The result is passed back over the ring to Turbo PMAC, where it is 
treated just as any other type of feedback from the ring would be.  Consult the section Setting Up the 
Encoder Conversion Table in this manual, the specification for variables I8000 – I8191 in the Software 
Reference Manual, and the manuals for the MACRO Station. 

Setting Up for Power-On Absolute Position 
Absolute Power-On Position Address and Format: Ixx10, Ixx95, MI11x 
Because MLDTs are absolute position sensors, no homing search move is required if they are used for 
position feedback.  Turbo PMAC variables Ixx10 (Motor xx Power-On Servo Position Address) and 
Ixx95 (Motor xx Power-On Position Format) can be used to establish this absolute position.  The Ixx10 
description in the Turbo PMAC Software Reference Manual has a complete table of the possible address 
settings for the MLDT timer registers, and also for getting absolute position from a MACRO Station.   

Ixx95 should be set to $170000 for an on-board MLDT timer register.  It should be set to $740000 to 
specify power-on position from a MACRO Station; station variable MI11x should be set to $17nnnn, 
where “nnnn” represents the Y-address of the timer register on the MACRO Station. 

Position Reference Offset: Ixx26 
When used with an absolute position read, Ixx26 specifies the difference between the sensor’s zero 
position and the motor zero position.  With an MLDT, the sensor’s zero position is at the 
transmitter/receiver module, outside the possible range of motion of the sensor.  If it is desired that the 
motor’s zero position be within the range of travel, Ixx26 should be used to define the offset between 
sensor and motor zero.  Ixx26 has units of 1/16 count, where a count here is an LSB of the timer. 

Power-On Mode: Ixx80 
Ixx80 controls whether the absolute position read for Motor xx is performed immediately at power-
on/reset, or whether the absolute position read is delayed until a $* or $$* command is issued.  Because 
the output frequency for the MLDT is not established yet when a read would be done immediately at 
power-on, it should be delayed with an MLDT.  This requires that Bit 2 of Ixx80 be set to 1, making the 
value of Ixx80 equal to 4 if the motor is not to be enabled immediately on power-on/reset, or equal to 5 if 
the motor is to be enabled immediately. 

Scaling the Feedback Units 
Motor Units 
For a motor set up with MLDT feedback, a count is one increment (LSB) of the timer.  The physical 
length of this increment, which is the resolution of the measurement, is dependent on the speed of the 
return pulse in the MLDT, and the frequency of the timer in the Turbo PMAC.  The speed of the return 
pulse (the speed of sound in the metal) varies from device to device, but is always approximately the 
inverse of 0.35 µsec/mm, or 9.0 µsec/inch.  The frequency of the timer is 117.96 MHz.  The resolution 
can be calculated as: 
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Axis User Units 
Typically the axis assigned to the motor using the MLDT for feedback will be given engineering units of 
millimeters or inches.  The scaling is done in the axis definition statement.  With the above example, an 
axis definition statement to create axis user units of millimeters would be: 
#1->41.3X 

An axis definition statement to create axis user units of inches would be: 
#1->1060X 

Setting Up LVDTs, RVDTs, & Other Analog 
Turbo PMAC systems can accept analog voltages from devices such as linear variable displacement 
transducers (LVDTs), rotary variable displacement transducers (RVDTs), capacitive gauges, and 
potentiometers, as feedback through optional analog-to-digital converters.  These voltages must be DC; 
that is, a constant position must be represented by a constant DC voltage (not an AC magnitude).  This 
means if the sensor is fundamentally AC with a carrier frequency (e.g. LVDTs, RVDTs), the sensor signal 
must be demodulated to remove the AC carrier signal before it is connected to the Turbo PMAC system.  
Typically, the vendors of these sensors can provide this kind of signal conditioning. 

Hardware Setup 
The analog signal should be wired into the connector for the analog accessory or option according to the 
directions in the associated manual.  If there is provision for differential inputs, and a single-ended input 
is being used, physically wire the complementary input to the return voltage to get a proper reading 
through the differential receiver. 

Turbo PMAC Hardware-Control Parameter Setup 
Most of the 12-bit A/D converters – as on Acc-36P, Acc-36V, Acc-36E, Acc-6E, and Option 12 – use 
multiplexed converters.  The first step in accessing these for servo use is to de-multiplex the data at a 
fixed high rate.  In Turbo PMAC, this de-multiplexing step is controlled by variables I5060 – I5096.  
Each phase interrupt, one pair of ADCs is read and copied into memory registers and the next pair is 
selected for the next conversion.  Up to 16 pairs of ADCs can be in this ring.  The de-multiplexed data is 
left in registers Y:$003400 – Y:$00341F, where it can be read by the conversion table. 

If the 12-bit A/D converters are in the MACRO Station, this de-multiplexing process is controlled by 
Station variables MI987 and MI989.  It is a fixed de-multiplexing of eight pairs of ADCs from one 
device.  MI989 specifies the address of the ADCs, and MI987 is set to 1 to enable the process.  The 
resulting data is placed in Station registers Y:$0200 – Y:$0207, with each pair of 12-bit values in a 24-bit 
register. 



 Turbo PMAC User Manual 

68 Setting Up Feedback and Master Position Sensors 

Conversion Table Processing Setup – Turbo PMAC Interface 
16-bit data from an Acc-28x converter connected to a Turbo PMAC is processed for servo feedback using 
an Acc-28 A/D entry (method digit $1) in the Turbo PMAC’s conversion table.  Fundamentally, this just 
copies the data from a Y-register to an X-register (where the servo loop can access it) and shifts the data 
so that the LSB out of the converter will be treated by the servo as a count.  The conversion table sets all 
of the fractional-count bits to zero.  Unlike the parallel data conversion, it will not roll over and software-
extend the data.  The integrated Acc-28 A/D entry (method digit $5) does the transfer and shift too, but 
also adds the previous result to the present cycle’s data.  In either case, if the A/D data is unsigned, as 
from an Acc-28B or 28E, the bit-19 mode switch must be set to 1 to handle the data properly. 

Data from 12-bit A/D converters is processed using the parallel data conversion (method digit $2 without 
filtering or $3 with filtering).  The source address is the de-multiplexed memory register, not the address 
of the ADC itself (unless you are only using a single channel of the ADC).  The width/offset setup word 
in the entry is $00C00C (width 12, offset 12) to use data in the high 12 bits of the register.  This 
conversion transfers the data to an X-register and shifts the data so that the LSB out of the converter will 
be treated by the servo as a “count”.  The conversion table sets all of the “fractional-count” bits to zero. 

Note that this conversion does permit rollover and software extension, so make sure there cannot be an 
11-bit change (half of the input range) in a single servo cycle, or Turbo PMAC will roll over the result. 

For details of setting up the encoder conversion table to process analog-to-digital converters, consult the 
section Setting up the Encoder Conversion Table in this manual and the specification for variables I8000 
– I8191 in the Software Reference Manual. 

Conversion Table Processing Setup – MACRO Station Interface 
16-bit data from an Acc-28x converter connected to a MACRO Station is processed for servo feedback 
using an “Acc-28 A/D” entry (method digit $1) in the MACRO Station’s conversion table.  
Fundamentally, this just copies the data from a Y-register to an X-register (where the servo loop can 
access it) and shifts the data so that the LSB out of the converter will be treated by the servo as a count.  
The conversion table sets all of the fractional-count bits to zero.  Unlike the parallel data conversion, it 
will not roll over and software-extend the data.  The integrated Acc-28 A/D entry (method digit $5) does 
the transfer and shift too, but also adds the previous result to the present cycle’s data.  Because the only 
16-bit ADCs that can be connected to a MACRO Station are unsigned, the bit-19 mode switch must be set 
to 1 (making the second hex digit 8) to handle the data properly.  The resulting data is copied to the 
MACRO ring using MI10x, and then treated in the Turbo PMAC as any MACRO feedback data would 
be, using the unshifted parallel conversion, with the MACRO node address as the source. 

Data from 12-bit A/D converters is processed in the MACRO Station’s using the parallel data conversion 
(method digit $2 without filtering or $3 with filtering).  The source address is the de-multiplexed memory 
register, not the address of the ADC itself (unless you are only using a single channel of the ADC).  The 
bits-used mask setup word in the entry is either $000FFF to specify the low 12 bits, or $FFF000 to use the 
high 12 bits.  This conversion transfers the data to an X-register and shifts the data so that the LSB out of 
the converter will be treated by the servo as a count.  The conversion table sets all of the fractional-count 
bits to zero. 

This conversion does permit rollover and software extension, so you must make sure there cannot be an 
11-bit change (half of the input range) in a single servo cycle or Turbo PMAC will roll over the result. 

For details of setting up the encoder conversion table to process analog-to-digital converters, consult the 
MACRO Station manuals, the section Setting up the Encoder Conversion Table in this manual, and the 
specification for variables I8000 – I8191 in the Software Reference Manual. 
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Setting Up for Power-On Absolute Position 
Absolute Power-On Position Address and Format: Ixx10, Ixx95, MI11x 
Generally, position data that comes to a Turbo PMAC system as an analog voltage is absolute in nature, 
so no homing search move is required if it is used for position feedback.  Turbo PMAC variables Ixx10 
(Motor xx Power-On Servo Position Address) and Ixx95 (Motor xx Power-On Position Format) can be 
used to establish this absolute position.  The Ixx10 description in the Turbo PMAC Software Reference 
Manual has a complete table of the possible address settings for the ADC registers, and also for getting 
absolute position from a MACRO Station.   

Ixx95 should be set to $B10000 for the signed 16-bit data from an Acc-28A; it should be set to $310000 
for the unsigned 16-bit data from an Acc-28B.  For 12-bit unsigned data, it should be set to $0C0000; for 
12-bit signed data, it should be set to $8C0000.  It should be set to $740000 to specify power-on position 
from a MACRO Station; station variable MI11x should be set to $17nnnn, where “nnnn” represents the 
Y-address of the ADC register (or de-multiplexed register in memory) on the MACRO Station. 

Scaling the Feedback Units 
If the above instructions are followed, the increment of the least significant bit (LSB) of the ADC is 
considered a count by the Turbo PMAC motor functions.  All subsequent position, velocity, and 
acceleration units are based on this definition of a count. 

Setting Up Absolute Encoders 
Turbo PMAC can accept feedback data from a variety of absolute encoders through various interface 
boards.  The instructions for setting up the hardware and software for these interfaces is detailed in the 
manuals for the particular interface boards.  The following table briefly summarizes these setups: 

Encoder Interface Board Conversion Table Absolute Power On* 
Parallel Format Acc-14D 

Acc-14V 
Acc-14E 

Filtered Parallel ($3) 
Filtered Parallel ($3) 

Filtered Parallel Byte ($F/$3) 

Ixx95=$nn0000 
Ixx95=$nn0000 
Ixx95=$nn000b 

Yaskawa Sigma I Acc-8D Opt 9 1/T Encoder ($0) Ixx95=$710000 
SSI Acc-53E Filtered Parallel ($3) Ixx95=$nn0000 

Hiperface Acc-51x Opt 2 Hi-Res Interpolator ($F/$0) Ixx95=$nn0000 
Heidenhain EnDat Acc-51x Opt 3 Hi-Res Interpolator ($F/$0) Ixx95=$nn0000 

Mitsubishi Acc-57E Opt M Filtered Parallel ($3) Ixx95=$nn0000 
Sanyo Acc-49P Filtered Parallel ($3) Ixx95=$nn0000 

Tamagawa Acc-70P Filtered Parallel ($3) Ixx95=$nn0000 
*The nn in $nn0000 expresses the number of bits to use as a hexadecimal value.  The b specifies which 
byte of the 24-bit word to use: 4 for low, 5 for middle, 6 for high. 

Details on the actual hardware and software setup for these data formats can be found in the user manual 
for the appropriate accessory. 
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BASIC MOTOR SETUP 
Turbo PMAC has many modes for controlling motors.  A major part of the initial setup of a Turbo PMAC 
is the hardware and software configuration to specify a specific mode of operation.  The commonly used 
modes of operation are: 
• Analog command of velocity-mode drives 
• Analog command of torque-mode drives 
• Analog command of sine-wave input drives 
• Direct PWM control of power-block drives 
• Pulse-and-direction command of stepper or stepper-replacementservo drives 
Any of these modes can be employed directly in a Turbo PMAC system, or over the MACRO ring.  
When using the MACRO ring, the command and feedback values are passed across the ring as binary 
numerical values; the actual generation of command signals and processing of feedback signals is done at 
the remote MACRO node.  The motor algorithms in the Turbo PMAC are the same regardless of whether 
the MACRO ring is used or not.  The choice of mode of operation is independent for each motor. 

Hardware Setup 
The details of the hardware setup of the machine interface ports are dependent on the actual type of the 
Turbo PMAC family used, and often the style of the interface.  Broadly speaking, there are four classes of 
interface: 
• Turbo PMAC boards 
• Turbo PMAC2 boards 
• 3U-format Stack boards (Turbo Stack and MACRO Stack) 
• 3U-format UMAC (pack) boards (UMAC Turbo and UMAC MACRO) 
This section summarizes the connection strategies for these classes of boards.  Details of the connections 
and other hardware setup issues are covered in the Hardware Reference manuals for the individual boards. 

Parameters to Set up Basic Motor Operation 
Each Motor xx has setup I-variables to permit specific software configuration of that motor’s control 
algorithms. The hundreds’ and thousands’ digit of the I-variable specifies which motor is being 
configured; for example, I1200 activates or de-activates Motor 12.  The generic reference for the variable 
uses the letters xx for the motor digits; Ixx00 refers generally to the activation variable for Motor xx, 
where xx = 1 to 32.   

Most of the software configuration of a motor involves setting proper values for these variables, as 
explained in the following sections.  This section has a quick survey of the key variables, and the 
variables that are common to all modes.  Depending on how the motor is set up, branch to other sections 
of the manual.  The following flow chart summarizes the motor setup possibilities: 
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Turbo PMAC Motor Setup Flowchart 

Initial Setup Parameters 
Activating the Motor: Ixx00 
The Ixx00 motor activation parameter must be set to 1 for any motor that is to be used on Turbo PMAC.  It 
should be set to 0 for any motor that is not used, so Turbo PMAC will not waste computation time on that 
motor.  An activated motor can be enabled or disabled; a de-activated motor is not monitored in any way. 

Activating PMAC Motor Commutation: Ixx01 
Bit 0 of the Ixx01 commutation-enable parameter must be set to 1 if Turbo PMAC is performing the 
commutation and/or digital current-loop closure for the motor.  It must be set to 0 for any motor if Turbo 
PMAC is performing neither the commutation nor digital current loop for the motor.  If commutation is 
enabled, variables Ixx70 – Ixx84 for the motor must be set to specify how the commutation is done.  The 
instructions for setting these variables are given in the Commutation section of this manual. 
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Motor Address Setup Parameters 
Each Turbo PMAC motor has several address I-variables that tell the motor what registers to use for its 
inputs and outputs.  Each of these variables contains the Turbo PMAC address of the register for the 
particular function.  This provides a mapping between the motor calculation registers and the different 
types of servo I/O registers (encoders, D/A converters, flags, etc.) used for the physical interface.  By 
providing a user-settable mapping, Turbo PMAC makes it very easy to utilize different types of feedback 
and output signals for each motor. 
The following diagram shows how this mapping works for a motor directly accessing servo I/O registers 
(without MACRO): 
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This next diagram shows the three-stage process to map between the motor calculation registers and the 
servo I/O registers in a MACRO Station over a MACRO ring.  The motor address I-variables specify the 
first stage only – the mapping between the motor calculation registers and the Turbo PMAC’s own 
MACRO node registers.  The second step – the mapping between the Turbo PMAC’s MACRO node 
registers and the MACRO Station’s MACRO node registers – is covered in the Basic Setup section (and 
in the MACRO Station manuals).  The third step – the mapping between the MACRO Station’s MACRO 
node registers – is covered in the appropriate section of this manual (and in the MACRO Station 
manuals).  Once this mapping is set up, the motor will operate just as it would with a direct connection. 
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Command Output Address: Ixx02 
Ixx02 instructs Turbo PMAC where to place its output command values for Motor xx by specifying the 
address of the register (or the first register if multiple outputs are used).  The default values of Ixx02 use 
the output registers for the machine interface channel usually assigned to the motor, or command registers 
(starting with Register 0) for the MACRO node usually assigned to the motor.  The exact setting is 
dependent on the mode used, and is covered in the section for each mode of control. 

Position-Loop Feedback Address: Ixx03 
Ixx03 specifies the address of the register Turbo PMAC reads for the ongoing position-loop feedback for 
the motor.  This is the address of a processed feedback data register in the encoder conversion table.  With 
the default conversion table, the default values of Ixx03 specify the processed data for the encoder whose 
channel matches the motor; these values are suitable for most applications, regardless of the command 
output mode.  Refer to the Encoder Conversion Table section in this manual for more information. 

Velocity-Loop Feedback Address: Ixx04 
Ixx04 specifies the address of the register Turbo PMAC reads for the velocity-loop feedback for the 
motor.  It works just like Ixx03, and contains the same address as Ixx03 unless dual feedback is used for 
the motor. 

Flag Addresses: Ixx25, Ixx42, Ixx43 
Ixx25, and possibly Ixx42 and Ixx43, specify the addresses of the registers Turbo PMAC uses for its flag 
information for Motor xx.  The flags come in three sets:  
1. The capture input flags (including the encoder index), used for trigger moves such as homing search 

moves  
2. The amplifier flags (enable output and fault input), used to handshake with the drive 
3. The overtravel limit input flags, used to enforce the position range of the motor 
If Ixx42 and Ixx43 are set to the default value of 0, Ixx25 sets the address of all three sets of flags.  This is 
the typical case, and the only one permitted in firmware revisions 1.939 and earlier (through 2002).  
However, starting with firmware revision 1.940, new variables Ixx42 and Ixx43 permit the splitting of the 
sets of flags.  This is particularly useful when triggering from an Acc-51 encoder interpolator board, or 
when using the MACRO ring for feedback and/or triggering but not the amplifier interface. 
If Ixx42 is set to a non-zero value, it specifies the address of the amplifier flags alone.  If Ixx43 is set to a 
non-zero value, it specifies the address of the overtravel limit flags alone.  Ixx25 always specifies the 
address of the capture flags. 
The following table shows the possible addresses for these variables when the flags are accessed through 
PMAC-style Servo ICs. 
PMAC-Style Servo IC Flag Addresses 

IC# - Chan# 0 - 1 0 - 2 0 - 3 0 - 4 1 - 1 1 - 2 1 - 3 1 - 4 
Ixx25/42/43 $078000 $078004 $078008 $07800C $078100 $078104 $078108 $07810C 
IC# - Chan# 2 - 1 2 - 2 2 - 3 2 - 4 3 - 1 3 - 2 3 - 3 3 - 4 
Ixx25/42/43 $078200 $078204 $078208 $07820C $078300 $078304 $078308 $07830C 
IC# - Chan# 4 - 1 4 - 2 4 - 3 4 - 4 5 - 1 5 - 2 5 - 3 5 - 4 
Ixx25/42/43 $079200 $079204 $079208 $07920C $079300 $079304 $079308 $07930C 
IC# - Chan# 6 - 1 6 - 2 6 - 3 6 - 4 7 - 1 7 - 2 7 - 3 7 - 4 
Ixx25/42/43 $07A200 $07A204 $07A208 $07A20C $07A300 $07A304 $07A308 $07A30C 
IC# - Chan# 8 - 1 8 - 2 8 - 3 8 - 4 9 - 1 9 - 2 9 - 3 9 - 4 
Ixx25/42/43 $07B200 $07B204 $07B208 $07B20C $07B300 $07B304 $07B308 $07B30C 

Servo ICs 0 and 1 are on the Turbo PMAC itself. 
Servo ICs 2 – 9 are on Acc-24P/V or Acc-51P boards. 
Channels 1 – 4 on odd-numbered Servo ICs are Channels 5 – 8 on the boards. 
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The following table shows the possible addresses for these variables when the flags are accessed through 
PMAC2-style Servo ICs. 
PMAC2-Style Servo IC Flag Addresses 

IC# - Chan# 0 - 1 0 - 2 0 - 3 0 - 4 1 - 1 1 - 2 1 - 3 1 - 4 
Ixx25/42/43 $078000 $078008 $078010 $078018 $078100 $078108 $078110 $078118 
IC# - Chan# 2 - 1 2 - 2 2 - 3 2 - 4 3 - 1 3 - 2 3 - 3 3 - 4 
Ixx25/42/43 $078200 $078208 $078210 $078218 $078300 $078308 $078310 $078318 
IC# - Chan# 4 - 1 4 - 2 4 - 3 4 - 4 5 - 1 5 - 2 5 - 3 5 - 4 
Ixx25/42/43 $079200 $079208 $079210 $079218 $079300 $079308 $079310 $079318 
IC# - Chan# 6 - 1 6 - 2 6 - 3 6 - 4 7 - 1 7 - 2 7 - 3 7 - 4 
Ixx25/42/43 $07A200 $07A208 $07A210 $07A218 $07A300 $07A308 $07A310 $07A318 
IC# - Chan# 8 - 1 8 - 2 8 - 3 8 - 4 9 - 1 9 - 2 9 - 3 9 - 4 
Ixx25/42/43 $07B200 $07B208 $07B210 $07B218 $07B300 $07B308 $07B310 $07B318 

Servo ICs 0 and 1 are on the Turbo PMAC2 itself or on Acc-2E 3U-format stack boards. 
Servo ICs 2 – 9 are on Acc-24x2 or Acc-51E boards. 
Channels 1 – 4 on odd-numbered Servo ICs are Channels 5 – 8 on the dual-IC boards. 

If the flags are accessed through the MACRO ring, the address specified is that of a dedicated image 
register in memory for the MACRO node, not the MACRO node flag register itself.  The following table 
shows the possible addresses for these variables when the flags are accessed through the MACRO ring. 

MACRO Ring Flag Addresses 
IC# - Node# 0 - 0 0 - 1 0 - 4 0 - 5 0 - 8 0 - 9 0 - 12 0 - 13 
Ixx25/42/43 $003440 $003441 $003444 $003445 $003448 $003449 $00344C $00344D 

IC# - Node# 1 - 0 1 - 1 1 - 4 1 - 5 1 - 8 1 - 9 1 - 12 1 - 13 
Ixx25/42/43 $003450 $003451 $003454 $003455 $003458 $003459 $00345C $00345D 

IC# - Node# 2 - 0 2 - 1 2 - 4 2 - 5 2 - 8 2 - 9 2 - 12 2 - 13 
Ixx25/42/43 $003460 $003461 $003464 $003465 $003468 $003469 $00346C $00346D 

IC# - Node# 3 - 0 3 - 1 3 - 4 3 - 5 3 - 8 3 - 9 3 - 12 3 - 13 
Ixx25/42/43 $003470 $003471 $003474 $003475 $003478 $003479 $00344C $00347D 

Flag Modes: Ixx24 
Variable Ixx24 is a collection of individual control bits that determines how the flags specified in Ixx25, 
Ixx42, and Ixx43 are used (or not used).  Each bit is described in detail in the Software Reference 
Manual; a quick summary is given here. 
Bit 0:   Set to 0 for flags in a PMAC-style Servo IC, to 1 for flags in a PMAC2-style Servo IC. 
Bit 11:   Set to 0 to capture with quadrature encoders, to 1 to capture with sinusoidal encoders through 

Acc-51 with high-resolution interpolation. 
Bit 12:  Set to 0 to use whole-count capture, to 1 to use fractional-count capture. 
Bit 14:  Set to 0 to stop on desired-position limit, to 1 to saturate on desired-position limit. 
Bit 15:  Set to 0 to disable desired-position limits, to 1 to enable. 
Bit 16:  Set to 0 to use amplifier-enable output flag, to 1 not to use. 
Bit 17:  Set to 0 to use overtravel limit flags, to 1 not to use. 
Bit 18:  Set to 0 to use capture flags from Turbo PMAC, to 1 for capture flags through MACRO. 
Bit 20:  Set to 0 to use amplifier-fault input flag, to 1 not to use. 
Bits 21 and 22: Set to 00 to kill all motors on a fault; to 01 to kill motors in same coordinate system, to 10 

to kill only faulted motor. 
Bit 23:  Set to 0 for low-true amplifier fault (0 means fault), to 1 for high-true amplifier fault. 
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Absolute Power-Up Position Address and Format: Ixx10 and Ixx95 
If you have a position sensor for the motor that is absolute over the entire range of travel for the motor, 
you can use motor variables Ixx10 and Ixx95 to tell Turbo PMAC where to read this absolute position 
data, and how to interpret the format, respectively.  This does not have to be the same register or even the 
same sensor that is selected for ongoing position feedback with Ixx03.  If Ixx10 is left at its default value 
of 0, no absolute position read will be performed for the motor, and the motor’s power-up/reset position is 
set automatically to zero.  In this case, a homing-search move must be used to establish the position 
reference for the motor. 

(If the position sensor is absolute only over one motor revolution or commutation cycle, as with a single-
turn absolute encoder or resolver, and the motor is commutating with Turbo PMAC, use similar variables 
Ixx81 and Ixx91 to establish the absolute phase position, but in this case Ixx10 will be set to 0, and a 
homing-search move will still be required.  The setup for absolute phase position is covered in the 
Commutation section.)  

The absolute position read defined by Ixx10 and Ixx95 will be performed automatically at power-up/reset 
if bit 2 of Ixx80 is set to its default value of 0.  This absolute read can be done subsequently on the $* 
command, whether or not it was done on power-up/reset. 

The sensor used for absolute power-on position does not have to be the same sensor as that used for 
ongoing position feedback, and it does not have to use the same data format or channel.  However, in 
order to use the automatic absolute power-on position read with Ixx10 and Ixx95, it must have the same 
resolution as the ongoing position feedback.  If the absolute power-on position has a different resolution, 
you must write directly to the motor’s absolute position feedback register (suggested M-variable Mxx62), 
usually from a power-on PLC program.  If the absolute position sensor for Motor 1 has 0.4 counts per 
count of the ongoing position feedback and this sensor were read through M150, the power-on PLC 
statement to set the absolute position could be: 
M162=M150*0.4*I108*32 

This must be done with the motor’s loop open.  Typically, power-up mode variable Ixx80 (see just below) 
will be set to 0 or 2 and the loop will be closed after this statement is executed. 

Power-Up Mode: Ixx80 
Ixx80 specifies whether PMAC will try to control the motor immediately on power-up/reset (bit 0 = 1), 
performing a phasing search if necessary; or whether it will put the motor in a killed state on power-
up/reset (bit 0 = 0) and await a command to enable the motor.  If not sure that everything is instantly 
ready for control when Turbo PMAC is powered up, set bit 0 of Ixx80 to 0 (making Ixx80 an even 
number).  In general, the more complex and high-powered the system is, the more likely to delay enabling 
of the motor to ensure that everything is ready before attempting to enable the motor. 

Ixx80 also controls what kind of phasing-search move is done if one is required for a PMAC-commutated 
motor (this is covered in the Commutation section), and whether an absolute position read is done 
automatically on power-up/reset. 
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Is Turbo PMAC Commutating or Closing the Current Loop for This 
Motor? 
All motors of significant travel require commutation (reversal of current) in the motor phases in order to 
generate consistent torque/force as the motor moves.  The only question is where and how this 
commutation is done.  In a brush DC motor the commutation is performed mechanically inside the motor.  
With brushless motors, the commutation is often performed electronically inside the drive.  In these cases, 
Turbo PMAC is not performing the commutation. 

Virtually all modern servomotor control employs current-loop closure for high response, tolerance of 
parameter variation, and protection against overcurrent conditions.  While this has traditionally performed 
in the servo drive, Turbo PMACs with PMAC2-style Servo ICs are capable of closing the current loop 
digitally for motors. 

If Turbo PMAC is either performing the phase commutation, closing the current loop, or both, for the 
motor, refer to the Setting Up Turbo PMAC-Based Commutation and/or Current Loop sections for further 
instructions.  If Turbo PMAC is doing neither task for this motor, continue below in this section. 

There are two subsequent sections in this section.  The first deals with using the traditional analog 
velocity-mode or torque-mode interface, still the most common servo-amplifier interface.  The second 
deals with the pulse-and-direction interface, the traditional and still most common stepper-amplifier 
interface, also used with “stepper-replacement” servo amplifiers. 

Setting up Turbo PMAC for Velocity or Torque Control 
If Turbo PMAC is not performing the commutation or current loop for a motor, it provides a single output 
command value for the motor.  Usually this output represents either a velocity command or a torque 
(force, or current magnitude) command, and typically this output is encoded as an analog signal voltage 
level.  While the servo-loop tuning for velocity and torque commands is different, the setup until that 
point is identical for both modes. 

When driving a hydraulic cylinder through either a proportional valve or a servo valve, the dynamics 
appear to the Turbo PMAC to be those of a velocity command to a motor. 

Hardware Setup 
Each axis-interface channel on a Turbo PMAC board or axis-expansion board with PMAC-style Servo 
ICs (e.g. Acc-24P or Acc-24V) has a single 16-bit analog output.  Breakout boards simply direct this 
signal to an appropriate connector. 

Board-level Turbo PMAC2 controllers do not have on-board analog outputs for their servo channels; a 
breakout board with D/A converters (DACs), such as the Acc-8A or the Acc-8E must be used.  With 
UMAC systems, the Acc-24E2A analog axis-interface board has DACs for this purpose.  With UMAC-
CPCI systems, the Acc-24C2A has DACs for this purpose.  With the QMAC box-level controller, if the 
analog option is ordered, the DACs are installed inside.  In all of these systems, two DACs per channel 
are either standard or optional, but only a single DAC is required for velocity or torque-mode control.  
The DACs provided by Delta Tau for Turbo PMAC2 systems have 18-bit resolution. 

Consult the appropriate hardware reference or accessory manual for the details of the hardware setup and 
connection. 

Turbo PMAC Parameter Setup 
Hardware Setup for PMAC2-Style ICs 
If the analog output is created through a PMAC2-style Servo IC, which supports other output types as 
well, a few parameters in the IC must be set up to achieve the analog output.  (This is not necessary if the 
analog output is created through a PMAC-style Servo IC.) 
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DAC Clock Frequency Control: I7m03, MI903, MI907, MI993 
An I-variable specifies the frequency of the DACCLK signal that controls the rate at which data is 
clocked into the serial DACs on all channels of the Servo IC.  This variable is I7m03 for a Turbo 
PMAC’s Servo IC m.  If the IC is part of a MACRO Station, the variable is MI903, MI907, or MI993.  
The default DACCLK frequency of 4.92 MHz is appropriate for all DACs used by Delta Tau.  This 
variable also controls other clock frequencies for the Servo IC; if you change the value of this variable, 
make sure to keep the DACCLK frequency the same. 
DAC Strobe Control: I7m05, MI905, MI909, MI999 
A PMAC2-style Servo IC generates a common DAC strobe word for all four channels on the IC.  It does 
this by shifting out a 24-bit word each phase cycle, one bit per DAC clock cycle, most significant bit first.  
I7m05 contains this word for the channels on a Turbo PMAC’s Servo IC m.  If the IC is part of a 
MACRO Station, the variable is MI905, MI909, or MI999.  The default value of $7FFFC0 is suitable for 
use with the 18-bit DACs used by Delta Tau. 
Output Mode Control: I7mn6, MI916 
I7mn6 must be set to 1 or 3 to specify that outputs A and B for Servo IC m Channel n are in DAC mode, 
not PWM.  (On a MACRO Station, this is controlled by node-specific variable MI916.)  A setting of 1 
puts output C (not used for servo or commutation tasks in this mode) in PWM mode; a setting of 3 puts 
output C in PFM mode. 
Output Inversion Control: I7mn7, MI917 
I7mn7 controls whether or not the serial data streams to the DACs on Servo IC m Channel n are inverted.  
(On a MACRO Station, this is controlled by node-specific variable MI917.)  The default value of 0 (non-
inverted) is suitable for use with any of the Delta Tau analog outputs.  Inverting the bits of the serial data 
stream has the effect of negating the DAC voltage.  In a servo algorithm this changes the polarity match 
between output and input, which would produce a dangerous runaway condition if the system were 
working properly before the inversion. 
Motor Parameter Setup 
Commutation Enable/Disable: Ixx01 
Bit 0 of Ixx01 must be set to 0 to disable the commutation algorithms for Motor xx.  Commutation is 
performed in the drive or the motor in this mode of operation.  Bit 1 of Ixx01 is set to 0 to specify that the 
output register whose address is specified in Ixx02 is a Y-register.  Virtually all of the output devices 
usable in this mode are located in Y-registers, so usually Ixx01 is left at the default value of 0 here. 
Command Output Address: Ixx02 
Ixx02 instructs Turbo PMAC where to place its output commands for Motor xx by specifying the address.  
The default values of Ixx02 use the DAC register for the Machine Interface Channel matching the motor. 
Ixx02 seldom needs to be changed from the default value for DAC applications.  Typically, the values 
used are: 
PMAC-Style Servo IC Command Output Addresses (Y-registers) 

IC# - Chan# 0 - 1 0 - 2 0 - 3 0 - 4 1 - 1 1 - 2 1 - 3 1 - 4 
Ixx02 $078003 $078002 $07800B $07800A $078103 $078102 $07810B $07810A 

IC# - Chan# 2 - 1 2 - 2 2 - 3 2 - 4 3 - 1 3 - 2 3 - 3 3 - 4 
Ixx02 $078203 $078202 $07820B $07820A $078303 $078302 $07830B $07830A 

IC# - Chan# 4 - 1 4 - 2 4 - 3 4 - 4 5 - 1 5 - 2 5 - 3 5 - 4 
Ixx02 $079203 $079202 $07920B $07920A $079303 $079302 $07930B $07930A 

IC# - Chan# 6 - 1 6 - 2 6 - 3 6 - 4 7 - 1 7 - 2 7 - 3 7 - 4 
Ixx02 $07A203 $07A202 $07A20B $07A20A $07A303 $07A302 $07A30B $07A30A 

IC# - Chan# 8 - 1 8 - 2 8 - 3 8 - 4 9 - 1 9 - 2 9 - 3 9 - 4 
Ixx02 $07B203 $07B202 $07B20B $07B20A $07B303 $07B302 $07B30B $07B30A 

Servo ICs 0 and 1 are on the Turbo PMAC itself. 
Servo ICs 2 – 9 are on Acc-24P/V or Acc-51P boards. 
Channels 1 – 4 on odd-numbered Servo ICs are Channels 5 – 8 on the boards. 
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PMAC2-Style Servo IC Command Output Addresses (Y-registers) 
IC# - Chan#  0 - 1 0 - 2 0 - 3 0 - 4 1 - 1 1 - 2 1 - 3 1 - 4 
Ixx02 $078002 $07800A $078012 $07801A $078102 $07810A $078112 $07811A 
IC# - Chan#  2 - 1 2 - 2 2 - 3 2 - 4 3 - 1 3 - 2 3 - 3 3 - 4 
Ixx02 $078202 $07820A $078212 $07821A $078302 $07830A $078312 $07831A 
IC# - Chan#  4 - 1 4 - 2 4 - 3 4 - 4 5 - 1 5 - 2 5 - 3 5 - 4 
Ixx02 $079202 $07920A $079212 $07921A $079302 $07930A $079312 $07931A 
IC# - Chan#  6 - 1 6 - 2 6 - 3 6 - 4 7 - 1 7 - 2 7 - 3 7 - 4 
Ixx02 $07A202 $07A20A $07A212 $07A21A $07A302 $07A30A $07A312 $07A31A 
IC# - Chan#  8 - 1 8 - 2 8 - 3 8 - 4 9 - 1 9 - 2 9 - 3 9 - 4 
Ixx02 $07B202 $07B20A $07B212 $07B21A $07B302 $07B30A $07B312 $07B31A 

Servo ICs 0 and 1 are on the Turbo PMAC2 itself or on Acc-2E 3U-format stack boards. 
Servo ICs 2 – 9 are on Acc-24x2 or Acc-51E boards. 
Channels 1 – 4 on odd-numbered Servo ICs are Channels 5 – 8 on the dual-IC boards. 

When the Turbo PMAC is operating Motor xx in velocity mode or torque mode commanded over a 
MACRO ring, Ixx02 will contain the address of a MACRO output register for one of the MACRO nodes. 
When using the Type 1 MACRO protocol commonly found on multi-axis MACRO components such as 
the Delta Tau MACRO Station, the following Ixx02 values should be used.  Typically, these will be the 
default values on a Turbo PMAC2 Ultralite. 
MACRO Node Command Output Addresses (Y-registers) 

IC# - Node# 0 - 0 0 - 1 0 - 4 0 - 5 0 - 8 0 - 9 0 - 12 0 - 13 
Ixx02 $078420 $078424 $078428 $07842C $078430 $078434 $078438 $07843C 

IC# - Node# 1 - 0 1 - 1 1 - 4 1 - 5 1 - 8 1 - 9 1 - 12 1 - 13 
Ixx02 $079420 $079424 $079428 $07942C $079430 $079434 $079438 $07943C 

IC# - Node# 2 - 0 2 - 1 2 - 4 2 - 5 2 - 8 2 - 9 2 - 12 2 - 13 
Ixx02 $07A420 $07A424 $07A428 $07A42C $07A430 $07A434 $07A438 $07A43C 

IC# - Node# 3 - 0 3 - 1 3 - 4 3 - 5 3 - 8 3 - 9 3 - 12 3 - 13 
Ixx02 $07B420 $07B424 $07B428 $07B42C $07B430 $07B434 $07B438 $07B43C 

If using the older Type 0 MACRO protocol, add 1 to the value shown in the above table (e.g. $078420 
becomes $078421). 

Setting Up Turbo PMAC2 for Pulse-and-Direction Control 
A Turbo PMAC with PMAC2-style Servo ICs is capable of commanding stepper-motor drives that 
require pulse-and-direction format input, or “stepper-replacement” servo drives that require this format.  
Turbo PMAC can command these drives either in open-loop fashion, in which case it internally routes the 
pulse train into its own encoder counters to create a pseudo-closed loop, or in closed-loop fashion, in 
which case an external feedback device is wired to the Turbo PMAC to create a true feedback loop. 
A PMAC2-style Servo IC creates its pulse-and-direction output signal with an on-board fully digital 
pulse-frequency-modulation (PFM) circuit.  This circuit repeatedly adds the latest command frequency 
value into an accumulator at a programmable rate of up to 40 MHz.  When the accumulator overflows, an 
output pulse is generated with a positive direction signal; when the accumulator underflows, an output 
pulse is generated with a negative direction signal.  This creates a pulse train whose frequency is directly 
proportional to the command value, with virtually no harmonic distortion, and none of the offset problems 
that affect analog pulse generation schemes. 
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PMAC2 Pulse and Direction Stepper System
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Note: 

The analog output of a PMAC-style Servo IC, used in sign-and-magnitude mode 
(Ixx96=1), and passed through a voltage-to-frequency converter, can be used for 
the same type of operation.  However, it is strongly recommended that the purely 
digital method of the PMAC2-style Servo IC be used instead. 

Hardware Setup 
PMAC2-style Servo ICs, and the DSPGATE2 MACRO IC, have pulse-and-direction outputs for each 
channel on the IC.  In most configurations of interface and breakout hardware, these signals are accessible 
as RS-422-level differential line-driver output pairs.  These signals are driven by the value in output 
register C for the channel, with the pulse frequency proportional to the value in this register.  For this 
reason, these outputs are technically known as pulse-frequency-modulated (PFM) outputs. 
Alternately, the signals from the C output register can be used as pulse-width-modulated (PWM) outputs, 
and commonly form the third-phase command signals for direct-PWM output of brushless motors.  Note 
that if using the channel for direct-PWM control of a motor, the PFM outputs will not be seen on the same 
channel. 
For board-level Turbo PMAC2 controllers and 3U-format stack boards (Acc-1E and 2E), the Acc-8S 
breakout board usually is the most effective way of bringing out the pulse-and-direction signals.  These 
signals are available also on the Acc-8A and Acc-8E analog breakout boards and the Acc-8F PWM 
breakout boards (as the third-phase PWM). 
The pulse-and-direction signals are available on the encoder connectors of the QMAC boxed controller 
and of the UMAC Acc-24E2S, Acc-24E2A, and Acc-24E2 axis-interface boards.  The outputs use the 
same pins as the T, U, V, and W flag inputs for the channel; a jumper must be installed to enable the 
outputs on these pins. 
Signal Timing 
The PULSEn and DIRn signals are driven from the internal PFMCLK signal, whose frequency is controlled 
by I7m03 (see below).  The width of the pulse is controlled by the PFMCLK frequency and I7m04 (see 
below).  The output on PULSEn can be high-true (high during pulse, low otherwise) or low-true, as 
controlled by I7mn7; the default is high-true.  The polarity of the DIRn signal is controlled by I7mn8. 
PULSEn and DIRn signals can change only on the rising edge of PFMCLK.  If DIRn changes on a pulse, 
it will change simultaneously with the front end of PULSEn.  Some stepper drives require a setup time on 
the DIRn line before the rising edge of PULSEn; these systems can be accommodated by inverting the 
PULSEn signal with I7mn7. 
The DIRn signal is latched in this state at least until the front end of the next pulse.  The PULSEn signal 
stays true for the number of PFMCLK cycles set by I7m04.  It then goes false and stays false for a 
minimum of this same time.  This guarantees that the pulse duty cycle never exceeds 50%; the pulse 
signal can be inverted with I7mn7 without violating minimum pulse width specifications. 
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Turbo PMAC Parameter Setup 
Hardware Setup for PMAC2-Style ICs 
PFM Clock Frequency: I7m03, I6803, MI903, MI907, MI993 
An I-variable controls the frequency of addition of the command value into the accumulator by setting the 
frequency of a clock signal called PFMCLK.  One addition is performed during each PFMCLK cycle, so 
the addition frequency is equal to the PFMCLK frequency.  The pulse frequency for a given command 
value is directly proportional to this addition frequency.  While the default frequency is suitable for 
almost all applications, those requiring very high or very low pulse frequencies may need to change this 
clock frequency. 

This PFMCLK/addition frequency puts an upper limit on the pulse frequency that can be generated – with 
an absolute limit of 1/4 of the PFMCLK/addition frequency.  Depending on the worst-case frequency 
distortion that can be tolerated at high speeds, most people will limit their maximum pulse frequency to 
1/10 of the PFMCLK/addition frequency, therefore selecting a PFMCLK/addition frequency 10 to 20 
times greater than their maximum desired pulse frequency.   

The PFMCLK/addition frequency sets a lower limit on the pulse frequency as well – an absolute limit of 
one eight-millionth of the addition frequency (without dithering).  The default frequency of approximately 
10 MHz can provide a useful range of about 1 Hz to 1 million Hz, and is suitable for a wide variety of 
applications, especially with microstepping drives.  For full or half step drives, the PFMCLK/addition 
frequency probably will be set considerably lower – to the approximately 1.2 MHz or 600 kHz settings. 

I7m03 controls the PFMCLK frequency for all of the axis-interface channels on Servo IC m; I6803 does 
the same for the two supplementary channels on the handwheel port.  On a MACRO Station, MI903, 
MI907, and MI997 control this frequency.  The input to the clock control circuitry is a 39.3216 MHz 
signal; this can be divided by 1, 2, 4, 8, 16, 32, 64, or 128 to create the PFMCLK signal.  Therefore, the 
possible PFMCLK frequencies and the I-variable values that set them are: 

Divide by: Divider N (1/2^N) PFMCLK Freq I-Variable Value* 
1 0 39.3216 MHz 2240 
2 1 19.6608 MHz 2249 
4 2 9.8304 MHz 2258 
8 3 4.9152 MHz 2267 

16 4 2.4576 MHz 2276 
32 5 1.2288 MHz 2285 
64 6 611.44 kHz 2294 

128 7 305.72 kHz 2303 
*SCLK frequency = PFMCLK frequency; ADCCLK and DACCLK frequencies at default 

The divider N is used in these I-variables to determine the frequency. 

These variables also independently control the frequencies of the encoder sample clock SCLK, plus the 
clocks for the serial D/A and A/D converters, DACCLK and ADCCLK, which are also divided down in 
the same way from the same 39.3216 MHz signal.  The SCLK frequency should be the same as the 
PFMCLK frequency if the pulse train is fed into the encoder counters.  The above table shows the value 
of the I-variable for each possible frequency of the PFMCLCK, assuming the SCLK frequency is set 
equal to the PFMCLK frequency, and the DACCLK and ADCCLK frequencies are left at their default 
settings. 
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PFM Pulse Width: I7m04, I6804, MI904, MI908 
I7m04 controls the pulse width for the axis-interface channels on Turbo PMAC PMAC2-style Servo IC 
m; I6804 does so for supplementary channels on the handwheel port.  MI904, MI908, and MI994 set this 
for channels on a MACRO Station.  The pulse width is specified in PFMCLK cycles; the range is 1 to 255 
cycles. 

The minimum gap between pulses is equal to the pulse width, so the minimum pulse cycle period is twice 
the pulse width set here.  This sets a maximum frequency of the PFM output.  If the algorithm asks for a 
higher frequency, Turbo PMAC will not produce the requested frequency, and pulses will be skipped. 

Output Mode Control: I7mn6, MI916 
I7mn6 controls what types of signals are brought out from Servo IC m Channel n’s A, B, & C command 
registers; it must be set to 2 or 3 to use the PFM signals from the C register.  Node-specific variable 
MI916 controls this for a MACRO Station channel. 

Output Inversion Control: I7mn7, MI917 
I7mn7 controls whether the pulse signals are inverted or not.  A value of 0 or 1 means the C pulse is high-
true; a value of 2 or 3 means that it is low true.  Node-specific variable MI917 controls this for a MACRO 
Station channel. 

PFM Direction Inversion Control: I7mn8, MI918 
I7mn8 controls the polarity of the PFM direction signal alone (it does not affect the pulse signal).  A 
value of 0 means positive direction is low; a value of 1 means the negative direction is low.  Node-
specific variable MI918 controls this for a MACRO Station channel. 

Encoder Decode Control: I7mn0, MI910 
I7mn0 controls the source of the position feedback signal and how it is decoded.  Node-specific variable 
MI910 controls this for a MACRO Station channel.  Values of 0 to 7 set up for an external signal wired 
into PMAC, with the different values in this range determining how the signal is decoded.  One of these 
values should be used if there is a real feedback sensor; typically 3 or 7 for times-4 decode of a quadrature 
encoder signal.   

A value of 8 selects the internally generated PFM signal, and automatically selects the pulse-and-direction 
decode for the signal.  Note that no external cable is required to feed back the PFM signal.  If the pulse 
train is modified externally to the Turbo PMAC to meet the limitations of a particular stepper drive, 
I7mn0 must be set to 0 or 4 to accept this external pulse-and-direction signal.  If there has been no net 
inversion of the direction signal, I7mn0 will be set to 0.   

For an external feedback signal, the correct setting of I7mn0 should cause the encoder counter to count up 
in the direction you desire.  It also must match the direction sense of the output; a positive command 
value (for instance, with the O10 command) must cause the counter to count up, and a negative command 
value (e.g. O-10) must cause the counter to count down.  Invert the direction sense of the output with 
I7mn8, or by changing the wiring. 

Parameters to Set up Basic Motor Operation 
Several motor I-variables must be set up properly to use the PFM signals properly.  Most of these are 
address registers.  Typically motor #1 will use the circuits for axis interface 1, and so on, but this is not 
absolutely required. 

Activation and Mode: Ixx00, Ixx01 
Ixx00 must be 1 to activate the software for the motor, and Ixx01 must be 0 to tell Turbo PMAC not to do 
the commutation.  (The drive does the commutation in this mode.) 
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Command Output Address: Ixx02 
Ixx02 tells Turbo PMAC where to write the output command value for Motor xx.  To use the PFM, the 
output must be written to the C command register for the axis interface circuit of the proper number.  (The 
default is to the A command register.)  The addresses of the C command registers for PMAC2-style Servo 
ICs are: 
PFM Pulse Output Addresses (Y-registers) 

IC# - Chan# 0 - 1 0 - 2 0 - 3 0 - 4 1 - 1 1 - 2 1 - 3 1 - 4 
Ixx02 $078004 $07800C $078014 $07801C $078104 $07810C $078114 $07811C 

IC# - Chan# 2 - 1 2 - 2 2 - 3 2 - 4 3 - 1 3 - 2 3 - 3 3 - 4 
Ixx02 $078204 $07820C $078214 $07821C $078304 $07830C $078314 $07831C 

IC# - Chan# 4 - 1 4 - 2 4 - 3 4 - 4 5 - 1 5 - 2 5 - 3 5 - 4 
Ixx02 $079204 $07920C $079214 $07921C $079304 $07930C $079314 $07931C 

IC# - Chan# 6 - 1 6 - 2 6 - 3 6 - 4 7 - 1 7 - 2 7 - 3 7 - 4 
Ixx02 $07A204 $07A20C $07A214 $07A21C $07A304 $07A30C $07A314 $07A31C 

IC# - Chan# 8 - 1 8 - 2 8 - 3 8 - 4 9 - 1 9 - 2 9 - 3 9 - 4 
Ixx02 $07B204 $07B20C $07B214 $07B21C $07B304 $07B30C $07B314 $07B31C 

IC# - Chan# M0 - 1 M0 - 2       
Ixx02 $078414 $07841C       

Servo ICs 0 and 1 are on the Turbo PMAC2 itself or on Acc-2E 3U-format stack boards. 
Servo ICs 2 – 9 are on Acc-24x2 or Acc-51E boards. 
Channels 1 – 4 on odd-numbered Servo ICs are Channels 5 – 8 on the dual-IC boards. 
MACRO IC 0 (M0) provides the two pulse channels on the handwheel port. 

When using this mode through a MACRO Station, the output must be written to Register 2 of the 
appropriate MACRO node, from which it will be copied to the C command register for the matching 
channel on the MACRO Station.  The addresses of Register 2 for each MACRO node are: 

MACRO IC PFM Pulse Output Addresses (Y-registers) 
IC# - Node# 0 - 0 0 - 1 0 - 4 0 - 5 0 - 8 0 - 9 0 - 12 0 - 13 

Ixx02 $078422 $078426 $07842A $07842E $078432 $078436 $07843A $07843E 
IC# - Node# 1 - 0 1 - 1 1 - 4 1 - 5 1 - 8 1 - 9 1 - 12 1 - 13 

Ixx02 $079422 $079426 $07942A $07942E $079432 $079436 $07943A $07943E 
IC# - Node# 2 - 0 2 - 1 2 - 4 2 - 5 2 - 8 2 - 9 2 - 12 2 - 13 

Ixx02 $07A422 $07A426 $07A42A $07A42E $07A432 $07A436 $07A43A $07A43E 
IC# - Node# 3 - 0 3 - 1 3 - 4 3 - 5 3 - 8 3 - 9 3 - 12 3 - 13 

Ixx02 $07B422 $07B426 $07B42A $07B42E $07B432 $07B436 $07B43A $07B43E 

Encoder Conversion Table:  The encoder conversion table implemented with variables I8000 – I8191 
(MI120 – MI151 on a MACRO Station) does the initial processing of the real or simulated feedback 
registers.  The default conversion table in Turbo PMAC processes encoder channels with timer-based 1/T 
sub-count interpolation, in its first ten entries.  These are the ideal settings if real incremental encoder 
feedback is used. 

However, if the output pulse train is used for simulated feedback, it is best to process the counts without 
any sub-count interpolation.  This will prevent the PMAC from trying to position between pulses and 
create dithering.  In the PMAC Executive program Configure Encoder Table window, change the entry 
from Incremental with 1/T Interpolation to Incremental with No Interpolation.  If writing directly to the 
memory location of the table, change the format digit from $0 to $C.  The entries for this type of 
conversion for the encoder registers of a Turbo PMAC2 system are: 
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Encoder Conversion Table Entries, No Interpolation 
IC# - Chan# 0 - 1 0 - 2 0 - 3 0 - 4 1 - 1 1 - 2 1 - 3 1 - 4 

I8xxx $C78000 $C78008 $C78010 $C78018 $C78100 $C78108 $C78110 $C78118 
IC# - Chan# 2 - 1 2 - 2 2 - 3 2 - 4 3 - 1 3 - 2 3 - 3 3 - 4 

I8xxx $C78200 $C78208 $C78210 $C78218 $C78300 $C78308 $C78310 $C78318 
IC# - Chan# 4 - 1 4 - 2 4 - 3 4 - 4 5 - 1 5 - 2 5 - 3 5 - 4 

I8xxx $C79200 $C79208 $C79210 $C79218 $C79300 $C79308 $C79310 $C79318 
IC# - Chan# 6 - 1 6 - 2 6 - 3 6 - 4 7 - 1 7 - 2 7 - 3 7 - 4 

I8xxx $C7A200 $C7A208 $C7A210 $C7A218 $C7A300 $C7A308 $C7A310 $C7A318 
IC# - Chan# 8 - 1 8 - 2 8 - 3 8 - 4 9 - 1 9 - 2 9 - 3 9 - 4 

I8xxx $C7B200 $C7B208 $C7B210 $C7B218 $C7B300 $C7B308 $C7B310 $C7B318 
IC# - Chan# M0 - 1 M0 - 2       

Ixx02 $C78410 $C78418       
Servo ICs 0 and 1 are on the Turbo PMAC2 itself or on Acc-2E 3U-format stack boards. 
Servo ICs 2 – 9 are on Acc-24x2 or Acc-51E boards. 
Channels 1 – 4 on odd-numbered Servo ICs are Channels 5 – 8 on the dual-IC boards. 
MACRO IC 0 (M0) provides the two pulse channels on the “handwheel port.” 

Feedback Addresses: Ixx03, Ixx04 
Ixx03 tells Turbo PMAC where to look to get its position-loop feedback.  Whether real or simulated 
feedback is used, this location should be that of a processed encoder counter in Turbo PMAC’s encoder 
conversion table.  In a typical setup, Motor xx on Turbo PMAC will use the “xth” entry of the conversion 
table, with addresses $003501 to $0035C0.  These are the default values for Ixx03. 

Ixx04 tells Turbo PMAC where to look to get its velocity-loop feedback.  For the simulated feedback, this 
should be set to the same address as Ixx03 for each motor. 

Output (Frequency) Limit: Ixx69 
Ixx69 controls the maximum pulse frequency for a given PFMCLK frequency.  At the maximum Ixx69 
value of 32,767, the maximum pulse frequency would be one-half of PFMCLK.  However, because the 
shortest pulse cycle is two clock cycles on and two clock cycles off, the maximum pulse frequency can be 
25% of the PFMCLK frequency.  The equation for Ixx69 is: 

536,65*
)MHz,kHz(PFMCLK

)MHz,kHz(MaxFreq
69Ixx =  

The maximum value of Ixx69 is 25% of 65,536, or 16,384.  If Ixx69 is set higher than this value, and the 
value written to the PFM register exceeds 16,384, the pulse-generating circuitry will drop pulses and the 
frequency will fall. 

For example, with PFMCLK at the default of 9.83 MHz, and a desired maximum frequency of 500 kHz, 
Ixx69 = (0.5 MHz / 9.83 MHz) * 65,536 = 3,333. 

Parameters to Set Up Motor Servo Gains 
If using real feedback sensors, the motor should be tuned as a normal servo motor would be tuned.  If 
feeding the pulse train back into the encoder counter to create a fully electronic loop, the loop response is 
predictable, and the tuning gains can be set by formula as explained here.  In either case, the control loop 
appears to Turbo PMAC to act as a velocity-mode servo drive. 

To create a closed-loop position response with a natural frequency of 25 Hz and a damping ratio of 1 
(suitable for almost all systems), use the gain settings as calculated in the following sections. 
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Proportional Gain:  Ixx30 
The proportional gain term Ixx30 is set according to the equation: 

)MHz(PFMCLK*08Ixx

000,660
30Ixx =  

For example, with PFMCLK at the default of 9.83 MHz, and Ixx08 at the default of 96, Ixx30 = 660,000 / 
(96 * 9.83) = 700. 

Derivative Gain: Ixx31 
The derivative gain term Ixx31 is set to zero, because the loop behaves like a velocity-loop servo drive, 
and there is no need to have the Turbo PMAC add damping. 

Velocity Feedforward Gain: Ixx32 
The velocity feedforward gain term Ixx32 is set according to the equation: 

)kHz(ServoFreq*666032Ixx =  

where ServoFreq is the frequency of the servo interrupt as established by I7m00, I7m01, and I7m02 (or 
I6800, I6801, and I6802 on a Turbo PMAC2 Ultralite).  For example, with ServoFreq at the default of 
2.26 kHz (I7m00=6527, I7m01=0, I7m02=3), Ixx32 = 6660 * 2.26 = 15,050. 

If you set Ixx30 differently from what its above formula dictates, Ixx32 should be changed from the value 
its above formula dictates in inverse proportion to the change in Ixx30.  For instance, if Ixx30 is half of 
what is calculated above, Ixx32 should be twice what is calculated above. 

Integral Gain and Mode: Ixx33, Ixx34 
The integral gain term Ixx33 typically is set to zero because there are no offsets or disturbances to the 
digital electronic loop.  Some people will use integral gain to force zero steady-state errors, even when 
other gains are not well set. 

Integration mode Ixx34 is irrelevant if Ixx33 is set to zero.  If Ixx33 is used, setting Ixx34 to 1 turns on 
the integral gain only when the commanded velocity is zero; setting Ixx34 to 0 turns it on all of the time. 

Acceleration Feedforward Gain: Ixx35 
The acceleration feedforward gain term Ixx35 typically is set to zero, because the electronic loop has no 
inertia to overcome.  However, some users will want to use Ixx35 to compensate for the small time delays 
created by the addition process in pulse generation that will cause small following errors when the 
velocity is changing.  For a given servo update time, an optimum Ixx35 value can be found that virtually 
eliminates errors at all accelerations. 

Notch Filter Parameters: Ixx36 – Ixx39 
Notch filter parameters Ixx36 to Ixx39 are set to zero in the open-loop case, because the electronic loop 
itself has no resonance, even if the mechanical system does. 

Testing the Setup 
Preparing for the Test 
With an open-loop system, you can test much of the initial operation of the setup without attaching 
anything to the Turbo PMAC, because the loop operates entirely within Turbo PMAC.  To do this, you 
will have to disable your position limits by setting bit 17 of Ixx24 to 1.  If no other bits of Ixx24 were set 
to 1, this would mean setting Ixx24 to $20000. 

The initial test should be simple monitoring of motor position and velocity as commands are given to the 
motor.  The position-reporting window in the PMAC Executive program provides a very convenient way 
to monitor this.  Select the window option that displays position, velocity, and following error for the 
motor you are testing.  Specify the units of the reported position and velocity (counts per second for 
velocity equals Hertz). 
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Executing the Open-Loop Test 
First, use the “O” (open-loop output) command to verify the operation of the frequency generator.  This 
command simply places a value proportional to the magnitude of the command into the output register.  
This should generate a constant frequency output from the pulse generator that shows up as a constantly 
changing position and a steady non-zero (for non-zero commands) velocity in the reporting window.  Do 
not worry about exact values now; just see if a change can be created.  An O10 command should create a 
positive velocity and a position counting in the positive direction; an O-10 command should create a 
negative velocity and a position counting in the negative direction. 

Troubleshooting the Open-Loop Test 
If this result is not received, look at the following: 
1. Use the Why Am I Not Moving? screen in the Executive program to see if there is some reason Turbo 

PMAC firmware is not permitting the command.  For instance, the overtravel limit inputs may need 
to be held low, or the limit function disabled with Ixx24. 

2. If there is an oscilloscope or frequency counter, see if a pulse train is being received on the output pin.  
This will help to isolate the problem.  If the pulse train is not received with a non-zero O command, 
and no pulse train with an O0 command, pulses are being generated but not feeding back properly.  If 
there is no pulse train, pulses are not being generated properly. 

3. Assign an M-variable to the output command register pointed to by Ixx02, double-checking to be sure 
that that this address is one of the Output Command C registers that can drive a PFM circuit.  For 
example, define M102->Y:$078004,8,16,S to look at the Output Command Register 1C.  Now 
monitor the M-variable in the Executive program’s Watch window or in the Terminal window as O 
commands are being issued.  The value should change.  The reported value should be equal to Ixx69 
* (O-command magnitude) / 100.   

Note: 
The command register is really a 24-bit register.  By assigning the M-variable to 
the top 16 bits only, the reported value is in the units of the Ixx69 limit.   

If changes in the reported M-variable are not being received, recheck Ixx02 and the Why Am I Not 
Moving? window.  If changes are being received here, next check variable I7mn6 for the machine 
interface channel n that is being used to make sure the pulse and direction signals are being permitted 
to be output. 

4. To check the feedback path, first look at I7mn0 for the machine interface channel n being used.  It 
should be set to 8 to take the internal pulse and direction signal into encoder counter n, or to 0 or 4 for 
external pulse and direction.  Next, look at the setup of the Encoder Conversion Table under the 
Configure menu of the Executive program.  It should contain an entry specifying the quadrature 
conversion of the address of the encoder channel (listed above) that you are using, possibly with 1/T 
interpolation, but preferably without.  Check the actual hexadecimal address value (e.g. $78000 for 
Servo IC 0 Encoder 1, $78008 for Servo IC 0 Encoder 2).  Note the address of the result register in 
the table (e.g. $003501 for the first entry). 

5. Now check Ixx03 and Ixx04.  They should contain the address of the result register from the 
conversion table that was just noted above.  This tells the motor to use the processed value in the 
conversion table as its feedback. 

Once the presence of a pulse train and its feedback into the encoder counter and the motor position 
registers have been verified, check to see if the correct frequency range has been reached.  Issue an O100 
command.  Check the frequency by looking at the reported velocity in the window, and/or by examining 
the output pulse train on an oscilloscope or frequency counter.  Check the frequency at several other 
positive and negative command values (e.g. O50, O-50, O-100) so that the frequency is proportional to 
the command and covers the range needed. 
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If not getting the proper frequency range, double check the setting of I7m03 that sets the PFMCLK 
frequency.  Also check the value of Ixx69 that determines the maximum frequency (O100 frequency) at 
this PFMCLK frequency. 

Executing the Closed-Loop Test 
Next, close the loop with a J/ command.  The reported position should hold steady, and the reported 
velocity should be zero.  Set up yotheur jogging I-variables Ixx19 to Ixx22 to get the speeds and 
accelerations needed.  Issue a J+ command; count up at the rate specified by Ixx22 (watch the units).  
Issue a J- command; count down at this same rate. 

Now that what PMAC considers to be closed-loop moves are being executed, the servo loop gain 
parameters are important.  The easiest way to monitor performance is with the position window in the 
PMAC Executive Program, configured to display position, velocity, and following error for the current 
motor.  More detailed analysis can be done with the data gathering plots. 

Troubleshooting the Closed-Loop Test 
When troubleshooting these jogging moves, it is important to note what PMAC thinks the motor is doing 
based on the pulse feedback compared to what the motor is actually doing.  For example, if the motor has 
stopped, but you see through the position window that PMAC keeps counting position, the motor has 
probably stalled.  Possibilities here include excessive velocity command, excessive load, and resonance 
problems.  However, if PMAC is also reporting a stop, something in the PMAC simulated loop has failed, 
probably causing a shutdown on excessive following error.  The main possibilities here are values set too 
low for Ixx30 proportional gain, Ixx32 velocity feedforward, or Ixx69 output limit. 
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SETTING UP TURBO PMAC-BASED COMMUTATION AND/OR 
CURRENT LOOP 
This section provides detailed instructions for the step-by-step manual setup of motor phase commutation 
and/or digital current-loop closure within the Turbo PMAC.  Few users will do these steps manually; 
most will use the automated procedures of the Turbo Setup program on the PC, even for the setup of the 
first unit.  The instructions in this section are for the user who wants a full understanding of the Turbo 
PMAC algorithms and how they are set up for a particular application. 

Beginning Setup of Commutation 
If Turbo PMAC is to perform the commutation of a motor, it must do more than simply close the 
position/velocity-loop servo for the motor.  Several parameters must be set up correctly to configure the 
commutation. 

The first steps in setting up the commutation are common whether Turbo PMAC is performing the current 
loop closure (direct PWM output mode) or not (sine-wave output mode).  These steps are described in this 
section.  The next steps differ based on which mode is used; these are described in the next two sections, 
only one of which is used for a particular motor.  Finally, the last steps in the setup of commutation are 
again common to the two modes of operation; these are described in the following section. 

Commutation Enable: Ixx01 
If Turbo PMAC is performing the commutation for Motor xx using a directly addressed (not over 
MACRO) Servo IC encoder register, Ixx01 must be set to 1 to enable the commutation and use an X-
register for commutation feedback (as addressed by Ixx83).  If Turbo PMAC is performing the 
commutation for Motor xx using a Servo IC on a MACRO Station, Ixx03 must be set to 3 to enable the 
commutation and use a Y-register for commutation feedback.  (If Turbo PMAC is performing the digital 
current loop closure, it must also perform the phase commutation for the motor.) 

Note:  

Direct PWM control of brush motors with digital current loop utilizes Turbo 
PMAC’s commutation algorithms even though the motor does not require 
electronic commutation; Ixx01 must be set to 1 or 3 for this case. 

Commutation Cycle Size: Ixx70 & Ixx71 
Ixx70 and Ixx71 define the size of the commutation cycle (electrical cycle).  The cycle is equal to Ixx71 
divided by Ixx70, expressed in encoder counts (after decode).  Ixx70 and Ixx71 must both be integers, but 
the ratio Ixx71/Ixx70 does not have to be an integer.  On a rotary motor, typically Ixx71 is set to the 
number of counts per mechanical revolution, and Ixx70 is set to the number of pole-pairs (half of the 
number of poles) for the motor, which is equal to the number of commutation cycles per mechanical 
revolution. 

When commutating across the MACRO ring with the Type 1 protocol used by Delta Tau MACRO 
products, the standard position feedback reported in Register 0 is in units of 1/32 count.  If this is used as 
the commutation position feedback, as specified by Ixx83, the units of Ixx71/Ixx70 must also be in 1/32 
of a count.  For example, if a 4-pole (2-electrical-cycle) motor has a 2000-line (8000-count) encoder, 
instead of setting Ixx70 to 2 and Ixx71 to 8000, Ixx70 should be set to 2 and Ixx71 should be set to 
256,000. 

When performing direct PWM control of brush motors, the commutation algorithm must be fooled to 
create DC output instead of its usual AC output.  This is best done by setting Ixx70 and Ixx71 to 0. 
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Commutation Feedback Address: Ixx83 
Ixx83 specifies the address of the register used for the commutation position feedback.  The default 
values of Ixx83 use the encoder register for the machine interface channel usually assigned to the motor.  
Ixx83 seldom needs to be changed from the default value for PWM applications.  When using on-board 
encoder counter, these are X-registers, so Ixx01 must be set to 1, not 3, to use these.  Typically, the values 
used are: 
PMAC-Style Servo IC Commutation Position Feedback Addresses (X-registers) 

IC# - Chan# 0 - 1 0 - 2 0 - 3 0 - 4 1 - 1 1 - 2 1 - 3 1 - 4 
Ixx83 $078001 $078005 $078009 $07800D $078101 $078105 $078109 $07810D 
IC# - Chan# 2 - 1 2 - 2 2 - 3 2 - 4 3 - 1 3 - 2 3 - 3 3 - 4 
Ixx83 $078201 $078205 $078209 $07820D $078301 $078305 $078309 $07830D 
IC# - Chan# 4 - 1 4 - 2 4 - 3 4 - 4 5 - 1 5 - 2 5 - 3 5 - 4 
Ixx83 $079201 $079205 $079209 $07920D $079301 $079305 $079309 $07930D 
IC# - Chan# 6 - 1 6 - 2 6 - 3 6 - 4 7 - 1 7 - 2 7 - 3 7 - 4 
Ixx83 $07A201 $07A205 $07A209 $07A20D $07A301 $07A305 $07A309 $07A30D 
IC# - Chan# 8 - 1 8 - 2 8 - 3 8 - 4 9 - 1 9 - 2 9 - 3 9 - 4 
Ixx83 $07B201 $07B205 $07B209 $07B20D $07B301 $07B305 $07B309 $07B30D 

Servo ICs 0 and 1 are on the Turbo PMAC itself. 
Servo ICs 2 – 9 are on Acc-24P/V or Acc-51P boards. 
Channels 1 – 4 on odd-numbered Servo ICs are Channels 5 – 8 on the boards. 

PMAC2-Style Servo IC Commutation Position Feedback Addresses (X-registers) 
IC# - Chan# 0 - 1 0 - 2 0 - 3 0 - 4 1 - 1 1 - 2 1 - 3 1 - 4 
Ixx83 $078001 $078009 $078011 $078019 $078101 $078109 $078111 $078119 
IC# - Chan# 2 - 1 2 - 2 2 - 3 2 - 4 3 - 1 3 - 2 3 - 3 3 - 4 
Ixx83 $078201 $078209 $078211 $078219 $078301 $078309 $078311 $078319 
IC# - Chan# 4 - 1 4 - 2 4 - 3 4 - 4 5 - 1 5 - 2 5 - 3 5 - 4 
Ixx83 $079201 $079209 $079211 $079219 $079301 $079309 $079311 $079319 
IC# - Chan# 6 - 1 6 - 2 6 - 3 6 - 4 7 - 1 7 - 2 7 - 3 7 - 4 
Ixx83 $07A201 $07A209 $07A211 $07A219 $07A301 $07A309 $07A311 $07A319 
IC# - Chan# 8 - 1 8 - 2 8 - 3 8 - 4 9 - 1 9 - 2 9 - 3 9 - 4 
Ixx83 $07B201 $07B209 $07B211 $07B219 $07B301 $07B309 $07B311 $07B319 

Servo ICs 0 and 1 are on the Turbo PMAC2 itself or on Acc-2E 3U-format stack boards. 
Servo ICs 2 – 9 are on Acc-24x2 or Acc-51E boards. 
Channels 1 – 4 on odd-numbered Servo ICs are Channels 5 – 8 on dual-Servo-IC boards. 

When performing commutation over the MACRO ring, Ixx83 points to the position feedback register 
(Register 0) for the node used.  These are Y-registers, so Ixx01 must be set to 3, not 1, to use these.  The 
values used in the MACRO Type 1 protocol expected by Delta Tau MACRO products are: 
MACRO Node Commutation Position Feedback Addresses (Y-registers) 

IC# - Node# 0 - 0 0 - 1 0 - 4 0 - 5 0 - 8 0 - 9 0 - 12 0 - 13 
Ixx83 $078420 $078424 $078428 $07842C $078430 $078434 $078438 $07843C 
IC# - Node# 1 - 0 1 - 1 1 - 4 1 - 5 1 - 8 1 - 9 1 - 12 1 - 13 
Ixx83 $079420 $079424 $079428 $07942C $079430 $079434 $079438 $07943C 
IC# - Node# 2 - 0 2 - 1 2 - 4 2 - 5 2 - 8 2 - 9 2 - 12 2 - 13 
Ixx83 $07A420 $07A424 $07A428 $07A42C $07A430 $07A434 $07A438 $07A43C 
IC# - Node# 3 - 0 3 - 1 3 - 4 3 - 5 3 - 8 3 - 9 3 - 12 3 - 13 
Ixx83 $07B420 $07B424 $07B428 $07B42C $07B430 $07B434 $07B438 $07B43C 

If using the older Type 0 MACRO protocol, add 3 to the value shown in the above table (e.g. $078420 
becomes $078423). 
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Current Loop in Turbo PMAC or Not 
Turbo PMAC can perform commutation for a motor with or without closing the current loop for the 
motor phases.  If the current loops are closed in the Turbo PMAC, the outputs from Turbo PMAC are 
phase voltage commands, usually represented as pulse-width-modulated (PWM) digital outputs.  This 
technique is called direct PWM control.  If the current loops are not closed in the Turbo PMAC, the 
outputs from Turbo PMAC are phase current commands, usually represented as +/-10V analog voltage 
signals.  This technique is called sine-wave output control. 

Ixx82 controls which mode of operation is used.  If Ixx82 is greater than zero, Turbo PMAC will close 
the current loops for Motor xx, and Ixx82 specifies the address of the current feedback for the motor.  
Setup for this mode is covered in the next section, Setting Up for Direct PWM Control. 

If Ixx82 is set to 0, Turbo PMAC will not close the current loops for Motor xx.  Setup for this mode is 
covered in the following section, Setting Up for Sine-Wave Output Control. 

Setting Up for Direct PWM Control 
This section explains how to set up Turbo PMAC for direct PWM control of amplifiers.  In this mode, 
Turbo PMAC performs all of the control tasks for the motor, including commutation and digital current 
loop closure.  The amplifier performs only the power conversion task.  In this mode, Turbo PMAC 
outputs PWM voltage commands for each phase of the motor.  If not using Turbo PMAC to perform this 
task for any of the motors, skip this section.  Simply make sure that Ixx82 is set to 0 for all of the 
activated motors, so Turbo PMAC will not try to close the current loop for them. 

Direct PWM control can be performed only using PMAC2-style Servo ICs, either directly commanded 
from the CPU, or over the MACRO ring.  It is possible, but rare, to do this control through accessory 
boards when the base controller is a Turbo PMAC. 

Introduction 
In this mode, the current control loop is closed by using digital computation operating on numerical 
values in registers rather than by using analog processing operating on voltage levels with op-amps.  The 
digital techniques bring many advantages: there is no need for pot tweaking or personality modules; there 
is no drift over temperature or time; computer analysis and auto-tuning are possible; gain values are easily 
stored for backup and copying onto other systems; and adaptive techniques are possible. 

When performing digital current loop closure on the Turbo PMAC, several hardware and software 
features must be set up properly to utilize the digital current loop and direct PWM outputs correctly.  The 
following section details how to perform this setup manually.  However, typically, these steps are 
automated through the use of the “Turbo Setup” program running on a PC and communicating with the 
Turbo PMAC. 

Note: 

The instructions given in this section are for the first-time setup with an otherwise 
unknown interface.  For a given interface to the drive, motor and feedback device, 
many parts of the setup will be taken from a list, and will not have to be tested, or 
tested as thoroughly as described in this section.  A list of configuration-specific 
settings should come with the manual for each particular interface or drive.  
Subsequent versions of the same setup should be even easier. 

Digital Current Loop Principle of Operation 
Traditionally, motor phase current loops have been closed in analog fashion, with op-amp circuits 
creating phase voltage commands from the difference between commanded and actual phase current 
signal levels.  These analog phase voltage commands are converted to PWM format through analog 
comparison to a saw tooth waveform. 
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Turbo PMAC permits digital closure of the motor current loops, mathematically creating phase voltage 
commands from numerical registers representing commanded and actual current values.  These numerical 
phase voltage commands are converted to PWM format through digital comparison to an up/down 
counter that creates a digital saw tooth waveform.  The analog current measurements must be converted 
to digital form with ADCs before the loop can be closed. 

PMAC2 Digital PWM Generation (per phase)
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By directly commanding the on-off states of the power transistors in this manner, Turbo PMAC 
minimizes the calculation and transport delays in the servo loop.  This permits the use of higher gains, 
which in turn permit greater stiffness, acceleration, and disturbance rejection.  Also, digital techniques 
permit the use of mathematical transformations of the current-loop data, turning measured AC quantities 
into DC quantities for loop closure.  This technique, explained in the next section, significantly improves 
high-speed performance by minimizing high-frequency problems. 

Frames of Reference 
A very important advantage of the digital current loop is its ability to close the current loops in the field 
frame.  To understand this advantage, some basic theoretical background is required. 

In a motor, there are three frames of reference that are important.  The first is the stator frame” which is 
fixed on the non-moving part of the motor, called the stator.  In a brushless motor, the motor armature 
windings are on the stator, so they are fixed in the stator frame. 

The second frame is the rotor frame, which is referenced to the mechanics of the moving part of the 
motor, called the rotor.  This frame, of course, rotates with respect to the stator.  For linear brushless 
motors, this is actually a translation, but because it is cyclic, we can think of it as a rotation. 

The third frame is the field frame which is referenced to the magnetic field orientation of the rotor.  In a 
synchronous motor such as a permanent-magnet brushless motor, the field is fixed on the rotor, so the 
field frame is the same as the rotor frame.  In an asynchronous motor such as an induction motor, the field 
slips with respect to the rotor, so the field frame and rotor frame are separate. 

Working in the Field Frame 
The physics of motor operation are best understood in the field frame.  A current vector in the stator that 
is perpendicular to the rotor field (that is, current in the stator that produces a magnetic field perpendicular 
to the rotor magnetic field) produces torque.  This component of the stator current is known as quadrature 
current.  The output of the position/velocity loop servo algorithm is the magnitude of the commanded 
quadrature current.  For diagnostic purposes on a Turbo PMAC, an “O” command can be used to set a 
fixed quadrature current command. 
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A current vector in the stator that is parallel to the rotor field induces current in the rotor that changes the 
magnetic field strength of the rotor (when the stator and rotor field are rotating relative to each other).  
This component of the stator current is known as direct current.  For an induction motor, this is required 
to create a rotor magnetic field.  For a permanent-magnet brushless motor, the rotor magnets always 
produce a field, so direct current is not required, although it can be used to modify the magnetic field 
strength.  On Turbo PMAC, parameter Ixx77 for Motor xx determines the magnitude of the direct current. 

Analog Loops in the Stator Frame 
In an amplifier with an analog current loop, the closure of the loops on the stator windings must be closed 
in the stator frame, because the current measurements are in the stator frame, and analog circuitry has no 
practical way to transform these.  In such a system, the current commands must be transformed from the 
field frame in which they are calculated to the stator frame, and converted to voltage levels representing 
the individual stator phase current commands.  These are compared to other voltage levels representing 
the actual stator phase current measurements. 

As the motor is rotating, and/or the field is slipping, these current values, command and actual, are AC 
quantities.  Overall loop gain, and therefore system performance, is reduced at high frequencies (high 
speeds).  The back EMF phase voltage, which acts as a disturbance to the current loop, is also an AC 
quantity.  The current loop integral gain or lag filter, which is supposed to overcome disturbances, falls 
well behind at high frequencies. 

PMAC / PMAC2 Commutation with Analog Current Loop
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Digital Loops in the Field Frame 
In a system with a digital current loop, it is possible to close the current loops in the field frame (not all 
such systems do, however).  Instead of the current commands being transformed from field frame to stator 
frame before the loop is closed, the actual current measurements are transformed from stator frame to 
field frame.  In the field frame, a direct-current loop is closed, and a quadrature current loop is closed.  
This produces a direct-voltage command and a quadrature-voltage command; these are transformed back 
into the stator frame to become phase-voltage commands, which are implemented as PWM values. 

The direct and quadrature current values are DC quantities, even as the motor is rotating and the field is 
slipping.  Therefore, the high-frequency limitations of the servo loop are irrelevant.  This provides 
significantly improved high-speed performance from identical motors and power electronics. 
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Turbo PMAC has a PI (proportional-integral) digital current loop.  There is only one set of gains, which 
serves for both the direct current loop and the quadrature current loop.  Tuning is best done on the direct 
current loop, because this will generate no torque, and therefore no movement.  The current-loop auto-
tuner in the PMAC Executive program uses the direct current loop to tune.  This is valid even for 
permanent-magnet brushless motors in which no direct current will be used in the actual application.  
Current loop performance is not load-dependent, so the motor does not need to be attached to the load 
during the tuning process.  For position/velocity loop tuning, the load does need to be attached. 

PMAC / PMAC2 Commutation with Digital Current Loop
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Hardware Setup 
The connection between Turbo PMAC and the direct PWM digital amplifier is made through a Mini-D 36-
pin connector with a standard pin-out defined by Delta Tau.  This connector contains the PWM command 
signals, the ADC feedback signals, and the amplifier-enable and fault handshake signals.  Usually, this 
connector is found on an Acc-8F breakout board for board-level Turbo PMAC2s, on Acc-24E2 PWM axis-
interface boards for the UMAC and on the front panel of a QMAC with the PWM option ordered. 

Position feedback, from an encoder or possibly a resolver, typically comes directly back to the Turbo 
PMAC; there is no need for position feedback in the drive in this mode of operation. 

For a three-phase motor, whether delta-wound or (more commonly) Y-wound, each of the three phase 
leads of the motor is connected to one of the phase outputs of the amplifier.  Exchanging any two of the 
three leads switches the direction sense of the outputs; proper matching of this to feedback will be 
evaluated in a setup test.  Rotating the three motor leads with respect to the amplifier outputs changes the 
commutation cycle’s zero point with respect to any absolute sensor’s zero point. 

For a DC brush motor driven from a 3-phase power block amplifier, the two motor leads must be 
connected between the first and third amplifier outputs, corresponding to the A and C outputs from the 
Turbo PMAC. 

Turbo PMAC Parameter Setup 
Much of the Turbo PMAC interface hardware is software-configurable through I-variables.  This section 
provides basic information on each of the I-variables that is important in this type of application.  There is 
a detailed description of each I-variable in the Software Reference Manual. 
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Parameters to Set up Global and Multi-Channel Hardware Signals 
PWM Frequency Control: I7m00, MI900, MI906 
If you are driving the axes directly (not over the MACRO ring), set Turbo PMAC I-variable I7m00 to 
define the PWM frequency for the 4 channels on PMAC2-style Servo IC m according to the equation: 
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If the axes are being driven from a MACRO Station, MI900 on the Station controls the PWM frequency 
of the first four channels on the Station according to the same equation; MI906 does the same for the 
second four channels on the Station. 

Set the frequency within the specified range for the drives controlled by Turbo PMAC.  Too high a 
frequency can lead to excessive drive heating due to switching losses; too low a frequency can lead to 
lack of responsiveness, excess acoustic noise, possible physical vibration, and excessive motor heating 
due to high current ripple.   

The PWM frequency for any set of channels must have a definite relationship to the phase clock 
frequency.  If the channels are driven by the same Servo IC that is generating the phase and servo clock, 
this relationship is set automatically.  If the PWM frequency for channels on another Servo IC is the 
same, this relationship also will hold automatically.   

The PWM frequency on other channels does not have to be the same as the frequency of those channels 
on the Servo IC generating the phase clock, but they do have to have a synchronous relationship with the 
phase clock.  The following relationship must hold for proper direct-PWM operation of other channels: 

}Integer{
PhaseFreq

PWMFreq
*2 =  

If a Servo IC is used to generate the Phase and Servo clocks, I7m00 for that IC also sets the frequency of 
the MaxPhase clock to twice the PWM frequency for the channels on that IC.  (On a Turbo PMAC2 
Ultralite board, I6800 for MACRO IC 0 determines the MaxPhase frequency.)  The MaxPhase clock is 
the highest frequency at which Turbo PMAC’s phase update tasks, which include phase commutation and 
digital current loop closure, can operate.  Note that any change to this I7m00 automatically changes the 
Phase and Servo clock frequencies. 

Hardware Clock Frequency Control: I7m03, MI903, MI907 
I7m03 determines the frequency of four hardware clock signals used for the machine interface channels 
on Servo IC m.  Probably these can be left at the default values.  The four hardware clock signals are 
SCLK (encoder sample clock), PFMCLK (pulse frequency modulator clock, DAC_CLK (digital-to-
analog converter clock), and ADCCLK (analog-to-digital converter clock).   

If the axes are being driven from a MACRO Station, MI903 on the Station controls the hardware clock 
frequencies of the first four channels on the Station according to the same equations; MI907 does the 
same for the second four channels on the Station. 

Only the ADCCLK signal is used directly with the digital current loop, to control the frequency of the 
serial data stream from the current-loop ADCs.  The ADC clock frequency must be at least 96 times 
higher than the PWM frequency, but it must be within the capability of the serial ADCs.  Refer to the 
I7m03 description for detailed information on setting these variables. 

The encoder SCLK frequency should be at least 20% greater than the maximum count (edge) rate that is 
possible for the encoder on any axis.  Higher SCLK frequencies than this minimum may be used, but 
these make the digital delay anti-noise filter less effective. 
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PWM Deadtime Control: I7m04, MI904, MI908 
I7m04 determines the PWM deadtime between top and bottom signals for the machine interface channels 
on Servo IC m.  I7m04 has a range of 0 to 255, and the deadtime is 0.135 µsec times the I-variable value.  
The deadtime should not be set smaller than the recommended minimum for the drive, or excessive drive 
heating could occur.  Too large a deadtime value can cause unresponsive performance.  The default value of 
15, which produces a deadtime of 2.0 µsec, is large enough to protect most drives, and small enough not to 
create unresponsive performance unless PWM frequencies are extremely high.  Some high-power drives 
operating from a 480VAC supply will require about 3 µsec of deadtime, for an I7m04 setting of about 23. 

If the axes are being driven from a MACRO Station, MI904 on the Station controls the hardware clock 
frequencies of the first four channels on the Station according to the same equations; MI908 does the 
same for the second four channels on the Station. 

ADC Strobe Word: I7m06, MI940, MI941 
I7m06 defines the 24-bit strobe word for all of the A/D converters interfaced to the DSPGATE1 PMAC2-
style Servo IC.  This word is shifted out, MSB first, each phase cycle to start the conversion of the A/D 
converters.  The default value of $FFFFFE is suitable for the ADCs in most direct-PWM amplifiers. 

The D revision of the DSPGATE1 IC, introduced in 2002, uses bit 0 (the LSB) of this word as a mode-
control bit for formatting the serial data from the ADCs.  If this bit is set to 1, the IC can accept up to four 
bits of header data on the data stream and roll it over to the lowest bits of the ADC register where 
numerical data is not expected.  The ADCs in Delta Tau’s Geo Direct PWM drives, introduced late in 
2002, have this header data, and so require this bit to be set. 

When using the Turbo PMAC with the Geo Direct PWM amplifiers, the I7m06 ADC strobe word in the 
Servo IC must be set to $1FFFFF, setting this mode-control bit to 1, and expecting only 1 header bit. 

If the axes are being driven from a MACRO Station, MI940 on the Station controls the ADC strobe word 
for the first four channels on the Station in this same way; MI941 does the same for the second four 
channels on the Station. 

Parameters to Set Up Per-Channel Hardware Signals 
For each machine interface channel n (n = 1 to 4) on Servo IC m used for PWM outputs, a few channel-
specific I-variables must be set up properly.  On a Turbo PMAC system itself, these variables are named 
as I7mnp, where m specifies the Servo IC number, n specifies the channel number, and p specifies the 
parameter number.  On a MACRO Station these variables are named as “node-specific” MI-variables 
MI91p (addressed from the Turbo PMAC as MS{node},MI91p), where p is the parameter number.  

Output Mode Control: I7mn6, MI916 
I7mn6 (node-specific variable MI916 on a MACRO Station) must be set to 0 to specify that all 3 outputs 
A, B, and C be in PWM format for a 3-phase motor. 

Parameters to Set Up Motor Operation 
Several I-variables must be set up for each Motor xx to enable and configure the digital current loop for 
that motor.  Of course, Ixx00 must be set to 1 for any active motor, regardless of whether digital current 
loop is used for that motor or not.   

Command Output Address: Ixx02 
Ixx02 instructs Turbo PMAC where to place its output commands for Motor xx by specifying the address.  
The default values of Ixx02 for Turbo PMACs with on-board PMAC2-style Servo ICs use the PWM 
registers A, B, and C for the machine interface channel usually assigned to the motor.  (PMAC-style 
Servo ICs cannot be used for direct-PWM control.)  Ixx02 seldom needs to be changed from the default 
value for PWM applications.  The actual address specified is that of the PWM A register; Turbo PMAC 
then writes to the B and C registers automatically as well.  Typically, the values used are: 
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PWM Local Command Output Addresses (Y-registers) 
IC# - Chan# 0 - 1 0 - 2 0 - 3 0 - 4 1 - 1 1 - 2 1 - 3 1 - 4 
Ixx02 $078002 $07800A $078012 $07801A $078102 $07810A $078112 $07811A 
IC# - Chan# 2 - 1 2 - 2 2 - 3 2 - 4 3 - 1 3 - 2 3 - 3 3 - 4 
Ixx02 $078202 $07820A $078212 $07821A $078302 $07830A $078312 $07831A 
IC# - Chan# 4 - 1 4 - 2 4 - 3 4 - 4 5 - 1 5 - 2 5 - 3 5 - 4 
Ixx02 $079202 $07920A $079212 $07921A $079302 $07930A $079312 $07931A 
IC# - Chan# 6 - 1 6 - 2 6 - 3 6 - 4 7 - 1 7 - 2 7 - 3 7 - 4 
Ixx02 $07A202 $07A20A $07A212 $07A21A $07A302 $07A30A $07A312 $07A31A 
IC# - Chan# 8 - 1 8 - 2 8 - 3 8 - 4 9 - 1 9 - 2 9 - 3 9 - 4 
Ixx02 $07B202 $07B20A $07B212 $07B21A $07B302 $07B30A $07B312 $07B31A 

Servo ICs 0 and 1 are on the Turbo PMAC2 itself or on Acc-2E 3U-format stack boards. 
Servo ICs 2 – 9 are on Acc-24x2 or Acc-51E boards. 
Channels 1 – 4 on odd-numbered Servo ICs are Channels 5 – 8 on dual-Servo-IC boards. 

When performing direct PWM control over the MACRO ring, Ixx02 points to the first (Register 0) of a 
set of three MACRO output registers (0, 1, and 2) for the MACRO IC and the node used.  The values 
used in the MACRO Type 1 protocol expected by Delta Tau MACRO products are: 
PWM MACRO Command Output Addresses (Y-registers) 

IC# - Node# 0 - 0 0 - 1 0 - 4 0 - 5 0 - 8 0 - 9 0 - 12 0 - 13 
Ixx02 $078420 $078424 $078428 $07842C $078430 $078434 $078438 $07843C 
IC# - Node# 1 - 0 1 - 1 1 - 4 1 - 5 1 - 8 1 - 9 1 - 12 1 - 13 
Ixx02 $079420 $079424 $079428 $07942C $079430 $079434 $079438 $07943C 
IC# - Node# 2 - 0 2 - 1 2 - 4 2 - 5 2 - 8 2 - 9 2 - 12 2 - 13 
Ixx02 $07A420 $07A424 $07A428 $07A42C $07A430 $07A434 $07A438 $07A43C 
IC# - Node# 3 - 0 3 - 1 3 - 4 3 - 5 3 - 8 3 - 9 3 - 12 3 - 13 
Ixx02 $07B420 $07B424 $07B428 $07B42C $07B430 $07B434 $07B438 $07B43C 

If using the older Type 0 MACRO protocol, add 1 to the value shown in the above table (e.g. $078420 
becomes $078421). 
Current Feedback Address: Ixx82 
Ixx82 instructs Turbo PMAC where to look for its current feedback values for Motor xx.  It also acts as 
the variable that tells Turbo PMAC whether or not to perform current-loop closure itself.  If Ixx82=0 (the 
default), Turbo PMAC will not execute the current loop for Motor xx; any current loop must be executed 
in the amplifier.  If Ixx82>0, Turbo PMAC will look at the Y-register whose address is specified by 
Ixx82, and for a multi-phase motor, the next lower addressed register, to get the current feedback 
information for its current loop.   
Usually, the registers specified are the serial ADC shift registers in Turbo PMAC’s Servo IC or the 
matching registers in a MACRO IC that have brought the current information over the ring.  The actual 
address specified is that of the ADC B register; Turbo PMAC then automatically reads from the A 
register as well.  Typically, the values used when commanding the axes directly (not over the MACRO 
ring) are: 
On-Board ADC Current-Feedback Addresses (Y-registers) 

IC# - Chan# 0 - 1 0 - 2 0 - 3 0 - 4 1 - 1 1 - 2 1 - 3 1 - 4 
Ixx82 $078006 $07800E $078016 $07801E $078106 $07810E $078116 $07811E 
IC# - Chan# 2 - 1 2 - 2 2 - 3 2 - 4 3 - 1 3 - 2 3 - 3 3 - 4 
Ixx82 $078206 $07820E $078216 $07821E $078306 $07830E $078316 $07831E 
IC# - Chan# 4 - 1 4 - 2 4 - 3 4 - 4 5 - 1 5 - 2 5 - 3 5 - 4 
Ixx82 $079206 $07920E $079216 $07921E $079306 $07930E $079316 $07931E 
IC# - Chan# 6 - 1 6 - 2 6 - 3 6 - 4 7 - 1 7 - 2 7 - 3 7 - 4 
Ixx82 $07A206 $07A20E $07A216 $07A21E $07A306 $07A30E $07A316 $07A31E 
IC# - Chan# 8 - 1 8 - 2 8 - 3 8 - 4 9 - 1 9 - 2 9 - 3 9 - 4 
Ixx82 $07B206 $07B20E $07B216 $07B21E $07B306 $07B30E $07B316 $07B31E 

Servo ICs 0 and 1 are on the Turbo PMAC2 itself or on Acc-2E 3U-format stack boards. 
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Servo ICs 2 – 9 are on Acc-24x2 or Acc-51E boards. 
Channels 1 – 4 on odd-numbered Servo ICs are Channels 5 – 8 on dual-Servo-IC boards. 

When performing direct PWM control over the MACRO ring, Ixx82 points to the second of a set of two 
MACRO input registers for the MACRO IC and the node used.  Typically, the values used are the same 
whether MACRO Type 0 or Type 1 protocol is employed for the node: 

MACRO Node ADC Current-Feedback Addresses (Y-registers) 
IC# - Node# 0 - 0 0 - 1 0 - 4 0 - 5 0 - 8 0 - 9 0 - 12 0 - 13 
Ixx82 $078422 $078426 $07842A $07842E $078432 $078436 $07843A $07843E 
IC# - Node# 1 - 0 1 - 1 1 - 4 1 - 5 1 - 8 1 - 9 1 - 12 1 - 13 
Ixx82 $079422 $079426 $07942A $07942E $079432 $079436 $07943A $07943E 
IC# - Node# 2 - 0 2 - 1 2 - 4 2 - 5 2 - 8 2 - 9 2 - 12 2 - 13 
Ixx82 $07A422 $07A426 $07A42A $07A42E $07A432 $07A436 $07A43A $07A43E 
IC# - Node# 3 - 0 3 - 1 3 - 4 3 - 5 3 - 8 3 - 9 3 - 12 3 - 13 
Ixx82 $07B422 $07B426 $07B42A $07B42E $07B432 $07B436 $07B43A $07B43E 

If using the older Type 0 MACRO protocol, add 1 to the value shown in the above table (e.g. $078422 
becomes $078423). 

Current Feedback Mask Word: Ixx84 
Ixx84 specifies a mask word to tell Turbo PMAC what bits of the registers specified by Ixx82 are to be 
used in the current-loop algorithm.  This permits the use of ADCs of various resolutions.  It also permits 
use of the rest of the 18-bit ADC shift register for other information, such as fault codes.  Ixx84 is a 24-bit 
value that is combined with the feedback word in a bit-by-bit AND operation.  The default value of 
$FFF000 specifies that the top 12 bits of the feedback words are to be used.  Most direct-PWM amplifiers 
use 12-bit ADCs, so $FFF000 is the appropriate value for these amplifiers. 

PWM Scale Factor: Ixx66 
Ixx66, the PWM Scale Factor, scales the output command values so that they use the PWM circuitry 
effectively.  The result of the current-loop calculations is a fractional value between -1.0 and +1.0.  This 
value is multiplied by Ixx66 before being written to a PWM command register, where it is digitally 
compared to a PWM up/down counter moving between I7m00+1 and -I7m00-2.  To utilize the dynamic 
range of the PWM circuitry well, Ixx66 should be set slightly greater than I7m00.  Typically a value 10% 
greater is used, permitting full-on conditions at maximum command values over about 1/6 of the 
commutation cycle. 

Ixx66 acts as a voltage limit for the motor.  If the amplifier is oversized for the motor, exceeding the 
maximum permitted voltage for the motor, Ixx66 should be set proportionately less than I7m00 to limit 
the maximum possible voltage for the motor.  Since Ixx66 is a gain, the current loop must be tuned or 
retuned after any change. 

Servo Loop Output Limit: Ixx69 
Ixx69 is the limit of the output of the position/velocity servo loop, which is the torque (quadrature) 
current command input to the digital current loop.  As such, it acts as an instantaneous current limit for 
the motor.  Open-loop O-commands are expressed as a percent of Ixx69.   

In most other modes, a value of 32,767 (215-1) for Ixx69 for this parameter is full range.  In 3-phase 
direct-PWM mode, however, the value of 32,767 corresponds to the full-range readings of the Phase A 
and Phase B A/D converters.  The mathematics involved in the transformation from the phase currents to 
the direct and quadrature currents effectively multiplies the phase values by cos(30o), or 0.866.  This 
means that the Ixx69 value corresponding to the full-range ADC reading is 32,767*0.866 = 28,377.  
Therefore, Ixx69 should never be set to a value greater than 28,377 in direct-PWM mode. 
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The amplifier manual should specify the level of current that provides full-range feedback from the 
ADCs.  Then take the instantaneous current limit for the drive or for the motor, whichever is less, and set 
Ixx69 according to the following relationship: 









= 377,28*

urrentFullRangeC

tLimitInstCurren
,377,28min69Ixx  

If the drive outputs analog current readings and the ADCs are on the interface board, the full-range 
current value must be calculated from the volts-per-amp gain of the current sensing in the drive and the 
full-range voltage into the interface board. 

If a non-zero value of Ixx77 magnetization current will be used, for induction motor control or for field 
weakening of a permanent-magnet brushless motor, then Ixx69 should be replaced in the above equation 
by 277Ixx269Ixx + . 

In early testing, it may be desirable to set Ixx69 to an artificially low value to prevent accidental 
overcurrent commands into the motor. 

Continuous Current Limit: Ixx57 
Ixx57 specifies the magnitude of the continuous current limit for the motor/drive system for integrated-
current algorithms for thermal protection.  If Ixx57 is greater than 0, Turbo PMAC uses I2T protection, 
squaring the value of the current before integrating it.  This is appropriate when the most temperature-
sensitive component is resistive in nature (such as the motor windings).  If Ixx57 is less than 0, Turbo 
PMAC uses |I|T protection, just taking the absolute value of the current before integrating it.  This is 
appropriate when the most temperature-sensitive component has an essentially fixed voltage across it, as 
with a fully-on bipolar transistor. 

Usually, it is the continuous current rating of the drive that is used for a motor’s Ixx57.  Even if its 
continuous current rating is somewhat higher than that of the motor, usually its thermal time constant is 
so much shorter that the integrated current parameters are set to protect it first.  Ixx57 is calculated in a 
manner similar to Ixx69: 

377,28*
urrentFullRangeC

tLimitContCurren
57Ixx =  

Integrated Current Limit: Ixx58 
Ixx58 sets the permitted limit of the time-integrated current over the continuous current value.  If the 
time-integrated current exceeds this threshold, Turbo PMAC will kill this axis as it would for an amplifier 
fault.  Typically, this parameter is set by noting the drive specification for time permitted at the 
instantaneous current limit.  If I2T protection is used, this specification is used in the following equation: 

(sec)imePermittedT*)Hz(eRateServoUpdat*
2768,32

257Ixx277Ixx269Ixx
58Ixx

−+
=  

If |I|T protection is used, this specification is used in the following equation: 

(sec)imePermittedT*)Hz(eRateServoUpdat*
768,32

257Ixx277Ixx269Ixx
58Ixx

−+
=  

Refer to the Making an Application Safe section for a more detailed explanation of I2T protection. 

Commutation Phase Angle: Ixx72 
Ixx72 controls the angular relationship between the phases of a multiphase motor.  When Turbo PMAC is 
closing the current loop digitally for Motor xx, the proper setting of this variable is dependent on the 
polarity of the current measurements.   
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If the phase current sensors and ADCs in the amplifier are set up so that a positive PWM voltage 
command for a phase yields a negative current measurement value, Ixx72 must be set to a value less than 
1024: 683 for a 3-phase motor, or 512 for a DC brush motor.  If these are set up so that a positive PWM 
voltage command yields a positive current measurement value, Ixx72 must be set to a value greater than 
1024: 1365 for a 3-phase motor, or 1536 for a DC brush motor.  The testing described below will show 
how to determine the proper polarity. 

The direct-PWM algorithms in the Turbo PMAC are optimized for 3-phase motors and will cause 
significant torque ripple when used with 2- or 4-phase motors.  Delta Tau has created user-written phase 
algorithms for these motors; contact the factory if interested in obtaining these. 

CAUTION 
It is very important to set the value of Ixx72 properly for your system; otherwise 
the current loop will have unstable positive feedback and want to saturate.  This 
could cause damage to the motor, the drive, or both, if overcurrent shutdown 
features do not work properly.  If unsure of the current measurement polarity in 
your drive, consult the Testing PWM and Current Feedback Operation section. 

For commutation with digital current loops, the proper setting of Ixx72 is unrelated to the polarity of the 
encoder counter.  This is different from commutation with an analog current loops (sine-wave control), in 
which the polarity of Ixx72 (less than or greater than 1024) must match the encoder counter polarity.  
With the digital current loop, the polarity of the encoder counter must be set for proper servo operation. 
With the analog current loop, once the Ixx72 polarity match has been made for commutation, the servo 
loop polarity match is guaranteed. 

Special Instructions for Direct-PWM Control of Brush Motors 
A few special settings must be made to use the direct-PWM algorithms for DC brush motors.  The basic 
idea is to trick the commutation algorithm into thinking that the commutation angle is always stuck at 0 
degrees, so current into the A phase is always quadrature (torque-producing) current.  This section 
summarizes what must be done in terms of variable setup; some of these settings have been discussed 
elsewhere as well. 
These instructions assume: 
• The brush motor’s rotor field comes from permanent magnets or a wound field excited by a separate 

means; the field is not controlled by one of the phases of this channel. 
• The two leads of the brush motor’s armature are connected to amplifier phases (half-bridges) that are 

driven by the A and C-phase PWM commands from Turbo PMAC.  The amplifier may have an 
unused B-phase half-bridge, but this does not need to be present. 

Settings that are the same as for permanent-magnet brushless servo motors with an absolute phase reference: 
• Ixx01 = 1 (commutation directly on Turbo PMAC) or Ixx01=3 (commutation over the MACRO ring). 
• Ixx02 should contain the address of the PWM A register for the output channel used or the MACRO 

Node register 0 (these are the defaults), just as for brushless motors. 
• Ixx29 and Ixx79 phase offset parameters should be set to minimize measurement offsets from the A 

and B-phase current feedback circuits, respectively. 
• Ixx61, Ixx62, and Ixx76 current loop gains are set just as for brushless motors.   
• Ixx73 = 0, Ixx74 = 0: These default settings ensure that Turbo PMAC will not try to do a phasing 

search move for the motor.  A failed search could keep Turbo PMAC from enabling this motor. 
• Ixx77 = 0 to command zero direct (field) current. 
• Ixx78 = 0 for zero slip in the commutation calculations. 
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• Ixx82 should contain the address of ADC B register for the feedback channel used (just as for 
brushless motors) when the ADC A register is used for the rotor (armature) current feedback.  The B 
register itself should always contain a zero or near-zero value. 

• Ixx81 > 0: Any non-zero setting here makes Turbo PMAC do a “phasing read” instead of a search 
move for the motor.  This is a dummy read, because whatever is read is forced to zero degrees by the 
settings of Ixx70 and Ixx71, but Turbo PMAC demands that some sort of phase reference be done.  
(Ixx81=1 is fine.) 

• Ixx84 is set just as for brushless motors, specifying which bits the current ADC feedback uses.  
Usually, this is $FFF000 to specify the high 12 bits. 

Special settings for brush motor direct PWM control: 
• Ixx70 = 0: This causes all values for the commutation cycle to be multiplied by 0 to defeat the 

rotation of the commutation vector. 
• Ixx72 = 512 (90oe) if voltage and current numerical polarities are opposite, or1536 (270oe) if they are 

the same.  If the amplifier would use 683 (120oe) for a 3-phase motor, use 512 here; if it would use 
1365 (240oe) for a 3-phase motor, use 1536 here. 

• Ixx96 = 1: This causes Turbo PMAC to clear the integrator periodically for the (non-existent) direct 
current loop, which could slowly charge up due to noise or numerical errors and eventually interfere 
with the real quadrature current loop. 

Settings that do not matter: 
• Ixx71 (commutation cycle size) does not matter because Ixx70 setting of 0 defeats the commutation 

cycle 
• Ixx75 (Offset in the power-on phase reference) does not matter because commutation cycle has been 

defeated.  Leaving this at the default of 0 is fine. 
• Ixx83 (ongoing commutation position feedback address) doesn’t matter, since the commutation has 

been defeated.  Leaving this at the default value is fine. 
• Ixx91 (power-on phase position format) does not matter, because whatever is read for the power-on 

phase position is reduced to zero. 

Testing PWM and Current Feedback Operation 
CAUTION: 

On many motor and drive systems, potentially deadly voltage and current levels 
are present.  Do not attempt to work directly with these high voltage and current 
levels unless you are fully trained on all necessary safety procedures.  Low-level 
signals on Turbo PMAC and interface boards can be accessed much more safely. 

Introduction 
Most of the time in setting up a direct PWM interface, do not execute all of the steps listed in these 
sections (or the Turbo Setup program will do them automatically), but the first time this type of interface 
is set up, or if there are problems, these steps will be of great assistance. 

All of these tests should be done with the motor disconnected from any loads for safety reasons.  All 
settings made as a result of these tests are independent of load properties, so will still be valid when the 
load is connected. 

Before testing any of Turbo PMAC’s software features for digital current loop and direct PWM interface, 
it is important to know whether the hardware interface is working properly.  We will use PMAC’s M-
variables to access the input and output registers directly.  The examples shown here use the suggested M-
variable definitions for Motor 1; for other motors there are equivalent suggested definitions shown in the 
Examples section of the manual. 
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Purpose 
The purpose of this set of tests is to confirm the basic operation of the hardware circuits on PMAC, in the 
drive, and in the motor and to check the proper interrelationships.  Specifically: 
• Confirm operation of encoder inputs and decode 
• Confirm operation of PWM outputs 
• Confirm operation of ADC inputs 
• Confirm correlation between PWM outputs and ADC inputs 
• Determine proper current loop polarity 
• Confirm commutation cycle size 
• Determine proper commutation polarity 

Preparation 
First define the M-variables for the encoder counter, the 3 PWM output registers, the amplifier-enable 
output bit, and the two ADC input registers.  Using the suggested definitions for Motor 1, utilizing Servo 
IC 0, Channel 1, we have: 
M101->X:$078001,0,24,S ; Channel 1 Encoder position register 
M102->Y:$078002,8,16,S ; Channel 1 PWM Phase A command value 
M104->Y:$078003,8,16,S ; Channel 1 PWM Phase B command value 
M107->Y:$078004,8,16,S ; Channel 1 PWM Phase C command value 
M105->Y:$078005,8,16,S ; Channel 1 Phase A ADC input value 
M106->Y:$078006,8,16,S ; Channel 1 Phase B ADC input value 
M114->X:$078005,14 ; Channel 1 Amp Enable command bit 

Note that the ADC values are declared as 16-bit variables even though typically 12-bit ADCs are used; 
this puts the scaling of the variable in the same units as Ixx69, Ixx57, Ixx29, and Ixx79. 

It will be useful to monitor these values in the Watch window of the Executive program, so add the 
variable names to the Watch window, causing the program to repeatedly query Turbo PMAC for the 
values which it will display.  The hardware can then be exercised with on-line commands issued through 
the Terminal window. 
To prepare Turbo PMAC for these tests: 
• Set I100 to 0 to deactivate the motor. 
• Set I101 to 0 to disable commutation (This allows for manual use of these registers.) 
• Make sure that I7000, I7004, I7016, and I7017 are set up properly to provide the PWM signals needed.   
• If the Amplifier Enable bit is 1, set it to zero with the command M114=0. 
• Set Ixx00 and Ixx01 for all other motors to zero. 

Position Feedback and Polarity Test 
If the PWM command values observed in the Watch window are not zero, set them to zero with the 
command  
M102=0 M104=0 M107=0 

The motor should move freely by hand now.  As the motor is turned, monitor the M101 value in the 
Watch window.  Look for the following: 
• It should change as the motor is moved. 
• It should count up in one direction and count down in the other direction. 
• It should provide the expected number of counts in one revolution or linear distance increment. 
• As the motor is returned repeatedly to a reference position, it should report (approximately) the same 

position value each time. 
If these things do not happen, check the encoder/resolver operation, its connection to Turbo PMAC, and 
the Turbo PMAC decode variable I7mn0.  Double-check that the sensor is powered.  Look at the encoder 
waveforms with an oscilloscope. 
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If the positive direction of motion is known, check this here.  If the direction is incorrect, invert it by 
changing I7mn0, usually from 7 to 3, or from 3 to 7.  If it is not known yet which direction sense is 
needed, change it later, but make another change at that time to maintain the proper commutation polarity 
match, usually by exchanging two of the motor phase leads at the drive. 

Note:  

Because I100 has been set to 0, and I103 may not yet have been set properly, any 
change of position will not be reflected in the motor position window. 

PWM Output & ADC Input Connection 
Make sure before applying any PWM commands to the drive and motor in this fashion that the resulting 
current levels are within the continuous current rating of both drive and motor.   

First enable the amp, then apply a very small positive command value to Phase A and a very small 
negative command value to Phase B with the on-line commands  
M114=1 ; Enable amplifier 
M102=I7000/50 M104=-I7000/50 M107=0 ; A pos, B neg, C zero 

This provides a command at 2% of full voltage into the motor, which should be well within the 
continuous current rating of both drive and motor.  It is always a good idea to make the sum of these 
commands equal to zero so as not to put a net DC voltage on the motor; putting all three commands on 
one line causes the changes to happen virtually instantaneously. 

With power applied to the drive and the amplifier enabled (M114=1), current readings should be received 
in the ADC registers as shown by their M-variables M105 and M106 in the Watch window.   

As the M-variables have been defined, +/-32,768 is full current range, which should correspond 
approximately to the instantaneous current limit.  Make sure that the value read does not exceed the 
continuous current limit, usually which is about 1/3 of the instantaneous limit.  If the value is well below 
the continuous current limit, increase the voltage command to 5% to 10% of maximum.  For example: 
M102=I7000/10 M104=-I7000/10 M107=0  ; 10% of maximum 

PWM/ADC Phase Match 
Command values from Turbo PMAC’s Phase A PWM outputs should cause a roughly proportionate 
response of one sign or the other on Turbo PMAC’s Phase A ADC input (whatever the phase is named in 
the motor and drive).  The same is true for Phase B. 

If there is no response on either phase, re-check the entire setup, including: 
• Is the drive properly wired to Turbo PMAC, either directly or through an interface board? 
• Is the motor properly connected to the drive? 
• Is the drive properly powered, both the power stage, and the input stage? 
• Is the interface board properly powered? 
• Is the amplifier enabled (M114=1 on Turbo PMAC and indicator ON at the drive)? 
• Is the amplifier in fault condition?  If so, why? 
If an ADC response is received only on one phase, the phase outputs and inputs may not be properly 
matched.  For example, the Phase B ADC may be reading current from the phase commanded by the 
Phase C PWM output.  Confirm this by trying other combinations of commands as shown in the six-step 
test below, and checking which ADC responds to which phase command.  If there is not a proper match, 
change the wiring between Turbo PMAC and the drive.  Changing the wiring between drive and motor 
will not help here. 
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Synchronous Motor Stepper Action 
With a synchronous motor, this command should cause the motor to lock into a position, at least weakly, 
like a stepper motor.  This action may be received temporarily on an induction motor, due to temporary 
eddy currents created in the rotor.  However, an induction motor will not keep a holding torque 
indefinitely at the new location. 

Current Loop Polarity Check 
Observe the signs of the ADC register values in M105 and M106.  These two values should be of 
approximately the same magnitude, and must be of the opposite sign from each other.  (Again, remember 
that these readings may appear noisy.  Observe the base value underneath the noise.)  If M105 is positive 
and M106 is negative, the sign of the PWM commands matches the sign of the ADC feedback values.  In 
this case, the Turbo PMAC phase angle parameter I172 must be set to a value greater than 1024 (1365 for 
a 3-phase motor).   

If M105 is negative and M106 is positive, the sign of the PWM commands is opposite that of the ADC 
feedback values.  In this case, I172 must be set to a value less than 1024 (683 for a 3-phase motor). 

CAUTION: 
Make sure the I172 value is set properly attempting to close the digital current 
loops on Turbo PMAC.  Otherwise there will be positive feedback creating 
unstable current loops, which could damage the amplifier and/or motor. 

If M105 and M106 have the same sign, the polarities of the current sense circuitry for the two phases is not 
properly matched.  In this case, something has been mis-wired in the drive or between Turbo PMAC and 
the drive to give the two phase-current readings opposite polarity.  One of the phases will have to be fixed.   

Do not attempt to close the digital current loops on Turbo PMAC until the polarities of the current sense 
circuitry for the two phases have been matched properly.  This will involve a hardware change in the 
current sense wiring, the ADC circuitry, or the connection between them.  As an extra protection against 
error, make sure that Ixx57 and Ixx58 are set properly for I2T protection that will quickly shut down the 
axis if there is saturation due to improper feedback polarity. 

Troubleshooting 
If not getting the current readings expected, probe the motor phase currents on the motor cables with a 
snap-on hall-effect current sensor.  If current is not seen when voltages are being commanded, check for 
phase-to-phase continuity and proper resistance when the motor is disconnected. 

Voltage Six-Step Test 
For a complete test of the motor/drive connection, try all six sign combinations for a 3-phase motor, or 
eight for a 4-phase motor.  It is best to command all phase values on a single command line to get 
simultaneous changes.   

For a synchronous motor, this test will step the motor through one commutation cycle.  It can be used to 
confirm the size of the commutation cycle in counts, the pole count of the motor, and the commutation 
direction sense. 

What to Look For 
In performing this test, check the following: 
• Get a consistent relationship between M102 and M105 on Phase A, and between M104 and M106 on 

Phase B. 
• For synchronous motors (and probably for induction motors), the M101 position register should 

change in approximately equal increments between each step. 
• For synchronous motors (and probably for induction motors), the total change in M101 between the 

initial Step 1 and the return to Step 1 should be approximately equal to Ixx71/Ixx70. 
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• For synchronous motors (and probably for induction motors), the physical change in rotor position 
between the initial Step 1 and the return to Step 1 (mark the rotor if necessary) should be equal to 1 
pole pair: 
• On a 2-pole motor, it should be one full mechanical revolution. 
• On a 4-pole motor, it should be one-half mechanical revolution. 
• On a 6-pole motor, it should be one-third mechanical revolution. 
• On an 8-pole motor, it should be one-fourth mechanical revolution. 
• On a 100-pole motor, it should be 7.2o mech. 

Executing the Test 
For Motor 1 using Servo IC 0, Channel 1 with a 3-phase motor, with 10% voltage commands being 
acceptable, the commands could be: 
M102=0 M104=I7000/10 M107=-I7000/10 ; Step 1: A0, B+, C-: 0oelec. 
M102=I7000/10 M104=0 M107=-I7000/10 ; Step 2: A+, B0, C-: 60oelec. 
M102=I7000/10 M104=-I7000/10 M107=0 ; Step 3: A+, B-, C0: 120oelec. 
M102=0 M104=-I7000/10 M107=I7000/10 ; Step 4: A0, B-, C+: +180oelec. 
M102=-I7000/10 M104=0 M107=I7000/10 ; Step 5: A-, B0, C+: -120oelec. 
M102=-I7000/10 M104=I7000/10 M107=0 ; Step 6: A-, B+, C0: -60oelec. 
M102=0 M104=I7000/10 M107=-I7000/10 ; Step 1: A0, B+, C-: 0oelec. 

This test moves the motor through the commutation cycle in the positive direction if Ixx72 is less than 
1024 (i.e. 683); it moves through the cycle in the negative direction if Ixx72 is greater than 1024 (i.e. 
1365).  On a synchronous motor, we can use the position reading to check the commutation polarity 
match; this may be possible on an induction motor as well.   

Action To Take 
If the rotor position, as reflected by M101, changed in the wrong direction during this test, we could have 
a commutation polarity mismatch.  With such a mismatch, the motor would lock in (not run away) when 
commanded.  There are two possible fixes for this mismatch: 
1. Reverse the feedback direction sense by changing I7mn0.  However, this changes the direction sense 

of the axis, which may not be tolerable. 
2. Exchange two phase leads between amplifier and motor.  Usually, this is done at the screw terminals 

on the amplifier.  Exchanging any two phases will change the polarity in the same way.  However, the 
relationship between the sensor zero position and Turbo PMAC’s commutation cycle zero position is 
dependent on which two phases are exchanged. 

For asynchronous induction motors, if the above test did not cause proper movement try each direction 
polarity and see which works.  This is described below. 

Once the commutation polarity match has been established, the servo polarity match is established 
automatically.  Check this later by seeing that positive O-commands cause motor position to count in the 
positive direction. 

Remember that if I7mn0 is changed later to get the physical direction sense needed, exchange motor 
phase leads to re-establish the commutation polarity match. 
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Example 
The table of results for a sample run of this test is: 

Step M102 (A) M104 (B) M107 (C) Cycle Position Physical Position M101 (counts) M105 (A) M106 (B) 
1 +500 0 -500 0oe 4:00 8820 < 0 ≈ 0 
2 +500 -500 0 +60oe 3:00 9184 < 0 > 0 
3 0 -500 +500 +120oe 2:00 9501 ≈ 0 > 0 
4 -500 0 +500 +180oe 1:00 9845 > 0 ≈ 0 
5 -500 +500 0 -120oe 12:00 10218 > 0 < 0 
6 0 +500 -500 -60oe 11:00 10532 ≈ 0 < 0 
1 +500 0 -500 0oe 10:00 10869 < 0 ≈ 0 

From this test, we can conclude: 
• PWM operation is fundamentally working (we got 6 approximately equal steps) 
• We have a 4-pole motor because we moved 1/2 revolution 
• Current ADC inputs are working: we got proportionate responses 
• Sign of current is opposite to sign of voltage, so Ixx72 should be 683. 
• We move 2049 counts in one cycle, so 4096 counts per revolution should be correct 
• Encoder counter increased, so commutation polarity is correct 

Cleaning Up 
When done with this section of the testing, write zero values into the command registers and disable the 
amplifier with the command: 
M102=0 M104=0 M107=0 M114=0 

With zero commands into all of the phases of the drive, with the drive either enabled or disabled, the 
ADC registers should read nearly zero.  Turbo PMAC can compensate for non-zero values with the offset 
parameters Ixx79 (A-phase offset) and Ixx29 (B-phase offset).  These offset parameters should hold 
values of the opposite sign of the phases’ ADC values when there are zero PWM commands.  Ixx29 and 
Ixx79 magnitudes assume 16-bit values; since we are using 16-bit M-variables to look at the ADC 
registers, regardless of the true resolution of the ADCs, we can just read the M-variable values at zero 
command and use the opposite values for Ixx79 and Ixx29. 

Debugging 
With zero commands on the three output registers, you can observe any of the six PWM output signals 
with an oscilloscope.  All six should have 50% duty cycle (minus the deadtime set by I7m04) at the 
frequency set by I7m00.  All three top-PWM signals should be in phase with each other.  All three 
bottom-PWM signals should be in phase with each other, and one-half cycle out of phase with the top 
signals.  Observing a top and bottom pair, observe the deadtime between the top and bottom on times. 

With a positive command into the A-phase, a negative command into the B-phase, and a zero command on 
the C-phase, these waveforms should change.  On the oscilloscope, observe PWMATOP1 on-time increase, 
and PWMABOT1 on-time decrease, while maintaining the deadtime.  Similarly, PWMBTOP1 on-time 
should decrease, and PWMBBOT1 on-time should increase, maintaining the deadtime between them. 

If the analog voltages representing the current measurements are available, these can be probed for 
diagnostic purposes.  Many direct PWM drives provide analog current measurement outputs and the A/D 
conversion is done on an interface board.  The probing is easy for these drives.  If the A/D conversion is 
done inside the drive, access to test points to probe these voltage levels.  Consult the drive manual for 
location and scaling of these signals. 
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Establishing Basic Current Loop Operation 
Once the proper operation of the Turbo PMAC PWM output circuits, the Turbo PMAC ADC input circuits, 
and all of the drive and motor circuitry between them have been established, close the current loop. 

The Turbo Setup program has both auto-tuning and interactive tuning procedures for the digital current 
loop.  Most people will use one or both of these procedures to tune the current loop.  These procedures 
can confirm the proper polarity of the current loop readings also.  However, issue the commands 
manually as explained in this section. 

Purpose 
The purpose of these next tests is to set the current loop gains for quick but stable current response.  This 
is done by giving the motor a current command and observing the current response. 

The key to testing the current loop is the use of Turbo PMAC’s O commands, which close the current 
loops while leaving open the position and velocity loops.  The magnitude of the O-command value is that 
of the torque-producing quadrature current command, expressed as a percentage of Ixx69; Ixx77 controls 
the magnitude of the direct current command. 

It is safest not to create any movement while testing the current loop; this can be done by commanding 
only direct current, accomplished by setting Ixx77, then issuing an O0 command. 

Digital Current Loop Gains 
Ixx61, Ixx62, and Ixx76 are the gains of the PI (proportional-integral) current loop.  They are used for 
both phases of a multi-phase motor.  Ixx61 is the integral gain term.  There are two proportional gain 
terms: Ixx62 is the forward-path proportional gain, and Ixx76 is the back-path proportional gain.  Ixx62 is 
multiplied by the current error (commanded minus actual) and the result is added into the output 
command.  Ixx76 is multiplied by the actual current value and subtracted from the output command.  All 
three gain terms have a range of 0.0 to 2.0, with 23-bit resolution for positive values. 

PMAC2 Digital Current Loop
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Kpb = Ix76 x 4 (0.0 < Ix76 < 1.0)
Kpf = Ix62 x 4 (0.0 < Ix62 < 1.0)
Ki = Ix61 x 4 (0.0 < Ix61 < 1.0)  

Usually only one of Ixx62 or Ixx76 is used on a given motor; the other gain is set to 0.0.  It is more 
common to use Ixx61, the forward-path gain, because it provides greater responsiveness and bandwidth.  
If Ixx76 is used instead of Ixx62, only the Ixx61 integral gain term directly connects the current command 
to the output, and its integration effect filters the command, reducing responsiveness.   
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However, if the command from the position/velocity servo loop is noisy, as can be the case with a low-
resolution position sensor, this filtering effect can be desirable, and Ixx76 can provide better performance 
than Ixx62. 

Analytic Calculation of Current-Loop Gains 
With some basic knowledge of motor and amplifier parameters, it is possible to calculate the current-loop 
gains directly.  It is strongly advised that these computed gains be checked against the values determined 
through the auto-tuning or interactive tuning of the Turbo Setup program. 

The motor parameters needed are: 
• Rpn Motor phase-to-neutral resistance (Ohms) 

= Rpp / √3  (Motor phase-to-phase resistance / √3) 
• Lpn Motor phase-to-neutral inductance (Henries) 

= Lpp / √3  (Motor phase-to-phase inductance / √3) 
The amplifier parameters needed are: 
• Isat Maximum (saturated) current reading from phase-current A/D converter (Amps).   

This is a DC value, not an RMS AC value.  This value can be derived from the current-sensor gain Kc 
(volts/amp) and the maximum voltage in volts that the A/D-converter can read Vcmax: Isat= Vcmax/Kc. 

• VDC DC bus voltage for the amplifier. 
This can be derived from the AC RMS supply voltage VAC: VDC=VAC*√2. 

Finally, the Turbo PMAC parameter needed is: 
• TP Phase-update period (sec) 

This can be derived from the phase update frequency fP in kHz: TP=1/(1000*fP) 
Next, the following performance specifications for the current loop are required: 
• ωn Desired natural frequency of the closed current loop in radians/sec 

This can be derived from the desired natural frequency fn in Hz: ωn (rad/s) = 2πfn (Hz). 
If the damping ratio (see below) is in the range 0.7 to 1.0, which it should be in most cases, the 
desired bandwidth of the current loop basically is equal to the natural frequency.  Usually values of 
200 Hz to 400 Hz are used. 

• ζ Desired damping ratio (dimensionless).  A value of 0.7 here yields a step-response overshoot of 
about 5%; a value of 1.0 here yields no overshoot. 

Now we can compute the proportional current-loop gain Kcp and the integral current-loop gain Kci 
according to the formulas: 
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Finally, to compute the I-variables to represent these gains, we use the formulas: 
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Here, PWMmaxcnt is I7m00 for a channel directly driven by the Turbo PMAC; it is MI900, MI906, or 
MI992 for a channel on a MACRO Station. 
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The proportional gain term is expressed as the sum of two I-variables.  Ixx62 is the “forward-path” 
proportional gain term, directly responding to changes in the command values; Ixx76 is the “back-path” 
proportional gain term, directly responding only to the actual current values.  When high position 
feedback resolution is used in the position/velocity loop, the quantization noise in the current command is 
low, and it is better to use Ixx62.  When low position-feedback resolution is used, it is better to use Ixx76.  
Tradeoffs between responsiveness and smoothness can be obtained by varying the amount of the 
proportional gain term allocated to each of these two variables. 

Example: 
The motor has a phase-to-phase resistance of 3.0 ohms, and a phase-to-phase-inductance of 39 
millihenries.  The amplifier phase-current sensors provide their maximum 5-volt output for 17.5 amps of 
current, and the ADCs provide their full-range value for an input of 5V.  The amplifier operates from an 
AC supply voltage of 120Vrms.  The Turbo PMAC is operating at the default phase update frequency of 
9.03 kHz.  A current-loop natural frequency of 200 Hz with a damping ratio of 0.7 is desired.  The PWM-
max-count variable is at the default value of 6528, and Ixx66 for the motor is at the recommended value 
of 7181 (10% greater). 
Lpn = Lpp / √3 = 0.039 / 1.732 = 0.0225 H 
Rpn = Rpp / √3 = 3.0 / 1.732 = 1.732 ohms 
Isat = Vcmax/Kc = 5.0 / (5.0/17.5) = 17.5 amps 
VDC = VAC * √2 = 120 * 1.414 = 170 V 
TP = 1 / (1000*fP) = 1 / (1000*9.03) = 0.000110 sec 
ωn (rad/s) = 2 π ωn (Hz) = 2 * π * 200 = 1256 rad/sec 
Kcp = Isat [(2 ζ ωn Lpn) – Rpn] / VDC = 17.5 [(2 * 0.7 * 1256 * 0.0225)- 1.732] / 170 = 3.89 
Kci = Isat Tp ωn

2 Lpn / VDC = 17.5 * 0.000110 * 12562 *0.0225 / 170 = 0.401 
Ixx62 + Ixx76 = (Kcp * PWMmaxcnt) / (4 * Ixx66) = 3.89 / (4 * 1.1) = 0.884 
Ixx61 = (Kci * PWMmaxcnt) / (8 * Ixx66) = 0.401 / (8 * 1.1) = 0.0456 

Preparation for Experimental Tuning 
Typically the experimental current-loop tuning is done through the Turbo Setup program or the PMAC 
Executive program; both create the proper setup for the tests automatically.  However, to do the test 
manually, follow the instructions in this section. 
To prepare Turbo PMAC for this test: 
• Set Ixx00 for all other motors to 0 to de-activate them. 
• Set Ixx01 for all other motors to 0 to turn off the commutation.  This makes sure Turbo PMAC has 

enough calculation time to gather data fast enough. 
• Set I7m02 to 0 for divide-by-1 to make servo update rate equal to phase update rate.  This permits 

Turbo PMAC to gather data every phase update.) 
To set up the motor under test: 
• Set Ixx00 to 1 for the motor under test to activate it. 
• Set Ixx01 to 1 for the motor under test to turn on phase/current calculations.  These may have been 

left at zero from the earlier tests. 
• Give the motor a K command to turn off the outputs 
• Set Ixx71 to 1 to cripple the commutation algorithm and prevent movement during the test. 
• Make sure the other setup I-variables are set as instructed above.  I7m02 and Ixx71 only should be 

different from what they would be in the final application. 
• Start with Ixx62=0.1, Ixx61=0.0, and Ixx76=0.0 as current loop gains. 
• Set Ixx77 to 3000 to provide about 10% direct current command. 
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In the Detailed Plot section of data gathering, specify data gathering at intervals of one servo cycle.  
Select for gathering the commanded and actual direct current registers every servo cycle for the motor 
under test.  The addresses for these registers are found in the following table. 
Commanded Direct Current Registers 

Motor # 1 2 3 4 5 6 7 8 
Address Y:$00B8 Y:$0138 Y:$01B8 Y:$0238 Y:$02B8 Y:$0338 Y:$03B8 Y:$0438 
Motor # 9 10 11 12 13 14 15 16 
Address Y:$04B8 Y:$0538 Y:$05B8 Y:$0638 Y:$06B8 Y:$0738 Y:$07B8 Y:$0838 
Motor # 17 18 19 20 21 22 23 24 
Address Y:$08B8 Y:$0938 Y:$09B8 Y:$0A38 Y:$0AB8 Y:$0B38 Y:$0BB8 Y:$0C38 
Motor # 25 26 27 28 29 30 31 32 
Address Y:$0CB8 Y:$0D38 Y:$0DB8 Y:$0E38 Y:$0EB8 Y:$0F38 Y:$0FB8 Y:$1038 

Actual Direct Current Registers 
Motor # 1 2 3 4 5 6 7 8 
Address Y:$00B9 Y:$0139 Y:$01B9 Y:$0239 Y:$02B9 Y:$0339 Y:$03B9 Y:$0439 
Motor # 9 10 11 12 13 14 15 16 
Address Y:$04B9 Y:$0539 Y:$05B9 Y:$0639 Y:$06B9 Y:$0739 Y:$07B9 Y:$0839 
Motor # 17 18 19 20 21 22 23 24 
Address Y:$08B9 Y:$0939 Y:$09B9 Y:$0A39 Y:$0AB9 Y:$0B39 Y:$0BB9 Y:$0C39 
Motor # 25 26 27 28 29 30 31 32 
Address Y:$0CB9 Y:$0D39 Y:$0DB9 Y:$0E39 Y:$0EB9 Y:$0F39 Y:$0FB9 Y:$1039 

Executing the Current-Loop Test 
Once the data gathering has been set up, the following commands can be given: 
DEFINE GATHER ; Reserve memory for data gathering buffer 
#1 ; Make sure proper motor is addressed 
GAT O0 ; Start data gathering and give current command 
ENDG K ; Stop gathering and end current command 

The data is then uploaded and plotted.  The aim is to get as quick a response as possible to the 
commanded value, without significant overshoot or any instability.  Typical current loop proportional 
gains are in the range 0.6 to 0.9.  Typical current loop integral gains are around 0.01. 
Clean-Up 
When finished with this test, restore the following: 
• Set I171 back to its proper value 
• Set I7002 back to its proper value 
There should now be properly operating current loops.  Now, get the commutation algorithm working 
properly.  See the Finishing Setting up Turbo PMAC Commutation section. 

Setting Up Turbo PMAC for Sine-Wave Output Control 
This section explains how to set up the commutation scheme if Turbo PMAC is performing the 
commutation for a motor, but not the digital current loop.  In this mode, Turbo PMAC outputs two phase 
current commands to the amplifier, usually as analog voltages through digital-to-analog converters 
(DACs).  In the steady state, these voltages are a sinusoidal function of time, so this mode is often called 
sine-wave output. 

Hardware Setup 
For Turbo PMAC to operate a motor in the sine-wave commutation analog output mode, two analog 
outputs are required for the motor.  When used through a PMAC2-style Servo IC, this requires DACs on 
both the A and B sub-channels of a given channel.  These dual DACs can be found on Acc-8E or Acc-8A 
(with Option 2) breakout boards, or on UMAC Acc-24E2A axis-interface/breakout boards.   
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When used through a PMAC-style Servo IC, this requires the single DACs on two consecutive channels.  
The higher (even) numbered DAC channel is the A DAC; the lower (odd) numbered DAC channel is the 
B DAC. 

DAC Output Signals 
The A and B DAC outputs should be connected to the phase command inputs on the sine-wave input 
amplifier.  If the inputs on the amplifier are single-ended, use the DAC+ output only, and leave the 
complementary DAC- outputs floating; do not ground them.  If the inputs on the amplifier are 
complementary, use both the DAC+ and DAC- outputs.  In either case, tie the AGND reference voltage 
on the output connector to the reference voltage for the amplifier input. 

Amplifier-Enable and Fault Interface 
On PMAC2-style interface and breakout boards, including the Acc-8A, 8E, and 24E2A, the amplifier-
enable outputs are dry-contact relays.  Normally open, normally closed, sinking or sourcing 
configurations from 12V to 24V can be chosen.  Normally open contacts (closed when enabled) are 
recommended for more fail-safe operation. 

On PMAC-style boards, the amplifier-enable outputs are optically isolated solid-state drivers with 24V, 
100mA capability.  On most boards, sinking or sourcing drivers can be chosen by the selection of 
socketed driver IC.  The factory default is sinking drivers. 

The amplifier fault inputs are optically isolated 12V to 24V inputs.  On newer designs with surface-mount 
ICs, the isolators are AC Optos so sinking or sourcing drivers can be used.  On older designs with 
through-hole ICs, sinking drivers are required. 

Encoder Feedback 
Usually, sine-wave control is done with either digital quadrature encoders connected directly into the 
controller (the breakout board is just a pass-through for these signals) or analog sine-cosine encoders 
processed through an interpolator accessory.  When using an interpolated analog encoder for servo 
feedback, typically the uninterpolated digital encoder counter is used for the commutation feedback, 
which does not require the high resolution of the servo. 

Hall-Effect Commutation Flags 
PMAC2-style Servo ICs have supplemental flags for each channel labeled T, U, V, and W.  The U, V, 
and W flags are commonly used for hall-effect commutation signals (or their optical equivalent) that 
provide power-up phase position information. 

PMAC-style Servo ICs require the use of a second channel’s flags (usually the same channel as the 
second DAC) as the supplemental flags for this purpose. 

Turbo PMAC Parameter Setup 
PMAC2-Style Servo IC Multi-Channel Setup 
The PMAC2-style DSPGATE1 Servo ICs have a great deal of flexibility in supporting different hardware 
interfaces.  This means that there are certain registers that must be set up through I-variables to support 
the desired mode of operation.  This is not required if PMAC-style Servo ICs are used. 

Hardware Clock Frequency Control: I7m03, MI903, MI907 
I7m03 (MS{anynode},MI903 or MS{anynode},MI907 on a MACRO Station) determines the 
frequency of four hardware clock signals used for the machine interface channels on Servo IC m.  These 
can probably be left at the default values.  The four hardware clock signals are SCLK (encoder sample 
clock), PFM_CLK (pulse frequency modulator clock, DAC_CLK (digital-to-analog converter clock), and 
ADC_CLK (analog-to-digital converter clock).   
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Only the DAC_CLK signal is directly used with the sine-wave output, to control the frequency of the 
serial data stream to the DACs.  The default DAC clock frequency of 4.9152 MHz is suitable for the 
DACs on all Delta Tau hardware.  Refer to the I7m03 description for detailed information on setting these 
variables. 

The encoder SCLK frequency should be at least 20% greater than the maximum count (edge) rate that is 
possible for the encoder on any axis.  Higher SCLK frequencies than this minimum may be used, but 
these make the digital delay anti-noise filter less effective. 

DAC Strobe Control: I7m05, MI905, MI909 
Turbo PMAC generates a common DAC strobe word for each set of four machine interface channels.  It 
does this by shifting out a 24-bit word each phase cycle, one bit per DAC clock cycle, most significant bit 
first.  I7m05 (MS{anynode},MI905 or MS{anynode},MI909 on a MACRO Station) contains this 
word for the channels on Servo IC m.  The default value of $7FFFC0 is suitable for use with the 18-bit 
DACs used with the PMAC2-style Servo ICs on Delta Tau interface and breakout boards.  A value of 
$7FFF00 is suitable for 16-bit DACs. 

Individual-Channel Hardware Setup 
For each machine interface channel n (n = 1 to 4) of Servo IC m used for sine wave analog outputs, a few 
I-variables must be set up properly. 

Encoder Decode Control: I7mn0, MI910 
I7mn0 (MS{node},MI910 on a MACRO Station) must be set up to decode the commutation encoder 
properly.  Usually, a value of 3 or 7 is used to provide times-4 decode of a quadrature encoder (4 counts 
per encoder line).  The difference between 3 and 7 is the direction sense of the encoder; set this variable 
so the motor counts up in the direction desired.   

The polarity sense of the Ixx72 commutation phase angle parameter must match that of I7mn0 for a 
particular wiring; if it is wrong, it will lock into a position rather than generate continuous torque.  A test 
for determining this polarity match is given below.  Remember that if I7mn0 is changed on a working 
motor, change Ixx72 as well. 

Output Mode Control: I7mn%6, MI916 
I7mn6 (MS{node},MI916 on a MACRO Station)  must be set to 1 or 3 to specify that outputs A and B 
for Channel n are in DAC mode, not PWM.  A setting of 1 puts output C (not used for servo or 
commutation tasks in this mode) in PWM mode; a setting of 3 puts output C in PFM mode. 

Output Inversion Control: I7mn7, MI917 
I7mn7 (MS{node},MI917 on a MACRO Station) controls whether the serial data streams to the DACs 
on Channel n are inverted or not.  The default value of 0 (non-inverted) is suitable for use with the 
recommended Acc-8E analog interface board.  Inverting the bits of the serial data stream has the effect of 
negating the DAC voltage.  In a commutation algorithm this is equivalent to a 180o phase shift, which 
would produce runaway if the system were working properly before the inversion. 

Parameters to Set Up Motor Operation 
Several I-variables must be set up for each Motor xx to enable and configure the sine-wave output for that 
motor.  Of course, Ixx00 must be set to 1 for any active motor, regardless of the output mode for that 
motor, and Ixx01 bit 0 must be set to 1 to enable commutation, as covered earlier. 

Command Output Address: Ixx02 
When using PMAC-style Servo ICs for sine-wave control, Ixx02 must specify the address of an even-
numbered DAC register.  In this mode, this will cause the Turbo PMAC to use both this DAC and the 
next lower-numbered DAC (which is one address higher).  Two channels must be used to commutate one 
motor.  For example, if the address of Servo IC 0 DAC 4 is specified, Turbo PMAC will use DACs 3 and 
4.  The following table shows the possible Ixx02 values for this mode: 
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Sine-Wave Mode Command Output Addresses –  
PMAC-style Servo ICs (Y-registers) 

IC# - Chan# 0 – 1&2 0 – 3&4 1 – 1&2 1 – 3&4 
Ixx02 $078002 $07800A $078102 $07810A 
IC# - Chan# 2 - 1&2 2 - 3&4 3 - 1&2 3 - 3&4 
Ixx02 $078202 $07820A $078302 $07830A 
IC# - Chan# 4 - 1&2 4 - 3&4 5 - 1&2 5 - 3&4 
Ixx02 $079202 $07920A $079302 $07930A 
IC# - Chan# 6 - 1&2 6 - 3&4 7 - 1&2 7 - 3&4 
Ixx02 $07A202 $07A20A $07A302 $07A30A 
IC# - Chan# 8 - 1&2 8 - 3&4 9 - 1&2 9 - 3&4 
Ixx02 $07B202 $07B20A $07B302 $07B309 

Servo ICs 0 and 1 are on the Turbo PMAC itself. 
Servo ICs 2 – 9 are on Acc-24P/V or Acc-51P boards. 
Channels 1 – 4 on odd-numbered Servo ICs are Channels 5 – 8 on the boards. 

When using PMAC2-style Servo ICs for sine-wave control, Ixx02 must specify the address of the A DAC 
register for a channel.  In this mode, this will cause the Turbo PMAC to use both the A and the B DACs 
for the channel.  The following table shows the possible Ixx02 values for this mode: 
Sine-Wave Mode Command Output Addresses – PMAC2-style Servo ICs (Y-registers) 

IC# - Chan# 0 - 1 0 - 2 0 - 3 0 - 4 1 - 1 1 - 2 1 - 3 1 - 4 
Ixx02 $078002 $07800A $078012 $07801A $078102 $07810A $078112 $07811A 
IC# - Chan# 2 - 1 2 - 2 2 - 3 2 - 4 3 - 1 3 - 2 3 - 3 3 - 4 
Ixx02 $078202 $07820A $078212 $07821A $078302 $07830A $078312 $07831A 
IC# - Chan# 4 - 1 4 - 2 4 - 3 4 - 4 5 - 1 5 - 2 5 - 3 5 - 4 
Ixx02 $079202 $07920A $079212 $07921A $079302 $07930A $079312 $07931A 
IC# - Chan# 6 - 1 6 - 2 6 - 3 6 - 4 7 - 1 7 - 2 7 - 3 7 - 4 
Ixx02 $07A202 $07A20A $07A212 $07A21A $07A302 $07A30A $07A312 $07A31A 
IC# - Chan# 8 - 1 8 - 2 8 - 3 8 - 4 9 - 1 9 - 2 9 - 3 9 - 4 
Ixx02 $07B202 $07B20A $07B212 $07B21A $07B302 $07B30A $07B312 $07B31A 

Servo ICs 0 and 1 are on the Turbo PMAC2 itself or on Acc-2E 3U-format stack boards. 
Servo ICs 2 – 9 are on Acc-24x2 or Acc-51E boards. 
Channels 1 – 4 on odd-numbered Servo ICs are Channels 5 – 8 on dual-Servo-IC boards. 

When performing sine-wave output control over the MACRO ring, Ixx02 must specify the address of the 
MACRO node register for the A DAC causing the A and B DACs to be used.  For the MACRO Type 1 
protocol used by the Delta Tau MACRO Station, this is the address of Register 0 of the node.  The 
following table shows the possible Ixx02 values for this mode: 

Sine-Wave Mode Command Output Addresses – MACRO ICs (Y-registers) 
IC# - Node# 0 - 0 0 - 1 0 - 4 0 - 5 0 - 8 0 - 9 0 - 12 0 - 13 
Ixx02 $078420 $078424 $078428 $07842C $078430 $078434 $078438 $07843C 
IC# - Node# 1 - 0 1 - 1 1 - 4 1 - 5 1 - 8 1 - 9 1 - 12 1 - 13 
Ixx02 $079420 $079424 $079428 $07942C $079430 $079434 $079438 $07943C 
IC# - Node# 2 - 0 2 - 1 2 - 4 2 - 5 2 - 8 2 - 9 2 - 12 2 - 13 
Ixx02 $07A420 $07A424 $07A428 $07A42C $07A430 $07A434 $07A438 $07A43C 
IC# - Node# 3 - 0 3 - 1 3 - 4 3 - 5 3 - 8 3 - 9 3 - 12 3 - 13 
Ixx02 $07B420 $07B424 $07B428 $07B42C $07B430 $07B434 $07B438 $07B43C 

If using the older Type 0 MACRO protocol, add 1 to the value shown in the above table (e.g. $078420 
becomes $078421). 
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Commutation Phase Angle: Ixx72 
Ixx72 sets the angle from Phase A to Phase B as a fraction of the commutation cycle.  Turbo PMAC splits 
the commutation cycle (360oe) into 2048 parts.  For a 3-phase motor, the angle from A to B is either 1/3 
of a cycle (Ixx72=683) or 2/3 of a cycle (Ixx72=1365).  For a 2-phase or 4-phase motor, the angle from A 
to B is either 1/4 of a cycle (Ixx72=512) or 3/4 of a cycle (Ixx72=1536). 

The proper choice of Ixx72 is dependent on the commutation feedback encoder’s direction sense as 
determined by its wiring and the encoder decode variable I7mn0, and on the wiring of the phases of the 
motor.  This choice is generally determined experimentally through a test explained below.  Changing 
Ixx72 between, say, 683 and 1365 is equivalent to exchanging two phase wires of the motor. 

Establishing Basic Output Operation 
A quick test can establish basic operation of the commutation outputs, the drive and motor, and the 
feedback.  The test uses the output-offset variables Ixx29 and Ixx79 to force current directly into the 
particular phases and drive the motor like a stepper motor.  The test can be used to verify that – 
• Output voltages are obtained from the Acc-8E board 
• Currents flow in the phases of the motor 
• The currents cause the motor to lock into a position (it only does this well for a synchronous motor), 

and to set the proper polarity of the Ixx72 commutation phase angle parameter (it only does this well 
for a synchronous motor; for an asynchronous induction motor, the polarity of Ixx72 may have to be 
determined by trial and error). 

Executing the Test 
This test, which can be done easily from the terminal window of the Executive program by typing in a 
few simple commands, is best illustrated by an example, which will use Motor 1.  It should first be done 
on a bare motor with no load for safety reasons: 
M101->X:$078001,24,S ; Encoder 1 phase position register 
#1O0 ; Command zero output 
I129=2000 ; Positive offset of 2000 bits on 1st phase 
M101 ; Request position (after motor settles) 
382 ; PMAC responds with position 
I179=2000 ; Positive offset of 2000 bits on 2nd phase 
M101 ; Request position (after motor settles) 
215 ; PMAC responds with position 
If the servo-loop feedback has been established already with Ixx03, the position query P command or the 
position window in the Executive program can be used instead of the Mx01 encoder position register. 

Verifying Basic Operation 
Setting a non-zero value for Ixx29 should force a voltage on the A-phase DAC, which can be read with a 
voltmeter or oscilloscope.  It should also force current in the matching phase of the motor, which can be 
measured with a current probe.  Setting a non-zero value for Ixx79 should do the same for the B-phase DAC. 

A synchronous motor should lock into a position and hold it when an Ixx29 offset is given.  An induction 
motor may lock in briefly for a brief period of time due to short-term eddy currents in the rotor. 

When the Ixx79 offset is added, a synchronous motor should lock into a new position a fraction of a cycle 
away from the earlier position.  An induction motor may do this also, but probably not as strongly. 
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Evaluating the Polarity Match 
Determine the proper setting of Ixx72 by looking at the direction of motion between the two steps.  If the 
position changed in the negative direction, set Ixx72 less than 1024 – to 683 for a 3-phase motor, or 512 
for a 2- or 4-phase motor.  If the position changed in the positive direction, set Ixx72 greater than 1024 – 
to 1365 for a 3-phase motor, or 1536 for a 2- or 4-phase motor. 
For the motor in this example, we conclude that we want a value of 512 if it is a 4-phase motor or 683 if it 
is a 3-phase motor.  If the encoder direction is subsequently changed for system reasons, change I172 to 
match. 

Finishing Setting up Turbo PMAC Commutation (Direct PWM or Sine 
Wave), Synchronous Motors 
By this point, proper operation of the digital current loops should be established for direct PWM control, 
or basic operation should be established for analog sine-wave control.  The commutation I-variables 
Ixx70 and Ixx71 (commutation cycle size), Ixx72 (commutation phase angle), and Ixx83 (commutation 
feedback address) already should be set properly.   
The next steps, explained in this section, are common for both types of control, with a shared 
commutation algorithm. 
Confirming Commutation Polarity Match 
For the Turbo PMAC commutation algorithms to work properly, the polarity of the output phases must 
match the feedback polarity.  If there is a mismatch, the algorithm will lock up the motor at a point of 
zero torque.   

Testing Commutation Polarity Match 
With a synchronous motor, we try applying both a direct current command and a quadrature current 
command.  Because we have not established a phase reference yet, we cannot be sure that a quadrature 
current command really produces quadrature current.  But if the commutation polarity is correct, at least 
one of the commands should cause steady movement of the motor. 
First, we apply a direct current command with: 
Ixx77=3000 O0 ; ~10% direct current command 

If this does not produce steady movement, we apply a quadrature current command with: 
Ixx77=0 O10 ; 10% quadrature current command 

To finish the test, we issue a K command and make sure Ixx77 has been returned to 0. 
If one of these commands produces steady movement, the commutation polarity is correct, and we can 
move on to the next stage of establishing a phase reference.  However, if neither of these commands 
produces steady motion, we probably have commutation polarity mismatch.  To correct the mismatch, see 
Correcting Polarity Mismatch, below. 

Correcting Polarity Mismatch 
To correct a commutation polarity mismatch, there are two possible options: 
1. Reverse the feedback direction sense by changing I7mn0.  However, this changes the direction sense 

of the axis, which may not be tolerable. 
2. Reverse the output direction sense.  For analog sine-wave output, this can be done by changing Ixx72, 

for example from 1365 to 683, or by exchanging two phase leads between amplifier and motor. For 
direct PWM, this must be done by exchanging phase leads.  Usually this is done at the screw 
terminals on the amplifier.  Exchanging any two phases will change the polarity in the same way.  
However, the relationship between the sensor zero position and Turbo PMAC’s commutation cycle 
zero position is dependent on which two phases are exchanged. 

After changing the polarity match by one of the above methods, repeat the test to make sure that the 
problem has been solved. 



 Turbo PMAC User Manual 

116 Setting Up Turbo PMAC-Based Commutation and/or Current Loop 

Establishing a Phase Reference 
Purpose 
When commutating a synchronous multi-phase motor such as a permanent-magnet brushless motor, the 
commutation algorithm must know the absolute position of the rotor.  With an absolute sensor such as a 
resolver, the phase referencing must be done just once, on assembly of the system.  With an incremental 
sensor such as an incremental optical encoder, the phase referencing must be done every time the system 
is powered up.  If incremental sensor power on signal is lost, even if controller power is retained, the 
phase referencing must be done again before enabling the signal. 

Hall-effect commutation sensors, or their equivalent on an optical encoder, are absolute, but of a very low 
resolution (+30oe).  In a high-performance application, they are suitable to create a rough, temporary 
phase reference, permitting movement until a more accurate reference is established. 

The index pulse on an incremental encoder is absolute with high accuracy, but in general, there must be 
movement before this pulse is reached.  This requires at least a rough phasing, either from a low-
resolution absolute sensor such as hall effect, or from a power-on phasing search. 

WARNING: 
It is important for the safety of the machine that a reliable phase referencing 
method be used, whether with an absolute or incremental sensor.  If the phase 
reference is incorrect by more than 1/4 of the phasing cycle, runaway will occur 
when the servo loop is closed.  Test the phase referencing carefully with a bare 
motor before attaching a load, to make sure the method is reliable.  Before 
attaching a load, make sure that the Turbo PMAC fatal following error limit 
parameter Ixx11 and the amplifier overcurrent fault are active and working 
properly.  Also make sure that required mechanical protections are in place. 

Preparation 
These tests require that both the commutation and current loop be working properly.  Double-check that 
the setup variables are correct for these actions, especially ones that may have been changed for earlier 
tests.  For motor 1, make sure: 
• I100=1 to activate the motor 
• I101=1 to enable commutation 
• I170 and I171 are set to their proper value 
For these tests, we will want access to the motor phase position register, where Turbo PMAC keeps track 
of where it is in the phase cycle.  The phase position register is 48 bits long, using both X and Y memory.  
The Y-memory portion of this register has only fractional information, so we will use only the X-memory 
portion.  Its units are (counts*Ixx70).  The registers are: 
Phase Position Angle Registers 

Motor # 1 2 3 4 5 6 7 8 
Address X:$00B4 X:$0134 X:$01B4 X:$0234 X:$02B4 X:$0334 X:$03B4 X:$0434 
Motor # 9 10 11 12 13 14 15 16 
Address X:$04B4 X:$0534 X:$05B4 X:$0634 X:$06B4 X:$0734 X:$07B4 X:$0834 
Motor # 17 18 19 20 21 22 23 24 
Address X:$08B4 X:$0934 X:$09B4 X:$0A34 X:$0AB4 X:$0B34 X:$0BB4 X:$0C34 
Motor # 25 26 27 28 29 30 31 32 
Address X:$0CB4 X:$0D34 X:$0DB4 X:$0E34 X:$0EB4 X:$0F34 X:$0FB4 X:$1034 
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This register normally varies from -Ixx71/2 to +Ixx71/2, although if monitoring it, sometimes it will jump 
by Ixx71 units and be temporarily outside this range.  This is normal behavior.  Access to this register is 
useful in many ways for establishing a phase reference.  Define the suggested M-variable for the Motor 1 
phase position register: 
M171->X:$00B4,0,24,S  ; Motor 1 phase position (counts*Ixx70) 

Add this M-variable to the Watch window. 

Current-Command Six-Step Test 
The basic technique we will use here, either for a one-time phase reference with an absolute sensor or 
power-up phase reference with an incremental sensor, is all or part of the current command six-step test. 
This is similar to the voltage command six-step test described above, except the current loops are active.  
We use the ADC input offset registers to bias the phase current feedback, and hence the phase command 
outputs, to drive the motor as a stepper motor to a particular location in the commutation cycle, usually 
the 0o position.  Then we can write a 0 to the phase position register. 

Ixx29 is the A-phase offset; Ixx79 is the B-phase offset.  The third phase is not directly commanded; 
Turbo PMAC will command it automatically as part of the digital current loop to balance the first two 
phases.  For motor 1, the following sequence of commands for the current six-step test, and the expected 
results, could be: 
#1O0 ; Open loop command of zero magnitude 
I179=3000 I129=0 ; Step 1: (A) 0oelec.; (B) 180oelec. 
I179=3000 I129=-3000 ; Step 2: (A) -60oelec.; (B) 120oelec. 
I179=0 I129=-3000 ; Step 3: (A) -120oelec.; (B) 60oelec. 
I179=-3000 I129=0 ; Step 4: (A) 180oelec.; (B) 0oelec. 
I179=-3000 I129=3000 ; Step 5: (A) 120oelec.; (B) -60oelec. 
I179=0 I129=3000 ; Step 6: (A) 60oelec.; (B) -120oelec. 
I179=3000 I129=0 ; Step 1: (A) 0oelec.; (B) 180oelec. 

Case (A) is the proper result for all direct PWM setups (Ixx82>0), regardless of the setting of Ixx72.  It is 
the proper result for sine-wave output setups (Ixx82=0) with Ixx72<1024.  Case (B) is the proper result 
for sine-wave output setups (Ixx82=0) with Ixx72>1024. 

These commands will force about 1/10 of maximum current into phases to drive the motor to known 
positions in the phase cycle.  Remember to clear the offsets when you are finished with this test: 
I179=0 I129=0 

Direction-Balance Fine-Phasing Test 
The stepper motor phasing test will establish a phase reference typically to within 1 or 2 degrees.  This is 
adequate for many purposes, but for complete optimization of the motor phase reference, it is necessary to 
perform another test, described below.  This test finds the best phase reference by making sure that key 
performance measures are the same in both directions.  Usually the improvement seen in performance 
from this fine phasing is better smoothness, not increased torque. 

The use of current-loop integrator registers as explained below can be used only in direct PWM systems.  
The tests can still be run on sine-wave output systems, but the measurement to be compared in both 
directions is the motor velocity.  This can simply be read in the position window of the PMAC Executive 
Program.  This measurement, which is also possible on direct PWM systems, is not quite as sensitive to 
phase differences as the measurement explained below, but can still result in an improvement. 

This test needs to be performed only once for a given motor.  Its purpose is to establish a relationship 
between the motor phase angle and an absolute sensor on the motor (e.g. resolver or incremental encoder 
index pulse).  Most motor manufacturers who mount feedback devices in the factory do not specify a 
mounting repeatability tolerance (between motor phase angle and sensor angle) tighter than 1 or 2 
degrees, so the results of this test do not necessarily carry from one motor to another of a given design. 
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Note: 
Generally, this test is not appropriate for linear motors, because of the relatively 
uncontrolled movement it produces.  It should only be done on unloaded rotary 
motors.  On linear motors, a fine phasing test can be done by adjusting the phase 
position register so that no movement occurs when a large value of Ixx77 (e.g. 
16,000) is given with an O0 command.  The test should start with small values, and 
movement quickly stopped with a K command. 

Preparation 
In the Detailed Plot menu of the data gathering section of the PMAC Executive program, set up to gather 
the Direct Integrator Output and Quadrature Integrator Output registers.  The gathering period should be 
set to about 10 servo cycles.  The addresses of the registers for each of the motors is: 
Direct Integrator Output Registers 

Motor # 1 2 3 4 5 6 7 8 
Address Y:$00BC Y:$013C Y:$01BC Y:$023C Y:$02BC Y:$033C Y:$03BC Y:$043C 
Motor # 9 10 11 12 13 14 15 16 
Address Y:$04BC Y:$053C Y:$05BC Y:$063C Y:$06BC Y:$073C Y:$07BC Y:$083C 
Motor # 17 18 19 20 21 22 23 24 
Address Y:$08BC Y:$093C Y:$09BC Y:$0A3C Y:$0ABC Y:$0B3C Y:$0BBC Y:$0C3C 
Motor # 25 26 27 28 29 30 31 32 
Address Y:$0CBC Y:$0D3C Y:$0DBC Y:$0E3C Y:$0EBC Y:$0F3C Y:$0FBC Y:$103C 

Quadrature Integrator Output Registers 
Motor # 1 2 3 4 5 6 7 8 
Address X:$00BC X:$013C X:$01BC X:$023C X:$02BC X:$033C X:$03BC X:$043C 
Motor # 9 10 11 12 13 14 15 16 
Address X:$04BC X:$053C X:$05BC X:$063C X:$06BC X:$073C X:$07BC X:$083C 
Motor # 17 18 19 20 21 22 23 24 
Address X:$08BC X:$093C X:$09BC X:$0A3C X:$0ABC X:$0B3C X:$0BBC X:$0C3C 
Motor # 25 26 27 28 29 30 31 32 
Address X:$0CBC X:$0D3C X:$0DBC X:$0E3C X:$0EBC X:$0F3C X:$0FBC X:$103C 

Executing the Test 
Before performing this test, first use the stepper-motor method of phasing to get close.  Then, in the 
terminal window of the Data Gathering section of the PMAC Executive, you can use the following set of 
commands (wait a couple of seconds between commands): 
DEFINE GATHER ; Reserve memory for gathered data 
GAT O10 ; Positive command 
O-10 ; Negative command 
ENDG K ; Stop gathering and kill motor 

Upload the gathered data and plot direct and quadrature voltage vs. time.  The goal is to have the average 
direct voltage reading be the same for the moves in both directions.  The quadrature voltage will change 
in sign at the move reversal.  To adjust the system, wait until the motor is stopped after the test (M171 is 
constant) and make a small adjustment to the M171 phase position register with a command like: 
M171=M171+5 

Then repeat the test as needed until the direct voltage readings are as close as possible in both directions.  
This test is sensitive to a count of phasing error, so the last change should probably be +1 count. 

Using the Test Results for Absolute Sensor 
This test is useful only when matching the super-accurate phase position to an absolute position sensor or 
the index pulse of an incremental sensor.  With an absolute sensor, assign an M-variable to the sensor 
register, and add this to the Watch window.  For example: 
M175->TWR:0,0 ; Abs. pos. of 1st resolver on 1st Acc-8D Opt 7 R/D 
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Make sure the motor is completely at rest.  Now multiply the sensor position value read by I170, and 
subtract this from the phase position read by M171.  (If the motor is moved manually so that M171=0, the 
product can be negated).  Enter this value into I175 using a statement such as: 
I175=M171-(M175*I170) 

Finally, set up I181 to read the absolute sensor on subsequent Turbo PMAC resets and store these values 
with the SAVE command.  Perform another phase reference on this motor. 
Using the Test Results for Incremental Index Pulse 
For the incremental encoder index pulse, we will use the position capture feature to note where the index 
is.  Set variable I7mn2 (MS{node},MI912 for a MACRO Station) to 1 if there is a high-true index 
pulse, or to 9 if there is a low-true index pulse.  (To see which it is, define Mxx19 to its suggested 
definition and put it in the Watch window.  Generally, if it is 0 there is a high-true pulse.)  With a 
PMAC2-style Servo IC, to make sure the effective index pulse is only 1 count wide, set I7mn4 
(MS{node},MI912 for a MACRO Station) to 1, and I7mn5 (MS{node},MI912 for a MACRO 
Station) to the appropriate value for the encoder. 
Now assign an M-variable to the encoder flag capture register: 
M103->X:$078003,0,24,S ; Encoder 1 flag capture register 

Add this to the Watch window.  With the motor at rest, note the phase position value in M171 and the 
encoder position register in M101.  Write these values down.  Now turn/push the motor manually in the 
direction to home to the machine until M103 changes.  The new value is the value of the encoder register 
captured at the index pulse. 
Subtract your starting M101 value from this new M103 value.  Multiply the difference by I170 and add 
this to the starting M171 value.  The result is the value we will write to the phase position register when 
we are settled at the index to refine our initial rough phasing.  Mathematically speaking: 

( ) 171StartM101StartM103IndexM*170IPosIndexPhase +−=  

Alternately, in a technique that is easier mathematically but harder physically, put M119 in the Watch 
window (or the index signal on an oscilloscope) and turn the motor shaft until it stops on the index pulse.  
Read the M171 phase position register value.  This is the value we will write to the phase position register 
when we are settled at the index to refine our initial rough phasing. 
Using Hall-Effect Sensors for Phase Reference 
Hall-effect sensors or their optical equivalents on a commutation encoder, for a 3-phase motor can be 
used for rough phasing on power-up without the need for a phasing search move.  This initial phasing 
provides reasonable torque, but it will need to be corrected for top operation.  Usually the correction is 
done when the index pulse is reached, in the same technique that is described above for the correction 
after a power-on phasing search move.   

Hall-effect sensors usually map out 6 zones of 60oelec. each.  In terms of Turbo PMAC’s commutation 
cycle, the boundaries should be at 180o, -120o, -60o, 0o, 60o, and 120o.  Typically a motor manufacturer 
will align the sensors to within a few degrees of this, because these are the proper boundary points if all 
commutation is done from the commutation sensors.  If mounting the hall-effect sensors, take care to 
align the boundaries at these points.  The simplest way is to force the motor to the zero degree point with 
a current offset (as shown above) and adjust the sensor while watching its outputs to get a boundary as 
close as possible to this point. 
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Preparation 
Define M-variables to the hall-effect or equivalent inputs.  Suggested definitions for Channel 1 on a 
PMAC2-style Servo IC are: 
M124->X:$078000,20 ; Channel 1 W flag 
M125->X:$078000,21 ; Channel 1 V flag 
M126->X:$078000,22 ; Channel 1 U flag 
M127->X:$078000,23 ; Channel 1 T flag (not usually hall) 
M128->X:$078000,20,4 ; Channel 1 TUVW as a 4-bit value 

Make these definitions and add these variables to the Watch window. (Delete other variables that are no 
longer monitored.)  With the motor killed, move the motor slowly by hand to verify that the inputs 
expected to change do change. 

Executing the Test 
To map the hall-effect sensors, we will use the current-loop six-step test, or a variant of it, to force the 
motor to known positions in the commutation cycle, and observe the states of the hall-effect signals.  The 
current-loop test shown above should force the motor right to the boundaries of the hall-effect zones.  If 
you use these commands, move the motor by hand a little bit at each point to observe the transition. 

Force the motor to the expected mid-point of each hall-effect zone instead (or in addition). To do this, the 
command sequence would be: 
#1O0 ; Open loop command of zero magnitude 
I179=3000 I129=-1500 ; Step 1: (A)-30oelec.; (B)150oelec. 
I179=1500 I129=-3000 ; Step 2: (A)-90

o
elec.; (B)90oelec. 

I179=-1500 I129=-1500 ; Step 3: (A)-150
o
elec.; (B)30oelec. 

I179=-3000 I129=1500 ; Step 4: (A)150
o
elec.; (B)-30oelec. 

I179=-1500 I129=3000 ; Step 5: (A)90
o
elec.; (B)-90oelec. 

I179=1500 I129=1500 ; Step 6: (A)30
o
elec.; (B)-150oelec. 

I179=3000 I129=-1500 ; Step 1: (A)-30
o
elec.; (B)150oelec. 

Case (A) is the proper result for all direct PWM setups, regardless of the setting of Ixx72.  It is the proper 
result for sine-wave output setups with Ixx72<1024.  Case (B) is the proper result for sine-wave output 
setups with Ixx72>1024. 
Remember to clear the offsets when finished with this test: 
I179=0 I129=0 

It is advisable to create a table listing the values of M124 through M128 for each position.  An example 
table would be: 

Step M179 M129 Cycle 
Pos. 

Physical 
Position 

M101 
(counts) 

M126 
(U) 

M125 
(V) 

M124 
(W) 

M128 
(TUVW) 

1 +3000 -1500 -30o 3:30 -9001 0 1 0 2 
2 +1500 -3000 -90o 2:30 -9343 1 1 0 6 
3 -1500 -1500 -150o 1:30 -9673 1 0 0 4 
4 -3000 +1500 +150o 12:30 -10030 1 0 1 5 
5 -1500 +3000 +90o 11:30 -10375 0 0 1 1 
6 +1500 +1500 +30o 10:30 -10709 0 1 1 3 
1 +3000 -1500 -30o 9:30 -11050 0 1 0 2 

Note:  

If the T flag input is 1, the values of Mx28 will be 8 greater than what is shown in 
the table. 
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Using the Test Results 
To execute a power-on phasing using the hall-effect sensors, you can use new modes of the Ixx81 power-
on phase position parameter, or write a simple PLC program that executes once on power-up/reset.   

Setting bit 23 of Ixx81 to 1 specifies a hall-effect power-on phase reference.  In this case, the address 
portion of Ixx81 specifies a Turbo PMAC X-address, usually that of the flag register used for the motor, 
the same address as in Ixx25. 

Turbo PMAC expects to find the hall-effect inputs at bits 20, 21, and 22 of the specified register.  In a flag 
register, these bits match the CHWn, CHVn, and CHUn inputs, respectively.  Hall-effect inputs are 
traditionally labeled U, V, and W. 

Each hall-effect signal must have a duty cycle of 50% (180oe).  PMAC can use hall-effect commutation 
sensors separated by 120oe.  There is no industry standard with hall-effect sensors as to direction sense or 
zero reference, so this must be handled with software settings of Ixx81. 

Bit 22 controls the direction sense of the hall-effect sensors as shown in the following diagrams, where a 
value of 0 for bit 22 is standard and a value of 1 is reversed: 

U

V

W

-30 30 90 150 -150 -90

1

0
1

0
1

0

30 -30 -90 -150 90150
Standard:
Reversed:

UVW Value: 1 3 2 6 4 5

 
This diagram shows the hall-effect waveforms with zero offset, defined such that the V-signal transition 
when the U-signal is low (defined as the zero point in the hall-effect cycle) represents the zero point in 
PMAC’s commutation cycle.   

If the hall-effect sensors do not have this orientation, bits 16 to 21 of Ixx81 can be used to specify the 
offset between PMAC’s zero point and the hall-effect zero point.  These bits can take a value of 0 to 63 
with units of 1/64 of a commutation cycle (5.625oe).   

The offset can be computed using the mapping test shown above.  In our example, the hall effect zero 
(HEZ) point was found to be between 30oe and 90oe, so we will call 60oe.  The offset value can be 
computed as 

64*
o

o360

360%HEZ
Offset =  

The offset computed here should be rounded to the nearest integer. 
In our example, this comes to: 

hex011667.1064
o360

o60
64

o

o360

360%o60
Offset Β=≈=∗=∗=  

The test showed that the hall-effect sensors were in the standard direction, not reversed, so bit 22 is left at 
zero.  With bit 23 (a value of 8 in the first hex digit) set to 1 to specify hall effect sensing, the first two 
hex digits of Ixx81 become $B5.  If Flag register 1 at address $C000 were used for the hall-effect inputs, 
Ixx81 would be set to $B5C000. 
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The description of Ixx81 in the Software Reference Manual shows the common values of offsets used, for 
all the cases where the zero point in the hall-effect cycle is at a 0o, 60o, 120o, 180o, -120o, or -60o point – 
where manufacturers generally align the sensors. 

Note:  

Ixx81 in Turbo is used for address only (i.e. same as Ixx25).  Ixx91 in Turbo is 
used for bits 16-21, 22 and 23. 

Note that Ixx75 is not used for the phase position offset in this method.  It can be used to store the final 
correction based off fine phasing. 

Overall Procedure Summary 
The full phase reference then consists of the following steps: 
1. Do a rough phase reference using the hall-effect sensors as specified by Ixx81, either automatically 

on power-up/reset if Ixx80=1, or on the $ command if Ixx80=0. 
2. Do a homing search move on the motor, using the index pulse as part of the home trigger. 
3. Wait for the motor to settle “in-position” (following error less than Ixx27) at the home position using 

the motor in-position status bit – suggested M-variable Mxx40 – [WHILE(M140=0)...] 
4. Force the motor phase position register to the pre-determined value at this point with a command like 

Mxx71=Ixx75. 

PLC-Based Hall-Effect Reference 
Alternately a power-on PLC program could be used to do the hall-effect phasing.  This is useful if extra 
error trapping is desired, or if sensors of a different format are used. 
A program based on the results of our example table would be: 
;****************** Set-up and Definitions ******************** 
CLOSE ; Make sure all buffers are closed 
M148->X:$0000C0,8,1 ; Motor 2 phasing error fault bit 
M171->X:$0000B4,0,24,S  ; Motor 2 phase position register 

;****************** Program to do phasing search ************** 
OPEN PLC 1 CLEAR 
M148=1 ; Tentatively set phasing error bit 
IF (M128&7=2) ; Hall Effect State 1 (0 to -60 deg)? 
  M171=I171/-12 ; Set phase angle to -30 deg 
  P170=1 ; Phasing OK flag 
ENDIF 
IF (M128&7=6) ; Hall Effect State 2 (-60 to -120 deg)? 
  M171=I171*-3/12 ; Set phase angle to -90 deg 
  P170=1 ; Phasing OK flag 
ENDIF 
IF (M128&7=4) ; Hall Effect State 3 (-120 to -180 deg)? 
  M171=I171*-5/12 ; Set phase angle to -150 deg 
  P170=1 ; Phasing OK flag 
ENDIF 
IF (M128&7=5) ; Hall Effect State 4 (180 to 120 deg)? 
  M171=I171*5/12 ; Set phase angle to 150 deg 
  P170=1 ; Phasing OK flag 
ENDIF 
IF (M128&7=1) ; Hall Effect State 5 (120 to 60 deg)? 
  M171=I171*3/12 ; Set phase angle to 90 deg 
  P170=1 ; Phasing OK flag 
ENDIF 
IF (M128&7=3) ; Hall Effect State 6 (60 to 0 deg)? 
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  M171=I171/12 ; Set phase angle to 30 deg 
  P170=1 ; Phasing OK flag 
ENDIF 
IF (M128&7=0 OR M128&7=7) ; Invalid states 
  P170=0 ; Phasing not OK 
ENDIF 
IF (P170=1) ; Phasing OK? 
  M148=0 ; Clear phasing error bit 
  CMD"#1J/" ; Enable motor 
ELSE 
  CMD"#1K" ; Not OK; disable motor 
ENDIF 
DISABLE PLC 1 ; So program will not repeat 
CLOSE 

Notes on this program: 
• The reason for the &7 (bit-by-bit AND with 7 [0111]) operation is to remove the effect of the T-flag 

input, which is the most significant bit of the 4-bit M-variable. 

• This phasing estimate has a potential error of +30oe. 
This tentative phasing will serve until we move the motor to the encoder index pulse, at which time we 
will force M171 to the value we found with the fine phasing. 

Power-On Phasing Search 
If a non-absolute sensor is used for commutation, Turbo PMAC must perform a search move for the 
proper phasing reference every time it powers up (with an absolute sensor, this needs to be done only 
once in the development of the system).  There are several ways to do this phasing search. Turbo PMAC 
has two automatic methods executed by firmware; other methods or enhancements of these methods can 
be executed with PLC programs. 

A power-on phasing search permits commutation of permanent-magnet brushless motors without the need 
for a more expensive and possibly less accurate absolute sensor.  However, a phasing search may not be 
dependable in some applications; in these cases an absolute sensor will be required. 

The estimate from a power-on phasing search should be within +1-2oe of the true zero position, so many 
people will just use the phasing established here throughout the application.  It is possible also to adjust 
the estimate when settled at the index pulse, using the results of the fine phasing test described above. 

WARNING:  
An unreliable phasing search method can lead to a runaway condition.  Test the 
phasing search method carefully to make sure it works properly under all 
conceivable conditions.  Make sure the Ixx11 fatal following error limit is active 
and as tight as possible so the motor will be killed quickly in the event of a serious 
phasing search error. 

When properly phased, a positive O-command should cause movement in the positive direction; a 
negative O-command should cause movement in the negative direction.  If the opposite results are 
received, there will be a dangerous runaway condition when the servo loop is closed. 

Two-Guess Phasing Search 
Turbo PMAC’s first automatic phasing search method is called the two-guess phasing search, because it 
makes two arbitrary guesses as to the phase position, briefly applies a torque command using each guess, 
and observes the response of the motor to each command.  Based on the magnitude and direction of the 
two responses, Turbo PMAC calculates the proper phasing reference point.  It then starts the commutation 
based on this reference, and closes the servo loop to hold position. 
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The two-guess phasing search is quick and requires little movement.  It works well provided that external 
loads such as gravity and friction are low.  However, if there are significant external loads, it may not 
prove to be a reliable phasing-search method (and unreliable phasing search methods can be dangerous); 
if this is the case, another method such as the stepper-motor method described below should be used. 

The two-guess method is selected by setting Ixx80 to 0 or 1.  With Ixx80 at 0, the phasing search is not 
executed automatically during the power-on/ reset cycle; a $ command must be used to execute the 
phasing search.  With Ixx80 at 1, the phasing search will automatically be executed during the power-on 
reset cycle; also, it can be subsequently executed with a $ command. 

Two parameters must be specified to tell Turbo PMAC how to do this phasing search.  Ixx73 specifies the 
magnitude of the torque command during each guess, with units of 16-bit DAC bits.  Typical values are 
2000 to 6000; 4000 (about 1/8 of full range) is a usual starting point.  Ixx74 sets the duration of each 
torque command and the evaluation of its response, with units of servo cycles.  Typical values are 3 to 10; 
5 (about 2 msec at the default servo update) is a usual starting point. 

Stepper-Motor Phasing Search 
The other automatic method of phasing search for a synchronous motor is the stepper-motor method.  
This method forces current through particular phases of the motor, as a stepper-motor controller would, 
and waits for it to settle.  With proper operation, this will be at a known position in the commutation 
cycle.  This method is equivalent to two steps of the current-loop six-step test described above. 

The stepper-motor phasing search requires more movement and more time than the two-guess method, 
but it is more reliable in finding the phase accurately in the presence of large external loads. 

The stepper-motor method is selected by setting Ixx80 to 2 or 3.  With Ixx80 at 2, the phasing search is 
not executed automatically during the power-on/reset cycle; a $ command must be used to execute the 
phasing search.  With Ixx80 at 3, the phasing search will be executed automatically during the power-on 
reset cycle (this is not recommended); also, it can be subsequently executed with a $ command. 

In this method, Ixx73 controls the magnitude of the current through the phases, with 32,767 representing 
full range.  Typically a value near 3000, about 1/10 of full range, will be used, although the actual value 
will depend on the loads. 

Ixx74 controls the settling time for each of the two steps used in the search.  In this mode, the units of 
Ixx74 are servo cycles*256, about 1/10 sec with the default servo cycle time.  Typically a settling time of 
1-2 seconds is used. 

In the stepper-motor phasing search, Turbo PMAC first forces current to put the motor at the +/-60o point 
in the phasing cycle and then waits for the settling time.  Then it forces current to put the motor at the 0o 
point in the phasing cycle and again waits for the settling time.  It checks to see that there has been at least 
1/16 cycle (22.5o) movement between the two steps.  If there has been, it forces the phase position register 
to 0, clears the phasing-search-error motor status bit, and closes the servo loop.  If it has detected less 
movement than this, it sets the phasing-search-error bit, and disables (kills) the servo loop. 

If the stepper motor phasing search is done outside of the power-on/reset cycle, the phasing search 
algorithm will fail on detection of an amplifier fault or overtravel limit condition.  Turbo PMAC will set 
the phasing-search-error bit and disable the servo loop.  If done inside the power-on/reset cycle, Turbo 
PMAC cannot detect these errors automatically, but the search will likely fail due to lack of movement. 

Custom Phasing Search Methods 
It may be necessary or desirable to write a custom phasing-search algorithm.  Usually these are executed 
as Turbo PMAC PLC programs, but often they can be tried and debugged using on-line commands.  The 
on-line commands are particularly useful if the phasing search is done only in development to establish a 
reference for an absolute sensor. 
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Most custom algorithms are variations on the stepper-motor phasing search method.  They use the phase-
current offset values Ixx29 and Ixx79 with an O0 command to force current into particular phases so the 
motor will lock at a certain physical position in its phasing cycle.  The following table shows the positions 
in the phasing cycle created by different combinations of Ixx29 and Ixx79 for 3-phase motors.  Usually 
the magnitudes of the non-zero values are 2000 to 3000: 

Ixx29 =0 <0 <0 =0 >0 >0 
Ixx79 >0 >0 =0 <0 <0 =0 
(A). Phase Pos. 0oe -60oe -120oe +180oe 120oe 60oe 
(B). Phase Pos. +180oe 120oe 60oe 0oe -60oe -120oe 

Case (A) shows the resulting positions for all direct PWM systems and for sine-wave output systems with 
Ixx72<1024. 

Case (B) shows the resulting phase positions for sine-wave output systems with Ixx72>1024. 

For example, the following set of on-line commands typed into the terminal window of the Executive 
program could be used to force a motor to the zero position in its phasing cycle, set the phase position 
register as zero, and enable the motor. 
#1O0 ; Enable the motor with open-loop zero magnitude 
I129=0 ; No offset on Phase A 
I179=3000 ; Positive offset on Phase B to force to 0 deg 
M171=0 ; Write zero into phase position register 
I179=0 ; No offset on Phase B 
J/ ; Close servo loop 

The time between typing the commands would provide sufficient delay for settling into position. 
The following PLC program is a good starting point for variants on the stepper-motor phasing search 
method.  Extensions to this program could be to phase two gantry motors simultaneously or to step out of 
a position limit.  This example uses Ixx73 and Ixx74 as they would be used in the automatic stepper-
motor phasing search method. 
;****************** Set-up and Definitions ******************** 
CLOSE ; Make sure all buffers are closed 
M248->X:$000140,8,1 ; Motor 2 phasing error fault bit 
M271->X:$000134,0,24,S  ; Motor 2 phase position register 
;****************** Program to do phasing search ************** 
OPEN PLC 1 CLEAR 
CMD"#2O0" ; Force zero-magnitude open-loop 
M248=1 ; Tentatively set phasing error bit 
P229=I229 ; Save real Phase A bias 
P279=I279 ; Save real Phase B bias 
I229=-I273 ; Force negative bias into A 
I279=I273 ; Force positive bias into A 
I5111=I274*256 ; Starting value for countdown timer 
WHILE (I5111>0) ; Wait for prescribed time 
ENDWHILE 
P271=M271 ; Store phase position at this point 
I229=P229 ; Restore real bias to A for 0 deg 
I5111=I274*256 ; Starting value for countdown timer 
WHILE (I5111>0) ; Wait for prescribed time 
ENDWHILE 
P271=P271-M271 ; Get difference between two positions 
IF (I282>0 OR I272<1024) ; Direct PWM or check analog phase 
  M271=0 ; Set phase position to zero 
ELSE ; Analog system with Ixx72>1024 
  M271=I271/2 ; Set phase position to 180 deg 
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I279=P279 ; Restore real bias to B 
IF (ABS(P271)>I271/12) ; Greater than 1/12 cycle? 
  M248=0 ; Clear phasing error bit 
  CMD"#2J/" ; Close servo loop 
ELSE ; Not enough movement 
  CMD"#2K" ; Bad phasing, kill 
  SEND"PHASING FAILED" 
DISABLE PLC 1 ; Keep from executing again 
CLOSE 

WARNING:  
Make sure an algorithm of this type can be executed reliably.  Do not attempt this 
algorithm if the position sensor or drive is unpowered or faulted.  Turbo PMAC 
does not permit the open-loop enabled state required for this PLC if it is into 
overtravel limits.  The automatic overtravel limit functions may have to be 
disabled with Ixx13, Ixx14, and Ixx24.  Special logic may be required to step out 
of a limit before the full phasing can be done.  Remember that improper phase 
referencing can lead to runaway conditions.  Make sure that both Turbo PMAC 
fatal following error limit Ixx11 and amplifier overcurrent fault protections are 
active and working. 

Final Phase Correction with Index Pulse 
To make the final phase correction, move the Turbo PMAC motor to the index pulse and force the value 
obtained during the fine phasing test into the phase position register.  Before doing this, the 
position/velocity servo loop must be reasonably tuned; the tuning for this loop is the same as for any other 
PMAC motor. 

Usually the move to the index pulse will be the homing search move, where the trigger for the home 
position includes the leading edge of the index pulse; typically the first index pulse inside the home flag 
pulse.  I-variables I7mn2 and I7mn3 control the home trigger.  Typically the preliminary phasing will 
permit a reasonable move all the way to the home position.  It is also possible to perform a preliminary 
homing search to the first index pulse, correct the phase, and then do the real homing search. 

Once arriving at a known position in the commutation cycle, use the SETPHASE command to force a 
predetermined value into the phase position register.  When the SETPHASE command is executed, the 
value in motor parameter Ixx75 is copied into the phase position register immediately.  The SETPHASE 
command can be used as an on-line command, in a motion program, or in a PLC program. 
A sample motion program segment that performs the homing search and phase correction is: 
HOME1 ; Command homing search move 
WHILE (M140=0) WAIT ; Loop until in position 
SETPHASE ; Force value into phase position register 
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Finishing Setting up Turbo PMAC Commutation (Direct PWM or Sine 
Wave), Asynchronous (Induction) Motors 
Turbo PMAC commutation of an AC induction motor requires the setup of two I-variables that can be left 
at 0 for permanent-magnet brushless motors.  One variable is the Ixx77 magnetization-current parameter 
(which is usually left at 0 for permanent-magnet motors, but can be changed for them).  The other 
variable is the Ixx78 slip-gain parameter (which must be left at 0 for permanent-magnet motors). 

Typically, the Turbo Setup program can be used to set Ixx77 and Ixx78 automatically.  The program 
stimulates the induction motor to infer its parameters, and sets these terms appropriately for the results it 
gets.  This section explains analytical and experimental methods for setting these parameters.  These settings 
are independent of any mechanical load, so any tests can and should be done with an unloaded motor. 

Calculating Ixx78 Slip Constant 
Calculating from Name Plate Data 
The slip constant parameter Ixx78 for an induction motor can be calculated simply from basic parameters 
for the motor and for the Turbo PMAC.  The following is needed: 
• The rated speed for the motor, usually given in revolutions per minute (rpm). 
• The electrical line frequency given for this rated speed, usually given in Hertz (Hz), or cycles/sec. 
• The number of poles for the motor. 
• The Turbo PMAC’s phase update period, usually given in microseconds (µs). 
The rated speed can be subtracted from the line frequency (after conversion to consistent units) to get the 
slip frequency.  This can be multiplied by the phase update period (again after conversion to consistent 
units) to get the Ixx78 slip constant.  The formula is: 

( )
768,32

std_magI
*pT*me78Ixx ωω −=  

where: 
ωe is the electrical frequency given, in radians/sec.  To calculate from frequency in Hertz, multiply by 2π 
(6.283). 
ωm is the rated mechanical pole frequency, in radians/sec.  To calculate from motor rated speed in rpm 
and the number of poles, divide the speed in rpm by 60, multiply by 2π (6.283), then multiply by the 
number of poles and divide by 2. 
Tp is the Turbo PMAC’s phase update time in seconds.  To convert from microseconds, divide by one 
million.  For a Turbo PMAC2, the phase update time can be calculated as: 

( )[ ] ( )[ ]
11796480

1619II*3719II*2
pT

+−+−
=  

where I19 is the Turbo PMAC2 parameter containing the number of the clock direction I-variable for the 
Servo IC or MACRO IC that is the source of the phase and servo clocks for the system.  Usually I19 is set 
to 6807 for a Turbo PMAC2 Ultralite to specify MACRO IC 0 (so I6800 and I6801 set the phase update); 
usually it is set to 7007 for a board-level Turbo PMAC2 to specify Servo IC 0 (so I7000 and I7001 set the 
phase update); usually it is set to 7207 for a UMAC Turbo to specify Servo IC 2 (so I7200 and I7201 set 
the phase update). 

Imag_std is the value of the magnetization current parameter Ixx77 that would produce the same rated 
speed/torque point as the direct operation off the AC lines.  For a first calculation, use a value of 3500 
here.  Usually, it is close enough.  If the value of Ixx77 is set as explained in the next section for this type 
of operation, come back and adjust this calculation. 



 Turbo PMAC User Manual 

128 Setting Up Turbo PMAC-Based Commutation and/or Current Loop 

Example: 
A 4-pole induction motor has a rated speed of 1740 rpm at a 60 Hz electrical frequency.  It is being 
controlled from a UMAC Turbo with default clock source and frequency.  The electrical frequency is:  
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In a UMAC Turbo, the default clock source is Servo IC 2 (I19=7207).  The default value for I7200 is 
6527, and the default value for I7201 is 0.  The phase update time can be calculated as: 

( ) ( )
sec000111.0

117964800

10*36527*2
pT =

++
=  

Ixx78 can now be calculated as: 

( ) 000149.0
32768

3500
*000111.0*4.3640.37778Ixx =−=  

Calculating from Rotor Time Constant 
Occasionally, the L/R electrical time constant of the induction motor’s squirrel-cage rotor can be obtained 
from the manufacturer (this is distinct from, and much larger than, the L/R electrical time constant of the 
stator windings).  The Ixx78 slip constant can be calculated easily from this value by the equation: 

rT

pT
78Ixx =  

where Tp is Turbo PMAC’s phase update time, and Tr is the rotor’s electrical time constant.  Remember to 
use the same units for both times. 
Example 
If running with a phase update frequency of 8 kHz and there is a rotor time constant of 0.75 seconds, 
calculate: 

000167.0
75.0

000125.0

rT

pT
78Ixx ===  

Experimentally Optimizing Slip Constant 
For a given magnetization current, the optimum slip constant will maximize the acceleration capabilities 
of the motor.  Changes from the optimum value of Ixx78 in either direction will degrade performance.  
Simple tests employing data gathering while using a low-valued O-command (e.g. O10) to accelerate the 
motor, permit easy optimization or verification of optimization of the Ixx78 value.  If the best value of 
Ixx77 magnetization current has not been selected, use a value of 3000 for these tests. 
Setting Ixx77 Magnetization Current 
Once there is a good value for the Ixx78 slip constant, find the best value of the Ixx77 magnetization-
current parameter.  Ixx77 sets the commanded value for the direct current component in commutation, the 
component in phase with the rotor’s measured/estimated magnetic field orientation.  Ixx77 determines the 
rotor’s magnetic field strength and so the torque constant Kt and back-EMF constant Ke for the motor.  If 
Ixx77 is not so high that it magnetically saturates the rotor, torque and back-EMF constants will be 
proportional to Ixx77. 
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The higher the value of Ixx77 (before saturation), the more torque is produced per unit of quadrature current 
commanded from the servo loop, but the higher the back-EMF generator voltage produced per unit of motor 
velocity, so the lower the maximum velocity can be achieved from a given supply voltage.  The lower the 
value of Ixx77, the less torque is produced per unit of commanded quadrature current, but the lower the 
back-EMF voltage produced per unit of velocity, so the higher the velocity that can be achieved. 
In most applications, a single value of Ixx77 will be set and left constant for the application.  However, it 
is possible to change Ixx77 dynamically as a function of speed, lowering it at high speeds so as to keep 
the back-EMF under the supply voltage, extending the motor’s speed range.  Generally, this technique is 
known as field weakening” and can be implemented in a PLC program. 
If the Turbo Setup program is not used to set the value of the Ixx77 magnetization-current parameter, it is 
best to do so experimentally.  With a good value of Ixx78 set, simply issue a low-valued O-command 
(e.g. O10) at each of several settings of Ixx77 and observe the end velocity the unloaded motor achieves.  
This can be done by watching the real-time velocity read-out in the Executive program’s position 
window.  If using the data gathering feature, also note the rate of acceleration to that speed. 
This velocity is known as the base speed for the motor for that setting.  Typically, a value of 3200 to 3500 
for Ixx77 will achieve the approximately a base speed equivalent to the rated speed of the motor when run 
directly from a 50 Hz or 60 Hz line. 
If the test values of Ixx77 are low enough that none of them magnetically saturate the rotor, the base 
speeds in the test will be approximately inversely proportional to the value of Ixx77 (and the accelerations 
to that speed will be approximately proportional to Ixx77).  If you start increasing Ixx77 into the range 
that causes magnetic saturation of the rotor, increases in Ixx77 will not cause further lowering of base 
speed and further increase in rate of acceleration to that speed. 
Many users will want a value of Ixx77 as high as possible without causing rotor saturation.  These users 
will want to find values of Ixx77 that do cause saturation, then reduce Ixx77 just enough to bring it out of 
saturation.  The Turbo Setup program finds this setting automatically. 

Direct Microstepping of Motors (Open-Loop Commutation) 
Turbo PMAC has the ability to do open-loop microstepping (direct microstepping) of standard stepper 
motors, working off internally generated pseudo-feedback for both commutation and servo algorithms.   
This technique is different from using Turbo PMAC with a pulse-and-direction output to command an 
external microstepping drive; that technique does not utilize Turbo PMAC’s commutation algorithms at all. 
When microstepping, Turbo PMAC provides two analog outputs that are used as current commands for 
phases of the motor.  Typically for a microstepping motor, the two phases are electrically independent and 
90o out of phase with each other.  In this case, the two outputs are simply bi-directional current 
commands for the H-bridge amplifiers driving each phase.  These amplifiers can be simple torque-mode 
(current-mode) DC brush motor amplifiers. 
Turbo PMAC’s microstepping algorithm provides 2048 microsteps per electrical cycle, which is 512 
microsteps/step.  On a typical 200-step/revolution motor, this amounts to 102,400 microsteps per 
revolution.  With the default phase update frequency of 9 kHz, Turbo PMAC can slew at over 4,600,000 
microsteps/second (9000 full steps per second).  With a small number of motors and/or fast versions of 
the Turbo PMAC, higher phase-update frequencies can be used. 
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Setting the I-Variables 
Setting up a motor for microstepping is simply a matter of setting motor I-variables according to the 
following list.  Since there is no feedback, there is no tuning necessary. 
Commutation Enable: Ixx01  
Set Ixx01 to 3 to enable Turbo PMAC commutation, reading a Y-register for commutation position 
feedback.  (See the Ixx83 section below.) 
Command Output Address: Ixx02 
Set Ixx02 to the lower address of the pair of output DACs being used (e.g. $078002 for DAC1 and DAC2 
on a Turbo PMAC or DAC1A and B on a Turbo PMAC2, $078420 for MACRO IC 0 Node 0 Registers 0 
and 1 for DACs on a remote MACRO Station.  This setting is the same as for using these registers with 
normal, closed-loop commutation.  The following tables show the settings for DAC pairs in PMAC-style 
Servo ICs, in PMAC2-style Servo ICs, and in MACRO ICs. 
Sine-Wave Mode Command Output Addresses –  
PMAC-style Servo ICs (Y-registers) 

IC# - Chan# 0 – 1&2 0 – 3&4 1 – 1&2 1 – 3&4 
Ixx02 $078002 $07800A $078102 $07810A 
IC# - Chan# 2 - 1&2 2 - 3&4 3 - 1&2 3 - 3&4 
Ixx02 $078202 $07820A $078302 $07830A 
IC# - Chan# 4 - 1&2 4 - 3&4 5 - 1&2 5 - 3&4 
Ixx02 $079202 $07920A $079302 $07930A 
IC# - Chan# 6 - 1&2 6 - 3&4 7 - 1&2 7 - 3&4 
Ixx02 $07A202 $07A20A $07A302 $07A30A 
IC# - Chan# 8 - 1&2 8 - 3&4 9 - 1&2 9 - 3&42 
Ixx02 $07B202 $07B20A $07B302 $07B309 

Servo ICs 0 and 1 are on the Turbo PMAC itself. 
Servo ICs 2 – 9 are on Acc-24P/V or Acc-51P boards. 
Channels 1 – 4 on odd-numbered Servo ICs are Channels 5 – 8 on the boards. 

Sine-Wave Mode Command Output Addresses – PMAC2-style Servo ICs (Y-registers) 
IC# - Chan# 0 - 1 0 - 2 0 - 3 0 - 4 1 - 1 1 - 2 1 - 3 1 - 4 
Ixx02 $078002 $07800A $078012 $07801A $078102 $07810A $078112 $07811A 
IC# - Chan# 2 - 1 2 - 2 2 - 3 2 - 4 3 - 1 3 - 2 3 - 3 3 - 4 
Ixx02 $078202 $07820A $078212 $07821A $078302 $07830A $078312 $07831A 
IC# - Chan# 4 - 1 4 - 2 4 - 3 4 - 4 5 - 1 5 - 2 5 - 3 5 - 4 
Ixx02 $079202 $07920A $079212 $07921A $079302 $07930A $079312 $07931A 
IC# - Chan# 6 - 1 6 - 2 6 - 3 6 - 4 7 - 1 7 - 2 7 - 3 7 - 4 
Ixx02 $07A202 $07A20A $07A212 $07A21A $07A302 $07A30A $07A312 $07A31A 
IC# - Chan# 8 - 1 8 - 2 8 - 3 8 - 4 9 - 1 9 - 2 9 - 3 9 - 4 
Ixx02 $07B202 $07B20A $07B212 $07B21A $07B302 $07B30A $07B312 $07B31A 

Servo ICs 0 and 1 are on the Turbo PMAC2 itself or on Acc-2E 3U-format stack boards. 
Servo ICs 2 – 9 are on Acc-24x2 or Acc-51E boards. 
Channels 1 – 4 on odd-numbered Servo ICs are Channels 5 – 8 on dual-Servo-IC boards. 

 



Turbo PMAC User Manual 

Setting Up Turbo PMAC-Based Commutation and/or Current Loop 131 

Sine-Wave Mode Command Output Addresses – MACRO ICs (Y-registers), Type 1 Protocol 
IC# - Node# 0 - 0 0 - 1 0 - 4 0 - 5 0 - 8 0 - 9 0 - 12 0 - 13 
Ixx02 $078420 $078424 $078428 $07842C $078430 $078434 $078438 $07843C 
IC# - Node# 1 - 0 1 - 1 1 - 4 1 - 5 1 - 8 1 - 9 1 - 12 1 - 13 
Ixx02 $079420 $079424 $079428 $07942C $079430 $079434 $079438 $07943C 
IC# - Node# 2 - 0 2 - 1 2 - 4 2 - 5 2 - 8 2 - 9 2 - 12 2 - 13 
Ixx02 $07A420 $07A424 $07A428 $07A42C $07A430 $07A434 $07A438 $07A43C 
IC# - Node# 3 - 0 3 - 1 3 - 4 3 - 5 3 - 8 3 - 9 3 - 12 3 - 13 
Ixx02 $07B420 $07B424 $07B428 $07B42C $07B430 $07B434 $07B438 $07B43C 

Direct Microstepping Enable: Ixx96 
Set the command-output mode variable Ixx96 to 1 to tell Turbo PMAC it is using direct microstepping for 
this motor. 

Encoder Conversion Table Entries: I8xxx 
Set up a two-line entry in the encoder conversion table (ECT) for each direct microstepping motor to 
process data from the phase position register for the motor.  The first setup line (I-variable) has a “6” as 
the first hex digit, telling the table to read a 48-bit Y/X register, followed by the phase-position register 
address in the last five hex digits.  The following table shows the required first setup line for each motor: 

Motor First Setup 
Line 

Motor First Setup 
Line 

Motor First Setup 
Line 

Motor First Setup 
Line 

1 $6000B4 9 $6004B4 17 $6008B4 25 $600CB4 
2 $600134 10 $600534 18 $600934 26 $600D34 
3 $6001B4 11 $6005B4 19 $6009B4 27 $600DB4 
4 $600234 12 $600634 20 $600A34 28 $600E34 
5 $6002B4 13 $6006B4 21 $600AB4 29 $600EB4 
6 $600334 14 $600734 22 $600B34 30 $600F34 
7 $6003B4 15 $6007B4 23 $600BB4 31 $600FB4 
8 $600434 16 $600834 24 $600C34 32 $601034 

The second setup line of each entry should be set to $00B018.  The first three hex digits specify that 11 
bits of the 48-bit register are to be used.  The last three hex digits specify that these bits start with Bit 24 
of the 48-bit Y/X register, which is Bit 0 of the X register.  In other words, the low 11 bits of the X 
register are used. 

For example, to use the first two lines of the ECT to process Motor 1’s phase position register, I8000 
would be set to $6000B4, and I8001 would be set to $00B018. 

Position Feedback Addresses: Ixx03 and Ixx04 
Set both Ixx03 and Ixx04 to the address of a register in the encoder conversion table that has processed 
data from the phase position register.  Remember to set them to the address of the second line of the entry.  
For example, for Motor 1 to use the result of the two-line first entry in the ECT in the above section’s 
example I103 and I104 would be set to $3502, the address of the second line.  Starting in firmware 
revision 1.937, this can be done by assigning the value to the address of the conversion table I-variable 
(e.g. I103=@I8001, I104=@I8001).  Because the phase position register, with 2048 microsteps per 
commutation cycle, is used for position feedback, one count is therefore defined as a microstep – 1/2048 
of a cycle, or 1/512 of a full step for a 2-phase motor. 

Position Scale Factors: Ixx08 & Ixx09 
Set both the Ixx08 and Ixx09 scaling factors to 32. 

Servo Loop Gains: Ixx30 – Ixx35 
• Set the Ixx30 proportional gain term to 8192. 
• Set the Ixx31 derivative gain term to 0. 
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• Set the Ixx32 velocity feedforward term to 2048. 
• Set the Ixx33 integral gain term to 0. 
• Set the Ixx35 acceleration feedforward term to 2048. 
• Set this command output limit to 32,767. 
Commutation Cycle Size: Ixx70 & Ixx71 
Set Ixx70 to 1 and Ixx71 to 2048 to provide 2048 counts (microsteps) per electrical cycle (512 
microsteps/step). 
Commutation Phase Angle: Ixx72 
Set the Ixx72 commutation phase-angle parameter to 512 or 1536 for the usual 2-phase microstepping 
motor.  Changing between these two values changes the direction sense of positive rotation.  If you want 
to try microstepping a 3-phase motor, use 683 or 1365.  Changing between the two possible settings for a 
given number of phases reverses the direction that is “counting up” for the motor. 
Current Magnitude: Ixx77 
Set the Ixx77 “magnetization current” parameter to control the amount of current used in the phases.  This 
holds the maximum number of 16-bit DAC bits (or equivalent that will be used to command a DAC 
output (current command to the amplifier).  For instance, a value of 16,384 provides a +/-5V sinusoidal 
output on each phase.  This value can be changed at any time to change the amount of current used. 
Slip Gain: Ixx78 
Set the Ixx78 “slip gain” parameter equal to 2.0/N, where N is the number of phasing cycles per servo 
cycle, as set by E3-E6 on a Turbo PMAC, I7002 on a Turbo PMAC2, I7202 on a typical UMAC Turbo, 
or I6802 on a Turbo PMAC2 Ultralite.  The default setting of these jumpers or variables provides an N of 
4, so Ixx78 would be set to 0.5 with the default setting. 
Commutation Position Address:Ixx83 
Set the Ixx83 commutation position address parameter to the address of the previous phase position 
register for the motor.  The addresses for each motor are shown in the following table. 
Previous Phase Position Registers (Y-addresses) 

Motor Ixx83 Motor Ixx83 Motor Ixx83 Motor Ixx83 
1 $0000B2 9 $0004B2 17 $0008B2 25 $000CB2 
2 $000132 10 $000532 18 $000932 26 $000D32 
3 $0001B2 11 $0005B2 19 $0009B2 27 $000DB2 
4 $000232 12 $000632 20 $000A32 28 $000E32 
5 $0002B2 13 $0006B2 21 $000AB2 29 $000EB2 
6 $000332 14 $000732 22 $000B32 30 $000F32 
7 $0003B2 15 $0007B2 23 $000BB2 31 $000FB2 
8 $000432 16 $000832 24 $000C32 32 $001032 

What to Do Next 
Once the appropriate steps in this section have been taken, the motor’s commutation and current loop 
should be operating correctly.  The motor should be turned in both directions with O-commands; positive 
O-commands should cause the motor position to count in the positive direction, and negative O-
commands should cause the motor position to count in the negative direction. 

Once this is done, the next step is to set up and tune the position/velocity loop servo, either the standard 
PID loop, the Extended Servo Algorithm, or a user-written servo algorithm.  This is done in the same 
method as for Turbo PMAC motors without digital current loop and/or Turbo PMAC commutation.  For 
purposes of tuning, a system with PMAC commutation and/or current loop looks like a “torque mode” 
drive to the position/velocity loop. 

Remember to store the I-variable values that have been set here to the non-volatile flash memory with the 
SAVE command. 
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User-Written Phase Algorithms 
Turbo PMAC supports the installation and automatic execution of user-written phase algorithms.  These 
can be used if the standard commutation/current-loop algorithms are not suitable to get the required 
performance; alternately, they can be used for non-servo purposes, with the algorithm guaranteed to 
execute at the phase update rate.  This can be very valuable for fast updates of I/O. 
User-written phase algorithms must be written in assembly language for the Motorola DSP56300 family 
and assembled using a cross-assembler from Motorola, available at no cost from their website.   
Only a single user-written phase algorithm may be installed in a Turbo PMAC.  This algorithm can be 
executed by any motor on the Turbo PMAC.  If different motors should execute different algorithms, this 
must be accomplished by branching within a single user-written phase algorithm. 
Highly efficient user-written servo algorithms may be written in the assembly language for the DSP56300 
family of processors used in the Turbo PMAC.  This requires the use of a cross-assembler from Motorola, 
obtainable at no cost from their website.  It also requires a linking program from Delta Tau, called 
CODET.EXE and running under Microsoft Windows operating systems, available at no cost from the 
Delta Tau website. 
Writing the Algorithm 
The algorithm is written in Motorola DSP56300 assembly language using any standard text editor.  The 
code written is subject to the following restrictions. 
Program Memory Space 
The program must start at memory location P:$040800, so the first line of code must be: 
ORG P:$40800 
For a DSP56303 processor (80 MHz CPU Option 5Cx), the resulting code must end by memory location 
P:$040BFF, providing a 1-Kword buffer for the program.  For a DSP56309 processor (100 MHz CPU 
Option 5Dx) or a DSP56311 processor (160 MHz CPU Option 5Ex), the resulting code must end by 
memory location P:$044BFF, providing a 17-Kword buffer for the program.  In all cases, if a user-written 
phase program is used, the user-written servo program is limited to a 2-Kword buffer (P:$040000 – 
P:$0407FF). 
Conditions on Entry 
On entry into the user-written phase, the program can expect the following data for the executing motor in 
internal DSP registers: 
• The R0 register contains the address of the first status word for the executing motor (e.g. $0000B0 for 

Motor 1). 
• The N4 register contains the block length of the motor servo registers ($80 presently), which may be 

useful in incrementing from motor to motor.  This must not be changed. 
• The R4 register contains the base address of the first status word for the next higher-numbered motor.  

This must not be changed.  If you subtract the contents of the N4 register from this value, you will get 
the base address of the executing motor’s phasing data. 

• The N0 register contains a value of 2. 
The torque (quadrature current) command from the motor’s servo algorithm may be found in the motor’s 
quadrature command register.  This is the register at an address 15 ($F) greater than the address in the R0 
register. 
Conditions on Exit 
On exit from the user-written phase, the algorithm must already have written its outputs into the registers 
that perform the action – the function that setup variable Ixx02 performs in the factory provided phase 
algorithms.  Turbo PMAC firmware will not perform this function after exiting from a user-written phase 
routine.  A user-written phase algorithm may use the Ixx02 register to tell it in which addresses to place 
its output values. 
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The last line of the user-written phase must be RTS (ReTurn from Subroutine). 
Available Registers 
The following data registers may be used by the user-written phase: 
• Internal DSP registers R0, N0, R1, N1, R5, and N5 may be used, and do not need to be restored when 

done. 
• Internal DSP registers M0, M1, M4, M5, R4, and N4 may be used, but must be restored to previous 

values when done. 
• Motor commutation registers X:$000xB2/32 through X:$000xBF/3F that are not I-variable registers 

may be used to hold values from cycle to cycle.  They are not used by any Turbo PMAC firmware as 
long as the user-written phase is activated. 

• Global registers X/Y:$0010F0 – $0010FF may be used.  They are not used by any Turbo PMAC 
firmware tasks, other than being set to 0 on power-up/reset. 

• Registers in the user buffer established by the DEFINE UBUF command may be used.  They are not 
used by any Turbo PMAC firmware tasks. 

• Other registers may be used as well, but it is possible for certain tasks of Turbo PMAC firmware to 
overwrite these.  For example, it is possible to use the registers for some P or Q-variables for the user-
written servo, but assigning a value to one of these variables will overwrite the register.  It is also 
possible to use the I-variables for Turbo PMAC’s standard servo algorithms as gains for the user-
written servo. 

• The 2048-entry sine and cosine tables used by Turbo PMAC’s built-in phase routine are located at 
addresses $003800 – $003FFF.  The sine table is in Y-memory; the cosine table is in X-memory.  
Turbo PMAC firmware automatically sets up these tables at power-up/reset; it does not write to these 
registers afterwards. 

Programming Restrictions 
Any levels of the DSP’s stack may not be used, so no DO or JSR instructions are permitted. 
Internal DSP address registers R2, R3, R6, and R7 may not be used; modifier registers M2, M3, M6, and 
M7; offset registers N2, N3, N6 and N7. 
Assembling the Algorithm 
The assembly language algorithm must be assembled into DSP56300 machine code using Motorola’s 
cross assembler for the computing platform.  Follow the instructions from Motorola to do this. 
Linking the Algorithm 
Use the Delta Tau applet “CODET.EXE”, available on the Delta Tau website to convert the file that 
results from the Motorola assembler into a format that can be directly downloaded to the Turbo PMAC.  
This file should be archived on your computer or network. 
Downloading the Algorithm 
Use any version of the PMAC Executive program to download this resulting file into Turbo PMAC’s 
program memory.  Remember that it is downloaded into volatile RAM memory.  To have the Turbo 
PMAC retain this algorithm, issue a SAVE command before the controller is reset or power is removed 
from it. 

Executing the Algorithm 
Set bit 1 of Motor xx variable Ixx59 to 1 (Ixx59 = 2 or 3) to select the user-written phase algorithm for 
this motor.  If bit 0 of Ixx01 is also set to 1, the user-written phase algorithm will execute for this motor 
every phase cycle (every [I7+1] phase interrupts, every phase interrupt with the default I7 value of 0), 
regardless of whether the motor is open-loop, closed-loop, enabled or disabled.  Ixx00 for the motor does 
not even have to be set to 1. 
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SETTING UP THE ENCODER CONVERSION TABLE 
Turbo PMAC uses a two-step process to work with its feedback and master position information for the 
servo algorithm, to provide maximum power and flexibility.  (Note that the commutation algorithms 
generally use raw feedback registers unprocessed by the conversion table.)  For most Turbo PMAC users 
with quadrature encoder feedback, this process can be virtually transparent, with no need to worry about 
the details.  However, some users will need to understand this conversion process in some detail to make 
the changes necessary to use other types of feedback, to optimize their system, or to perform special 
functions.  This section is for those users. 

The first stage in the position processing uses the hardware registers such as encoder counters with 
associated timers, A/D registers, or accessory cards for parallel input.  These work continually without 
direct software intervention (although they can be configured through software) with data typically 
latched on the servo interrupt.  This stage is covered in the Hardware Reference manual for the particular 
device and the Setting up Feedback section of this manual.  Beyond this point, the process is software-
controlled.   

Most controllers use the raw data in the hardware registers directly for feedback or master position data.  
However, Turbo PMAC has an intermediate step using a software structure called the Encoder 
Conversion Table to pre-process the information in the latched registers.  This table tells PMAC what 
registers to process, and how to process them; it also holds the intermediate processed data. 

Ix03: Position Loop Feedback Address
Ix04: Velocity Loop Feedback Address
Ix05: Master Position Address
Ix93: Time Base Source Address

To Servo
Algorithms

Address
Encoder Conversion

Table
Data Address

Data

PMAC Hardware
Registers

Conversion Instructions:
Process & Address

Processed
Feedback Data

RAM

Raw
Feedback

Data

Encoder Counters
& Timers, Latches, ADC's

Servo Address
I-Variables

Feedback
Data Signals

PMAC Encoder Conversion Table Principle

 
This pre-processing step is necessary, or at least advantageous for several reasons: 
• There are several pieces of raw data that need to be combined into one resulting position number, as 

with the counter and timers for “1/T” encoder interpolation. 
• There is some checking for special conditions (such as rollover or sudden changes indicative of noise, 

which needs to be done to ensure robust data. 
• Mathematical processing of the raw data, such as addition, subtraction, differentiation, or integration, 

needs to be done to get the resulting value. 
• The raw data just needs to be transferred and shifted for the servo algorithm to use. 
While the primary purpose of the table is to produce processed (converted) values for feedback and 
master position data for the servo algorithms to use, other uses are possible.  The table’s guaranteed 
execution at the beginning of each servo cycle, and its many tools for processing data, permit other uses 
as well. 
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Conversion Table Execution 
The conversion table executes automatically at the beginning of each servo cycle, immediately after the 
servo interrupt.  The entire active part of the table executes before any servo loops execute that cycle.  
Each entry in the table is executed every servo interrupt, even if the result is used less often (as when a 
motor’s own servo cycle is extended with Ixx60) or not at all.   

The table is executed in order from top to bottom each cycle.  If the result of one entry is used as the 
source for another entry, usually it is desirable to have the second entry further down in the table, so a 
servo cycle’s delay is not introduced. 

Conversion Table Structure 
The Encoder Conversion Table has two columns, one in the X memory space of the processor, and one in 
the Y memory space.  The X-column holds the converted data, while the Y-column holds the addresses of 
the source registers, and the conversion methods used on the data in each of those source registers.  
Basically, you set up the table by writing to the Y-column, and PMAC uses the Y-column data to fill up 
the X-column each servo cycle. 

The table is a series of entries, each of which produces one final result value.  Each entry can be 1, 2, or 3 
lines (rows) long, with both setup and result data in each line.  The final result of the entry is in the last 
data line.  The entire table is 192 lines long, although typically not all lines are used in a given 
application. 

Turbo PMAC Encoder Conversion Table 
X-Memory  Y-Memory 
(Results)  (Set-up) 

     
1.  Single Line Entry    

     
Bits Bits  Bits Bits 
5-23 0-4  20-23, 19 0-18 

Result: Integer Fraction  Method, mode bit Source Address 
     

2.  Multi-Line Entry     
     

Bits Bits  Bits Bits 
5-23 0-4  20-23, 19 0-18 
(Intermediate Result)  Method, mode bit Source Address 

• • •   (Conversion Factors) 
Result: Integer Fraction  • • •  

Setup Structure 
Each setup line is represented by an I-variable.  The first setup line of the table is represented by I8000, 
the second by I8001, and so on; the last setup line of the table is represented by I8191.  Because 
individual entries are 1, 2, or 3 lines long, each entry uses 1, 2, or 3 setup I-variables, consecutively 
numbered. 

These I-variables are 24-bit unsigned variables, usually represented as 6-digit hexadecimal values; they 
are reported as hexadecimal values if I9 is set to the default of 2, or to 3.  Detailed descriptions of the 
values these I-variables can take are given in the Software Reference Manual description of I-variables 
I8000 – I8191. 
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Executive Program Setup Menu 
Generally, the setup of the encoder conversion table I-variables can be done interactively through the 
configuration menu in the PMAC Executive Program.  The following section explains how the setup can 
be done directly and “manually.” 

Entry First Setup I-Variable 
The first setup I-variable for an entry has three parts: the conversion method, a mode-switch bit, and the 
address of the source data.  The conversion method, which determines what processing is to be done, is 
contained in the first hex digit (bits 20 – 23).  The mode-switch bit, which specifies variants to the 
processing, is contained in bit 19.  The source address, which specifies which register or set of registers 
contains the raw data, is contained in bits 0 – 18. 

The following table shows how the first I-variable for an entry is structured: 

Entry First Setup Line (I-Variable) Structure 
Bit 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Digit   1    2    3    4    5    6  
Contents Method * Source Address 

* Mode-switch bit 

For example, the parallel extension (method digit $8) of an incremental encoder from a PMAC-style 
(mode-switch bit 0) Servo IC 0 Channel 1 (source address $078000) in the first setup line of the 
conversion table would be: 
I8000=$878000 
The same parallel extension (method digit $8, but from a PMAC2-style (mode-switch bit 1) Servo IC 0 
Channel 1 (source address $078000) in the first setup line of the conversion table would be: 
I8000=$8F8000 
The structures of any subsequent lines for an entry are dependent on the method; each type is discussed 
below. 
The following table summarizes the operation specified by each method digit. 

Method 
Digit 

# of 
lines 

Process Defined Mode Switch 1st Additional Line 2nd Additional Line 

$0 1 1/T Extension of 
Incremental Encoder 

None - - 

$1 1 Acc-28 style A/D 
converter (high 16 bits, 
no rollover) 

0 = signed data 
1 = unsigned data 

- - 

$2 2 Parallel Y-word data, no 
filtering 

0 = normal shift 
1 = unshifted 

Width/Offset Word - 

$3 3 Parallel Y-word data, 
with filtering 

0 = normal shift 
1 = unshifted 

Width/Offset Word Max Change per Cycle 

$4 2 Time Base scaled digital 
differentiation 

None Time Base Scale Factor - 

$5 2 Integrated Acc-28 style 
A/D converter 

0 = signed data 
1 = unsigned data 

Input Bias - 

$6 2 Parallel Y/X-word data, 
no filtering 

0 = normal shift 
1 = unshifted 

Width/Offset Word - 

$7 3 Parallel Y/X-word data, 
with filtering 

0 = normal shift 
1 = unshifted 

Width/Offset Word Max Change per Cycle 

$8 1 Parallel Extension of 
Incremental Encoder 

0 = PMAC IC 
1 = PMAC2 IC 

- - 

$9 2 Triggered Time Base, 
frozen 

0 = PMAC IC 
1 = PMAC2 IC 

Time Base Scale Factor - 
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$A 2 Triggered Time Base, 
running 

0 = PMAC IC 
1 = PMAC2 IC 

Time Base Scale Factor - 

$B 2 Triggered Time Base, 
armed 

0 = PMAC IC 
1 = PMAC2 IC 

Time Base Scale Factor - 

$C 1 Incremental Encoder, no 
or HW 1/T extension 

0 = No extension 
1 = Hardware 1/T 

- - 

$D 3 Exponential filter of 
parallel data 

None Max Change per Cycle Filter Gain (Inverse 
Time Constant) 

$E 1 Sum or difference of 
entries 

0 = no integration 
1 = integrate result 

- - 

$F - (Extended entry – type 
determined by 1st digit of 
2nd line) 

- - - 

$F/$0 3 High-Resolution 
Interpolator 

0 = PMAC IC 
1 = PMAC2 IC 

$0 Method digit  & 
Address of 1st A/D 

converter 

A/D Bias Term 

$F/$2 2 Byte-wide parallel Y-
word data, no filtering 

0 = normal shift 
1 = unshifted 

$2 and Width/Offset 
Word 

- 

$F/$3 3 Byte-wide parallel Y-
word data, with filtering 

0 = normal shift 
1 = unshifted 

$3 and Width/Offset 
Word 

Max Change per Cycle 

Because most source addresses have a 7 in the second hex digit, the effect of setting the mode-switch bit 
to 1 is to change the second hex digit from 7 to F.  For example, an Acc-28 ADC entry that is $178005 
with the mode-switch bit at 0 is changed to $1F8005 with the mode-switch bit at 1. 

In the Software Reference Manual under the descriptions for I8000 – I8191, there is a detailed description 
for the setup of each type of entry, with extensive tables of the common source addresses for each.  The 
PMAC Executive program’s setup menu for the conversion table has good pick lists of source addresses 
for each method. 

Entry Subsequent Setup I-Variables 
If the method defined in the first line specifies an entry of more than one line, the next one or two setup 
lines (I-variables) in the table are further setup values for this entry.  The meaning of these subsequent 
lines is dependent on the method; the above table gives a brief description of what these are, and the 
Software Reference Manual describes these in detail. 

Next Entry 
After the last line of any entry, whether the entry is one, two or three lines long, the next line in the table 
is the first line of the next entry.  For example, if the first line in the table is a three-line entry, I8000, 
I8001, and I8002 will be used to set up that entry, and I8003 will be the first setup line of the next entry. 

End of Table 
If a setup line (I-variable) that could be the first line of an entry is set to 0, this marks the end of the active 
table.  Even if there are valid entries below this point in the table, they will not be executed. 

Result Structure 
The column of the encoder conversion table that is in X-memory contains the processed results of the 
table.  The 24-bit data in this column for the last line of the entry (the only line for a single-line entry) is 
the final processed result.  This value will be used for subsequent operations in the Turbo PMAC.  The 
data in this column for previous lines (if any) of the entry contain intermediate results; these generally are 
for internal use only. 
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Final Result Format 
In general, the 24-bit final result is structured as 19 bits of integer (bits 5 – 23) and five bits of fraction 
(bits 0 – 4).  The integer value represents whole number of least significant bits (LSBs) of a counter 
(counts), a latched register or an analog-to-digital converter.  In other words, the LSB of the main source 
register is placed in bit 5 of the result register, a 5-bit shift.  The fractional component represents a 
measured or estimated value of finer resolution (which could always be zero in some methods); with 5 
bits of fractional data, the result will have units of 1/32 of a count.  Note that several methods yield a 
measurement resolution that is finer than what the software considers a count. 

However, this is not always so.  It is possible in several conversion methods to specify an unshifted 
conversion.  When this is done, the LSB of the source data is placed in bit 0 of the result word, not the 
usual bit 5.  In the high-resolution analog encoder conversion, 10 bits of fraction are produced for each 
count of the hardware encoder counter, so the result has units of 1/1024 of a quadrature count, or 1/4096 
of an encoder line. 

When the final result value of the table entry is used for feedback or master position data by a Turbo 
PMAC servo loop, the servo algorithm software will always consider this value to have units of 1/32 of a 
count – to have the bit representing one count or LSB located in bit 5 – even if the conversion did not 
place it there.  This can lead to a difference in scaling between a software count and a hardware count.  If 
an unshifted conversion is used, the software will consider the LSB of the source register to be 1/32 of a 
count.  If the high-resolution analog encoder conversion is used, the software will consider one hardware 
count of the quadrature counter to be 32 software counts, yielding 128 counts per line of the analog 
encoder. 

Intermediate Results 
If the entry in the conversion table is more than one line in length, the lines in the result column before the 
final line hold intermediate results.  Typically, these are for internal use only; if there is any utility for the 
user, this is documented in the Software Reference Manual for the conversion method. 

Using the Results 
Most often, the processed data in the conversion table is used for feedback or master data for the servo 
algorithms through one of the four following I-variables: 
• Ixx03 Motor xx Position-Loop Feedback Address 
• Ixx04 Motor xx Velocity-Loop Feedback Address 
• Ixx05 Motor xx Master Position Address 
• Isx93 Coordinate System x Time Base Source Address 
The value of each of these variables is the address of the register that will be read each servo cycle to get 
the appropriate information for the servo algorithms.  These variables always use the X-register at the 
specified address (which is the result column of the table). 

There are two ways to specify the value of these variables, and therefore the address that they use.  The 
first is to specify the address directly, and usually as a hexadecimal number (with $ prefix).  The second 
way is to specify the address indirectly, by reference to the I-variable at that address, using the ‘@’ symbol 
in front of that I-variable name.  This permits you to use the result without having to look up the address. 

The following table shows the I-variables and the addresses for the first 16 lines of the table, the most 
commonly used.  A table showing these for all 192 lines of the table is given in the formal description of 
these variables in the Software Reference manual. 
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Line I-variable Address Line I-variable Address 
1 I8000 $3501 9 I8008 $3509 
2 I8001 $3502 10 I8009 $350A 
3 I8002 $3503 11 I8010 $350B 
4 I8003 $3504 12 I8011 $350C 
5 I8004 $3505 13 I8012 $350D 
6 I8005 $3506 14 I8013 $350E 
7 I8006 $3507 15 I8014 $350F 
8 I8007 $3508 16 I8015 $3510 

For example, to use the result in the eighth line of the table for position-loop feedback for Motor 4, either 
of the following commands could be used: 
I403=$3508 
I403=@I8007 

Even if the address is specified indirectly, it will still be reported back directly.  So in the above example, 
regardless of the way the value was specified, if Turbo PMAC is queried for the value of the I-variable, it 
will return the address – 
I403 
$3508 

Conversion Methods 
Each conversion method is covered in detail in the description of the table’s I-variables in the Software 
Reference manual.  This section gives a brief overview. 

Digital Quadrature Encoders 
The most common conversion is for digital quadrature encoders (or other pulse trains, such as pulse and 
direction that feed these counters).  These are single-line entries.  The source addresses are always the 
base addresses of encoder channels in the Servo ICs.  A full list of these addresses is given in the 
Software Reference manual; a quick list of common addresses is given here: 

On-board PMAC-style channels 1 – 4: $78000, $78004, $78008, $7800C 
On-board PMAC2-style channels 1 – 4: $78000, $78008, $78010, $78018 
First four accessory PMAC2-style channels: $78200, $78208, $78210, $78218 

There are three conversion methods for this signal format: 
• Software 1/T Extension 
• Hardware 1/T Extension 
• No Extension 

Software 1/T Extension (Method digit $0) 
This is the most common method, and the one that is used in the table by default.  This method uses the 
quadrature counter for the integer count value, and computes the ratio of two timers to obtain the five bits 
of fractional count value. 
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Note:  

For PMAC2-style Servo ICs of Revision D or newer (introduced 2002), IC-
channel variable I7mn9 must be set to the default value of 0 so the two timers can 
be read.  (Backward compatibility is maintained.) 

Examples: 
I8000=$078000 ; Software 1/T extension of Servo IC 0 Channel 1 
I8001=$078004 ; Software 1/T extension of Servo IC 0 Channel 2 (PMAC1) 

Hardware 1/T Extension (Method digit $C, mode-switch bit 1) 
This method lets the Servo IC compute the fractional count value in its hardware.  It requires PMAC2-
style Servo ICs of Revision “D” or newer (introduced 2002), with IC-channel variable I7mn9 set to 1 to 
enable the hardware calculations. 

This method permits new hardware position-capture and position-compare circuits with sub-count 
resolution to be used with digital quadrature encoders.  It also saves a small amount of computational 
time.  
Examples: 
I8000=$CF8000 ; Hardware 1/T extension of Servo IC 0 Channel 1 
I8001=$CF8008 ; Hardware 1/T extension of Servo IC 0 Channel 2 (PMAC2) 

No Extension (Method digit $C, mode-switch bit 0) 
This method computes no fractional count value, leaving the 5 fractional bits at 0, and just using the 
hardware counter for the whole count values.  This is primarily used for the simulated feedback from the 
pulse-and-direction output for open-loop stepper control, in which the fractional count estimation can 
cause unwelcome dithering. 
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Examples: 
I8008=$C78200 ; No extension of Servo IC 2 Channel 1 
I8009=$C78208 ; No extension of Servo IC 2 Channel 2 (PMAC2 IC) 

Analog Sine/Cosine Encoders 
Turbo PMAC supports two methods of conversion for interpolating analog sine/cosine encoders: one low-
resolution (128 or 256 states per line) and one high-resolution (4096 states per line).  The source 
addresses are always the base addresses of encoder channels in the Servo ICs. 

Low-Resolution Interpolation (Method digit $8) 
This method reads five bits of externally calculated fractional count data presented in parallel to the Turbo 
PMAC, and uses the quadrature counter for whole-count data.  It is intended for use with the interpolator 
circuitry on the Acc-8D Option 8 and the Acc-8A through normal PMAC servo channels.  The mode-
switch bit is set to 0 if the data is read through a PMAC-style Servo IC; it is set to 1 if the data is read 
through a PMAC2-style Servo IC.  This is a one-line entry. 

A full list of source addresses is given in the Software Reference Manual.  Common source addresses are: 

PMAC on-board channels 1 – 4: $78000, $78004, $78008, $7800C 
PMAC2 on-board channels 1 – 4: $78000, $78008, $78010, $78018 

Note that the encoder counter used must be set up for times 4 decode by the decode variable I7mn0 for 
the encoder channel, and that only one of the two possible direction senses may be used.  With Delta Tau 
accessories and standard wiring, the I7mn0 variable must be set to 7.  If this is wrong, the direction senses 
of the fractional and whole-count data will not match. 
Examples: 
I8004=$878100 ; Low-res interpolation of Servo IC 1 Channel 1 (PMAC1 IC) 
I8005=$8F8018 ; Low-res interpolation of Servo IC 0 Channel 4 (PMAC2 IC) 

High-resolution Interpolation (Method digit $F, extended method digit on second line $0) 
This method calculates 10 bits of fractional count data (1024 states) per quadrature count – 4096 states 
per line – by reading A/D converters on an Acc-51 board for the sine and cosine signals and computing 
the arctangent.  The whole count data comes from the digital quadrature counter.  The mode-switch bit is 
set to 0 if the data is read through a PMAC-style Servo IC (Acc-51P); it is set to 1 if the data is read 
through a PMAC2-style Servo IC (Acc-51E, 51C). 
A full list of source addresses is given in the Software Reference Manual.  Common source addresses are: 
Acc-51P as Servo IC 2, channels 1 – 4: $78200, $78204, $78208, $7820C 
Acc-51E as Servo IC 4, channels 1 – 4: $79200, $79208, $79210, $79218 
The second line contains the address of the first of the two ADCs read, with a $0 in the first hex digit.  
For the Acc-51P, the ADC address is two higher than the channel base address used in the first line; for 
the Acc-51E and 51C, it is five higher. 
Common source addresses for the ADCs are: 
Acc-51P as Servo IC 2, channels 1 – 4: $78202, $78206, $7820A, $7820E 
Acc-51E as Servo IC 4, channels 1 – 4: $79205, $7920D, $79215, $7921D 
The third line is a 24-bit bias term that is subtracted from both 24-bit words containing the ADC values 
(even though the ADCs only occupy the top 14 bits) before the arctangent calculations are done. 

The encoder counter used must be set up for times 4 decode by setting variable I7mn0 for the encoder 
channel to 3 or 7.  If this variable is changed, for example to change the direction sense of the counter, the 
new value must be saved and the Turbo PMAC reset in order for this conversion to work properly (for the 
direction sense of the fractional data to match the directional sense of the whole-count data). 
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Examples: 
I8000=$F78200 ; Hi-res interpolation of Servo IC 2 Channel 1 (PMAC1 IC) 
I8001=$078202 ; Read ADCs from Servo IC 2 Channel 1 
I8002=$004000 ; Bias term of 4 LSBs of 12-bit ADCs 
I8000=$FF8300 ; Hi-res interpolation of Servo IC 3 Channel 1 (PMAC2 IC) 
I8001=$078305 ; Read ADCs from Servo IC 3 Channel 1 
I8002=$000000 ; Zero bias term 

Acc-28 Analog-to-Digital Converters 
The conversion table can process the data from the 16-bit A/D converters of Acc-28 boards or their 
equivalent.  The source address is that of the A/D converter register in the IC that interfaces to the accessory. 

Standard A/D conversion (Method digit $1) 
This method takes the value in the A/D converter (without integrating it) and shifts it to leave the LSB in 
bit 5 of the result – what Turbo PMAC software considers a count.  If the A/D converter provides a 
signed value (Acc-28A), the mode-switch bit should be set to 0; if the A/D converter provides an 
unsigned value (Acc-28B, 28E), the mode-switch bit should be set to 1.  This is a single-line entry. 
Common source addresses are: 
Acc-28A/B into PMAC channel 1 – 4: $78006, $78007, $7800E, $7800F 
Acc-28B into PMAC2 channel 1A, 1B, 2A, 2B: $78005, $78006, $7800D, $7800E 
Acc-28E as first I/O board, channel 1 – 4: $78C00, $78C01, $78C02, $78C03 
Examples: 
I8004=$178006 ; Conversion of Servo IC 0 ADC 1 (PMAC1 IC), signed 
I8005=$1F8105 ; Conversion of Servo IC 1 ADC 1A (PMAC2 IC), unsigned 
I8006=$1F8C00 ; Conversion of first Acc-28E Channel 1, unsigned 

Integrated A/D conversion (Method digit $5) 
This method takes the value in the A/D converter, shifts it so the LSB is in bit 5 and adds it to the 
previous cycle’s result to yield a numeric integration.  If the A/D converter provides a signed value (Acc-
28A), the mode-switch bit should be set to 0; if the A/D converter provides an unsigned value (Acc-28B, 
28E), the mode-switch bit should be set to 1.  This is a double-line entry.  The second line holds a bias 
term, expressed as a 24-bit number, that is subtracted from the source A/D data (whose LSB is in bit 8) 
before the numerical integration. 
Examples: 
I8004=$578006 ; Integration of Servo IC 0 ADC 1 (PMAC1 IC), signed 
I8005=$000300 ; Bias term (3 LSBs of 16-bit ADC) 

Parallel Feedback 
The conversion table can process parallel feedback data read from a register or set of registers.  While this 
is fundamentally a copying operation, it serves several important functions: 
• It copies the data into an X-register, where the servo-loop I-variables can access it (most I/O 

registers are in Y-memory). 
• It can shift the data so the LSB of the source register ends in bit 5 of the result, which PMAC 

firmware treats as a count. 
• It can mask out unwanted bits from the source word, and properly handle rollover and software 

extension. 
• It can perform a filtering function, mitigating the effect of noise in significant data bits. 

Parallel feedback data can be read from a continuous range of bits up to 24-bits wide from within a 48-bit 
range, or from 2 or 3 byte-wide pieces in consecutive registers, as from many of the UMAC I/O boards.   
Five method digits for the first setup line of the entry in the conversion table handle this case: 



 Turbo PMAC User Manual 

144 Motor Compensation Tables and Constants 

• $2: The 48 possible bits are from the Y-register at the specified address and the Y-register at the next 
higher address.  The conversion table performs no filtering. 

• $3: The 48 possible bits are from the Y-register at the specified address and the Y-register at the next 
higher address.  The conversion table can perform filtering of the source data. 

• $6: The 48 possible bits are from the Y-register at the specified address and the X-register at the 
same address.  The conversion table performs no filtering. 

• $7: The 48 possible bits are from the Y-register at the specified address and the X-register at the 
same address.  The conversion table can perform filtering of the source data. 

• $F: The data is in byte-wide pieces at the Y-register specified address and adjacent higher 
address(es).  In this case, the first hex digit of the entry’s second setup line must be either $2 (no 
filtering) or $3 (with filtering). 

In all of these cases, the bit-19 mode-switch bit in the first setup line of the entry is set to 0 to place the 
LSB of the source data in bit 5 of the result, where Turbo PMAC firmware treats it as a count.  If the 
mode-switch bit is set to 1, the source LSB is placed in bit 0 of the result, where Turbo PMAC firmware 
treats it as 1/32 of a count.  This alternate setting can be used for very high-resolution feedback, where 
numerical velocity saturation could be a problem. 

Bits 0 – 18 of the first setup line of the entry specify the address of the source data.  In the case of 
methods $2 and $3, or $F/$2 and $F/$3, some of the source data could also come from the next higher 
addresses. 

The second setup line of the entry specifies which part of the source address data is used.  This line is split 
into four parts: the first hex digit, the second and third hex digits, the fourth hex digit, and finally the fifth 
and sixth hex digits.   
Second Setup Line for Parallel Data Entries 

Hex Digits 1 2 & 3 4 5&6 
Contents Aux Meth Bit Width Byte LSB Location 

In the case of methods $2, $3, $6, and $7, the first digit is always 0.  In the case of method $F, the first 
digit is $2 if no filtering is to be done; it is $3 if filtering is to be done.  

The second and third digits specify the bit width – how many bits are to be used. 

In the case of methods $2, $3, $6, and $7, the fourth digit is always 0.  In the case of method $F, the 
fourth digit specifies which byte the data comes from: 0 for the low byte, 1 for the middle byte, and 2 for 
the high byte.  

The last two digits specify which bit of the source byte or word is to be used as the LSB.  For byte-wide 
data this is always in the range $00 to $07.  For data from a 48-bit field, this value could be up to value of 
48 minus the bit width. 

If the source data is to be filtered, there is a third setup line in the entry, which specifies the maximum 
change in the source data (in units of LSBs of the used source data) in a single servo cycle that is to be 
regarded as real.  If the source changes by more than this (maybe due to noise in a high bit), the result will 
change by this amount only.  This is an important protection against noise and other possible anomalies. 
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Examples: 
These first three 3-line entries process 3 16-bit inputs on a 48-bit Acc-14D/V card 
I8000=$378A00 ; Filtered parallel Y-data from first Acc-14D/V 
I8001=$010000 ; Use 16 bits starting at bit 0 
I8002=256 ; Max change of 256 LSBs per servo cycle 
I8003=$378A00 ; Filtered parallel Y-data from first Acc-14D/V 
I8004=$010010 ; LSB from bit 16, use 16 bits (high 8 bits from next address) 
I8005=256 ; Max change of 256 LSBs per servo cycle 
I8006=$378A01 ; Filtered parallel Y-data from first Acc-14D/V 
I8007=$010008 ; LSB from bit 8, use 16 bits 
I8008=256 ; Max change of 256 LSBs per servo cycle 
These next several examples read MACRO registers unshifted 
I8000=$2F8420 ; Unshifted unfiltered read of IC 0 Node 0 Reg 0 (address $078420) 
I8001=$018000 ; Use 24 bits starting at bit 0 
I8002=$2F8424 ; Unshifted unfiltered read of IC 0 Node 1 Reg 0 (address $078424) 
I8003=$018000 ; Use 24 bits starting at bit 0 
This next example reads data in byte-wide pieces from an Acc-14E 
I8000=$F78C00 ; Read from $78C00 
I8001=$314000 ; Filtered parallel Y-data 20 bits, low byte, start at bit 0 
I8002=150 ; Max change of 150 LSBs per servo cycle 
This example reads a timer register as parallel data for MLDT feedback 
I8003=$378000 ; Filtered parallel read from Servo IC 0 Channel 1 
I8004=$013000 ; Read 19 bits starting at bit 0 
I8005=75 ; Max valid change of 75 LSBs per servo cycle 

Exponential Filter 
The conversion table can perform filtering functions on incoming data by executing the exponential-filter 
entry.  This entry implements a low-pass (single-pole IIR) filter on the source data.  It is mainly useful for 
master position data; its use for feedback data can be problematic because of the delays it introduces and 
the resulting stability problems in the feedback loop. 

This is a three-line entry.  The first line uses a $D method digit, followed by the address.  The source data 
must be in the X-register of this address, and usually is the result of a previous entry in the conversion 
table (addresses $3501 - $35C0). 

The second line contains the maximum change in the source data that will be permitted in a single servo 
cycle.   

The third line contains the filter gain.  Essentially, this is an inverse time constant; the gain term is set to 
223/(Tf+1), where Tf is the filter time constant expressed in servo cycles. 
Example: 
I8004=$07820C ; 1/T interpolation of Servo IC 2 Encoder 4 
I8005=$D03504 ; Exponential filter of I8004 result 
I8006=4000 ; Max permitted change (LSBs/servo cycle) 
I8007=524288 ; Filter gain for 15-servo-cycle time constant [223/(15+1)] 
I1205=@I8007 ; Use filtered value as master position for Motor 12 

Sum and Difference 
A sum and difference entry in the conversion table can be used to do many useful tasks: 
• Adding or subtracting two results in the table 
• Changing the sign of a result in the table 
• Integrating the value of a result in the table 
• Integrating the sum or difference of two results in the table 
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This can be used, for example, to average the readings of two sensors on opposite sides of a rotary table to 
take out the eccentricity, or to calculate the skew on a gantry by taking the difference of sensors on the 
two sides. 

This entry can use as source data only results in the conversion table.  It is strongly encouraged to use 
results from earlier in the table; using results from later in the table means results from the previous servo 
cycle are used.   

This is a one-line entry, split into four parts.   
• The first part is the first hex digit, which is always “E” for this type of entry.   
• The second part is the second hex digit (bits 16 – 19), which contains four mode-switch bits: 

• Bit 19, if set to 1, integrates the final result, adding the sum or difference calculated each cycle to 
the final result of the previous cycle. 

• Bit 18, if set to 1, instructs Turbo PMAC to ignore the second source, permitting this entry to 
simply negate and/or integrate a single value. 

• Bit 17, if set to 1, negates the second entry before adding it into the result, creating an effective 
subtraction. 

• Bit 16, if set to 1, negates the first entry before adding it into the result. 
• The third part uses the third and fourth hex digits as a number representing the offset from the 

beginning of the table of the second source used.  This can be calculated by subtracting 8000 from the 
I-variable number that corresponds to this result.   

• The fourth part uses the fifth and sixth hex digits as a number representing the offset from the 
beginning of the table of the first source used.  This can be calculated by subtracting 8000 from the I-
variable number that corresponds to this result.   

Examples: 
Using the following entries in the table as source data: 
I8000=$078200 ; 1/T interpolation of Servo IC 2 Encoder 1 
I8001=$078208 ; 1/T interpolation of Servo IC 2 Encoder 2 
I8002=$078210 ; 1/T interpolation of Servo IC 2 Encoder 3 
I8003=$078218 ; 1/T interpolation of Servo IC 2 Encoder 4 
I8004=$F78C00 ; Byte-wide parallel read of Acc-14E data 
I8005=$314000 ; Filtered, 20 bits, low byte, start at bit 0 
I8006=256 ; Max change of 256 LSBs per servo cycle 
The sum and difference entries can be used to do several processes: 
I8012=$E00001 ; Sum of results from I8000 and I8001 
I8013=$E10203 ; Subtract result of I8003 from result of I8002 
I8014=$E40006 ; Negate result of I8006 
I8015=$EC000D ; Integrate result of I8013 

Time Base (Differentiation) 
Time-base entries in the conversion table provide scaled digital differentiation of source data.  Usually, the 
source data is encoder count value, so the differentiation calculates a frequency value.  This frequency value 
can then be used as an external time base for a coordinate system in order to slave the motion of axes in the 
coordinate system to the master encoder, creating an electronic cam.  Refer to the Synchronizing Turbo 
PMAC to External Events section for details in the use of this data for time base control. 
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Untriggered vs. Triggered Time Base 
A time-base entry can be untriggered or triggered.  Untriggered time base entries are simpler, but do not 
have a means for starting the time-base tracking of the master encoder precisely at a specific position of 
the master.  The triggered time base entries use the hardware-capture feature of the Turbo PMAC Servo 
ICs to precisely latch the master position that is the starting point for the programmed motion sequence 
that is slaved to the master. 

Time-base entries are two-line entries.  The first line contains the method digit in bits 20 – 23 ($4 for 
untriggered, $9 for triggered frozen state, $B for triggered armed state, and $A for triggered running 
state), the bit-19 mode-switch bit for triggered entries (=0 for PMAC-style Servo ICs, =1 for PMAC2-
style Servo ICs), and the source address of the data to be differentiated in bits 0 – 18.)  The second line 
contains the time-base scale factor which multiplies the differentiated source data. 

Source Register – Untriggered 
In untriggered time base, usually the source data is the result of a previous conversion in the table – 
source address $3501 to $35C0 – typically the result of a 1/T interpolation of an incremental encoder.  
The 1/T interpolation can be important to reduce the quantization noise generated by the digital 
differentiation of the encoder data; the result has five bits of fraction, estimating the encoder position to 
1/32 of a count. 

The untriggered time base takes this source data, subtracts the previous cycle’s source data from it, 
multiplies the difference by two times the time-base scale factor, and stores this value as its result.  If the 
result is to be used as the time-base master for a coordinate system, variable Isx93 for the coordinate 
system should contain the address of this result.  In this case, the time-base scale factor should be set to a 
value of 131,072 divided by the real-time input frequency for the master (expressed in counts/msec), and 
the coordinate system motion programmed assuming that the master is always putting out this frequency. 

Source Register – Triggered 
In triggered time base, the source data is directly from the encoder channel in the Servo IC – the source 
address is the base address of that channel in the IC (e.g. $78000 for Servo IC 0 Channel 1, $78200 for 
Servo IC 2 Channel 1).  In this method, the time-base conversion calculates the 1/T interpolation itself, 
computing 8 bits of fractional data, and an intermediate result in units of 1/256 of a count.  This 
intermediate result is stored in the first line of the entry.  The extra fractional bits can reduce quantization 
errors further if the input signal is of very high quality. 

In the running state (method digit $A), the triggered time base takes this intermediate data, subtracts the 
previous cycle’s intermediate data, multiplies the difference by 2 times the time-base scale factor, and 
stores this value as its result.  In the frozen state (method digit $9), the result value is always 0.  In the 
armed state (method digit $B), if the trigger for the channel has not occurred, the result value is 0; 
however, if the trigger for the channel has occurred, the trigger-captured position is used as the previous 
cycle’s value to compute the result, and the state is automatically changed to “running.”   

Result Data 
If the result is to be used as the time-base master for a coordinate system, variable Isx93 for the 
coordinate system should contain the address of this result.  In this case, the time-base scale factor should 
be set to a value of 16,384 divided by the real-time input frequency for the master (expressed in 
counts/msec), and the coordinate system motion programmed assuming that the master is always putting 
out this frequency. 

Typically, a motion program will set the method digit to $9 immediately before computing the trajectory 
of the first move to be executed after the trigger.  The motion program automatically suspends further 
execution after computing this trajectory because this move cannot start actual execution due to the 
“frozen time base” (but note that there will be no calculation delays in starting the move on the trigger.  
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Next, a PLC program will change the method digit to $B to arm the time base.  Finally, the conversion 
table will change the method digit to $A itself when it sees the capture trigger, as explained above. 
Examples: 
Untriggered time base 
I8003=$079218 ; 1/T conversion of Servo IC 2 Channel 4 encoder 
I8004=$403504 ; Untriggered time base from result of I8003 
I8005=640 ; TBSF=131072/204.8 (RTIF=204.8 cts/msec) 
I5193=@I8005 ; Use I8005’s result as time base for C.S. 1 
Triggered time base 
I8008=$AF9218 ; Triggered time base from PMAC2 Servo IC 2 Channel 4, running 
I8009=256 ; TBSF=16384/64 (RTIF=64 cts/msec) 
I5293=$350A ; Use I8009’s result address as time base for C.S. 2 
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SETTING UP THE SERVO LOOP 
Turbo PMAC can close a digital servo loop automatically for each activated motor.  The purpose of the 
servo loop is to command an output in such a way so as to try to make the actual position for the motor 
match the commanded position.  How well it does this depends on the tuning of the servo loop filter – the 
setting of its parameters – and the dynamics of the physical system under control. 

Servo Update Rate 
The servo loop is closed (updated) at a frequency determined by jumpers on a Turbo PMAC, or I-
variables on a Turbo PMAC2.  On a Turbo PMAC, the servo interrupt frequency is set by jumper E98, 
jumpers E29-E33 (which divide down the master clock to generate the phase clock), and jumpers E3-E6 
(which divide down the phase clock to generate the servo clock).  On a Turbo PMAC2, the servo interrupt 
frequency is set by I-variables I7m00, I7m01, and I7m02 for the Servo IC m that is the clock source for 
the system (or I6800, I6801, and I6802 for a Turbo PMAC2 Ultralite).  Refer to the Turbo PMAC System 
Configuration and Auto-Configuration section for details on the source of these clock signals and how to 
set their frequencies. 

Parameter Ixx60 permits you to lower the servo-loop closure rate for an individual Motor xx by 
specifying the number of servo interrupts to be skipped between closures.  The default value of 0 causes 
closure every interrupt.  Ixx60 is useful to slow down the servo update rate for a particular motor, while 
leaving the faster rate for other motors; it is also useful to test quickly whether you can get the required 
performance on all motors with a slower servo update; in addition, it can be used slow the update rate 
below 1 kHz.  However, generally it is more computationally efficient to slow down the update rate for all 
motors using the jumpers. 

Reasons to Change Servo Update Rate 
How fast should the servo loops be updated in your system?  For most applications, the default setting of 
a 2.26 kHz (442 µsec) update can be retained.  There are two basic reasons to change this time: 
1. Reason to Increase Rate:  If not getting the dynamic performance required, speed up the servo 

update rate (decrease the update time).  In most systems, a faster update rate means that a stiffer and 
more responsive loop can be closed, resulting in smaller errors and lags. 

2. Reasons to Decrease Rate:  If the routines of lower priority than the servo loop are not executing 
fast enough, consider slowing down the servo update rate (increasing the update time).  It may well be 
updating faster than is required for the dynamic performance needed.  If so, processor time is being 
wasted on needless extra updates.  For example, doubling the servo update time from 442 µsec to 885 
µsec (halving the update rate from 2.26 kHz to 1.13 kHz), virtually doubles the time available for 
motion and PLC program execution, allowing much faster motion block rates and PLC scan rates. 
There are some systems that get better performance with a slower servo update rate.  Generally these 
are systems with relatively low encoder resolution, usually an encoder only on the load, where the 
derivative gain can not be raised enough to give adequate damping without causing an unstable buzz 
due to amplified quantization errors.  In this case, slowing down the update rate (increasing the 
update time) can help to give adequate damping without excessive quantization noise. 

Ramifications of Changing the Servo Update Rate 
If the servo update time is changed, many of the existing servo gains Ixx30 to Ixx39 will behave 
differently.  To retain equivalent servo performance, change these values.  Refer to the detailed 
description of each gain Ixx30-Ixx35 in the I-variable descriptions of the Software Reference Manual to 
see how these change.  Refer to the Notch Filter section below to see how to re-compute the notch filter 
parameters Ixx36-Ixx39. 
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Changing the servo update rate changes the percentage of processor time devoted to the servo tasks, 
which can have important implications for lower-priority tasks, such as motion-program and PLC-
program calculations.  Refer to the Computational Features section for details on how to evaluate these 
changes. 
If the servo update time is changed with the jumpers, change global parameter I10 to match the change so 
that commanded trajectories are executed at the right speed.  I10 does not have to be changed to match 
changes in Ixx60 for individual motors. 

Types of Amplifiers 
Turbo PMAC can interface to a variety of amplifier types.  The type of amplifier used for a particular 
motor or hydraulic valve has important ramifications for the tuning of the servo loop.  Each of the 
common types is explained below. 
Amplifiers for Which Servo Produces Velocity Command 
Several types of amplifiers expect a velocity command out of the Turbo PMAC servo loop.  The main 
types of amplifiers in this class are: 
• Analog-input velocity-mode servo amplifiers 
• Pulse-and-direction-input amplifiers 
• Hydraulic-valve amplifiers 
If the command value from the Turbo PMAC servo loop, regardless of signal type, is a velocity 
command, no velocity loop needs to be closed in the Turbo PMAC.  With the standard PID loop, this 
means that the derivative (D) term Ixx31 can be set to 0. 
Analog-Input Velocity-Mode Amplifiers 
Analog-input velocity-mode servo amplifiers close a velocity loop in the amplifier using the signal from 
the Turbo PMAC as the commanded velocity and sensor feedback for the actual velocity.  It is vital that 
the amplifier’s velocity loop be tuned properly before attempting to tune the Turbo PMAC’s servo loop 
around it.   
The velocity loop of a velocity-mode drive must be well tuned with the load that it will drive before the 
Turbo PMAC’s position loop is tuned.  Because the velocity-loop tuning is load dependent, the amplifier 
manufacturer cannot do the final tuning; the machine builder must tune the loop.  The velocity step 
response must not have any significant overshoot or ringing; if it does, it will not be possible to close a 
good position loop around it with Turbo PMAC.  The Turbo PMAC Executive Program’s tuning section 
has a function called Open-Loop Tuning that can be used to give velocity command steps to the amplifier 
and to observe the response plotted on the screen.  This makes it easy to tune the amplifier, or to confirm 
that it has been well tuned. 
Pulse-and-Direction-Input Amplifiers 
Pulse-and-direction-input amplifiers interpret each pulse as a commanded position increment.  To 
generate pulse-and-direction commands, the Turbo PMAC servo loop computes a pulse frequency value 
that is sent to pulse-frequency modulation circuitry.  This frequency value is effectively a velocity 
command. 
Amplifiers with this style of interface are of two types – Stepper Drive and Stepper Replacement 
Amplifier. 
Stepper Drive:  There is no position feedback to this drive.  Usually, there is no encoder at all for these 
motors, so the Turbo PMAC must use the output pulse train as simulated feedback.  This requires use of 
an encoder channel on Turbo PMAC, even though no encoder is physically connected.  If there is an 
encoder on the stepper motor, it can be used in either of two ways: 
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1. It can be used as regular feedback to the Turbo PMAC, just as on a servo motor.  In this method, the 
key issue is the resolution and phasing of the encoder edges relative to the steps or microsteps 
produced by the drive – some deadband may have to be created with Ixx64 and Ixx65 to prevent 
hunting at rest.   

2. The encoder can just be used for position confirmation at the end of moves.  However, this technique 
requires the use of two encoder channels on the Turbo PMAC: one for the simulated feedback of the 
pulse train, and one for the confirmation encoder. 

Stepper-Replacement Servo Amplifiers 
These take position feedback from the servo motor and close all the loops inside the drive.  Do not use the 
encoder signal from the drive for feedback into Turbo PMAC’s servo loop, because the position loops in 
the drive and the controller will conflict with each other.  With these drives, use the commanded pulse 
train from the Turbo PMAC as simulated feedback. 
When using simulated feedback, it is possible to set up the Turbo PMAC servo gains solely with analytic 
methods.  See the Setting up Turbo PMAC2 for Pulse-and-Direction Control section for details.  When 
using real encoder feedback, tune the servo loop just as for an analog velocity-mode drive. 
Hydraulic-Valve Amplifiers 
Hydraulic-valve amplifiers, whether for servo valves or proportional valves, control a fluid-volume flow 
proportional to their command input.  Since fluid flow into or out of a hydraulic cylinder is proportional 
to the velocity of the moving member of the cylinder, the command into the valve’s amplifier is 
effectively a velocity command. 
Amplifiers for Which Servo Produces Torque/Force Command 
Several types of amplifiers require the Turbo PMAC servo loop to close the velocity loop as well, making 
the output of this servo loop a torque or force command.  If Turbo PMAC is not doing commutation for 
this motor, the torque/force command is output to the amplifier; if Turbo PMAC is doing the 
commutation, this command is an input to the commutation algorithm.  The main types of amplifiers that 
require the controller to close the velocity loop are: 
• Analog-input torque-mode amplifiers 
• Sinusoidal-input amplifiers 
• Direct-PWM power-block amplifiers 
If the command value from the Turbo PMAC servo loop, regardless of signal type, is a torque or force 
command, the Turbo PMAC servo must close the velocity loop for the motor.  With the standard PID loop, 
this means that the derivative (D) term Ixx31 must be set to a non-zero value.  This derivative action is 
required to get the damping action needed for stability.  Because motors produce a torque or force 
proportional to motor current, the torque/force command out of the servo can also be considered a current 
command. 
There is no need to tune anything in the amplifier with the load attached to the motor, because no 
velocity-loop closure is done in these types of amplifiers.  Any tuning that may be required is dependent 
only on motor properties, so potentially this can even be done by the amplifier manufacturer. 
Analog-Input Torque-Mode Amplifiers 
Analog-input “torque-mode” amplifiers accept an analog voltage that represents a torque/force, and hence 
current, command.  These amplifiers close a current loop inside, and if for brushless motors, perform the 
motor phase commutation as well.  Another name occasionally used for these types of amplifiers is the 
transconductance amplifier, signifying that a voltage input results in a proportional current output.   
Sinusoidal-Input Amplifiers 
A sinusoidal-input amplifier accepts two phase-current commands that are sinusoidal functions of time in 
the steady state.  This type of amplifier expects the controller to calculate the commutation, using the 
torque/force command from the position/velocity-loop servo as the current-magnitude command into the 
commutation.  The amplifier performs the current-loop closure in this style. 
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Direct-PWM Power-Block Amplifiers 
A direct-PWM power-block amplifier accepts phase voltage commands encoded as the actual pulse-
width-modulated on-off commands for the power transistors.  This type of amplifier expects the controller 
to calculate the commutation and current loop, using the torque/force command from the 
position/velocity-loop servo as the current-magnitude command into the commutation and current loop.  
The amplifier performs no control functions in this style. 

PID/Feedforward/Notch Servo Filter 
Turbo PMAC’s PID/feedforward/notch servo filter (PID filter for short) is by far the most commonly 
used servo filter.  It is easy to understand and tune, yet powerful enough to provide excellent control of 
the vast majority of systems. 

The PID filter is selected by default on the Turbo PMAC.  To use the PID filter on Motor xx, make sure 
that bit 0 of Ixx59 is set to 0, disabling any user-written servo algorithm, and Iyy00/50 (I3300 for Motor 
1, I3350 for Motor 2, etc.) is set to 0, disabling the Extended Servo Algorithm. 
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PID Feedback Filter 
The PID feedback filter consists of proportional (P), integral (I), and derivative (D) terms, each with its 
own contribution to the control effort. 

Ixx30 Proportional Gain Term 
The proportional gain term set by Ixx30 provides the basic corrective action for position errors, providing 
a control effort proportional to the size of the error to try to reduce the error.  Proportional gain alone acts 
like a spring, and the magnitude of the proportional gain term is the spring constant; the higher this gain 
term, the stiffer the spring action. 

In Turbo PMAC, Ixx30 is an overall loop gain term, post-multiplying the other gain terms, and not just a 
proportional gain term.  This makes it possible to change Ixx30 alone if an external gain term (e.g. 
encoder resolution or amplifier gain) is changed; it also normalizes the derivative and integral gain terms 
into a time constant and inverse time constant, respectively. 
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Ixx31 Derivative Gain Term 
The derivative gain term set by Ixx31 provides a damping effect by providing a contribution to the control 
effort proportional to the actual velocity acting against that velocity.  In this respect it acts much like a 
dashpot or the shock absorber of a vehicle’s suspension.  The higher the derivative gain term, the heavier 
the damping action. 

Some form of derivative action – effectively a velocity loop – is required for a stable position loop.  If a 
well-tuned velocity loop is closed in the amplifier, the Ixx31 derivative gain term in Turbo PMAC can be 
set to 0.  However, if there is no velocity loop closed externally, a positive value of Ixx31 will be required 
for stable operation. 

Note that in the Turbo PMAC, this gain acts on the derivative of the actual position, not on the derivative 
of the position error, as in some other controllers.  This permits the simple use of dual motor-and-load 
feedback with a separate sensor on the motor for derivative action (specified by Ixx04) from the sensor on 
the load for proportional and integral action (specified by Ixx03). 

Ixx33 Integral Gain Term 
The integral gain term set by Ixx33 provides for correction against steady-state errors caused by such 
effects as friction, gravitational loads, cutting loads, and analog offsets.  The integral gain term controls 
how fast the position error integrator term charges up and discharges; the higher the gain, the faster the 
action, 

Ixx34 is a single-bit variable that controls the time in which the integral gain term is active.  At the default 
value of 1, the integral gain is active only when the commanded velocity is zero (at move end).  When 
Ixx34 is 0, the integral gain term is always active.  When tuning the other terms, generally it is best to set 
Ixx34 to 1 to reduce the errors as much as possible without the integrator; if the remaining errors are 
small, it is then usually good practice to set Ixx34 to 0 to let the integrator dynamically compensate for 
the remaining errors. 

Feedforward Filter 
A feedback filter is error driven, so an error must exist between the commanded and actual positions 
before it takes any action.  The actions of feedforward, on the other hand, are dependent only on the 
commanded trajectory, and therefore do not require errors to cause action.  The basic idea of feedforward 
is to directly apply your best estimate of the control effort needed to execute the commanded trajectory, 
without waiting for position errors to build up.  The feedback terms then need to respond only to the 
errors in this estimate, which typically are quite small. 

In a well-tuned system, over 95 percent of the control effort can come from the feedforward terms, with 
the feedback terms just providing small corrections for disturbances and imperfections in the estimate.  
Turbo PMAC’s PID filter has velocity and acceleration feedforward terms, covered here, and a non-linear 
friction feedforward term, covered below under the heading Servo Loop Modifiers. 

Ixx32 Velocity Feedforward Term 
The velocity feedforward term Ixx32 adds an amount to the control effort that is directly proportional to 
the commanded velocity, to overcome potential position errors that would be proportional to velocity.  
These errors can come from several sources.  The first source, and the dominant one, is from the velocity 
feedback term that provides the required damping for stability, whether done in the Turbo PMAC (the 
Ixx31 term) or externally.  Other minor sources of velocity related errors include magnetic losses in the 
motor and actual viscous damping losses. 

Properly set velocity feedforward will eliminate following error components that are proportional to 
velocity.  If the Turbo PMAC is closing the velocity loop for the motor, typically the optimal Ixx32 will 
be equal to, or slightly greater than Ixx31. 
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Ixx35 Acceleration Feedforward Term 
The acceleration feedforward term Ixx35 adds an amount to the control effort that is directly proportional 
to the commanded acceleration, to overcome potential position errors that would be proportional to 
acceleration.  These errors come from the fundamental tendency of inertia to resist acceleration.  Without 
acceleration feedforward, there would be a component of the following error proportional to acceleration. 

Properly set acceleration feedforward will eliminate following error components that are proportional to 
acceleration.  The Ixx35 acceleration feedforward term is an estimate of the inertia of the system, directly 
providing a force or torque proportional to it and the commanded acceleration. 

Actual PID/Feedforward Algorithm 
The actual equation used in the PID/feedforward algorithm to compute the commanded output for Motor 
xx is as follows: 

CMDout(n) = 2-19 * Ixx30*[{Ixx08 * [FE(n) + (Ixx32*CV(n) +Ixx35*CA(n))/128 + 

Ixx33*IE(n)/223]} -Ixx31*Ixx09*AV(n)/128] 
where: 
• CMDout(n) is the 16-bit output command (-32768 to +32767) in servo cycle n.  It is converted to a -

10V to +10V output.  DACout(n) is limited by Ixx69. 
• Ixx08 is an internal position scaling term for Motor xx (usually set to 96) 
• Ixx09 is an internal scaling term for the velocity loop for Motor xx (usually set to 96) 
• FE(n) is the following error in counts in servo cycle n, which is the difference between the 

commanded position and the actual position for the cycle [CP(n) - AP(n)] 
• AV(n) is the actual velocity in servo cycle n, which is the difference between the last two actual 

positions [AP(n) - AP(n-1)] in counts per servo cycle 
• CV(n) is the commanded velocity in servo cycle n: the difference between the last two commanded 

positions [CP(n) - CP(n-1)] in counts per servo cycle 
• CA(n) is the commanded acceleration in servo cycle n, which is the difference between the last two 

commanded velocities [CV(n) - CV(n-1)] in counts per servo cycle 
• IE(n) is the integrated following error in servo cycle n, which is: 

0j

)1(FE[
1n

=

∑

−
 

(for all servo cycles for which the integration is active.  Ixx34=1 turns off the input to, but not the 
output from the integrator when CV does not equal zero.) 

Notch Filter 
Turbo PMAC’s standard servo loop includes a notch filter.  This is a second-order bi-quad filter acting on 
the output of the PID section of the servo loop, one of whose main purposes is to create a notch 
(frequency of low response) in the servo reaction for the purposes of fighting a resonance. 

This filter has several possible uses: 
• Anti-resonance (notch) filter 
• Low-pass filter 
• Velocity-loop integrator 
• Lead-lag filter 
Each use will be treated in its own section below. 
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Filter Structure 
For those familiar with control theory (not necessary to use the filter!), the form of Turbo PMAC’s notch 
filter system is: 
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The I-variables Ixx36, Ixx37, Ixx38, and Ixx39 each have a range of -2.0 to +2.0; they are 24-bit values, 
with one sign bit, one integer bit, and 22 fractional bits. 

Use to Create a Notch 
In feedback controls, a notch filter is an anti-resonance filter used to counteract a physical resonance.  
While there are many different philosophies as to how to set up a notch filter, we recommend setting up a 
lightly damped band-reject filter at about 90 percent of the resonant frequency, and a heavily damped 
band-pass filter at a frequency somewhat greater than the resonant frequency (to reduce the high-
frequency gain of the filter itself).  The band-reject filter is implemented in the numerator of the filter 
[N(z)], creating zeros in control terms; the band-pass filter is implemented in the denominator of the filter 
[D(z)], creating “poles” in control terms. 

Automatic Notch Specification 
The Turbo PMAC Executive program allows you to set up a notch filter very simply, without the need to 
understand how a notch filter works.  The easiest way is to enter the frequency of the mechanical 
resonance that you wish to control.  The Executive program will compute the desired characteristics of 
the band-reject and band-pass filters, compute the coefficients, and download them to Turbo PMAC. 

Alternatively, you can individually specify the desired characteristics of the band-reject and band-pass 
filters.  The two characteristics for each part of the filter are the natural frequency ωn and the damping 
ratio ζ.  The Executive program will compute the coefficients to achieve those characteristics, and 
download them to Turbo PMAC. 

Manual Notch Specification 
To calculate the notch filter coefficients manually, consider the continuous transfer function for a notch 
filter: 

( ) 2npnpp22s

2nznzz22s
sG

ωωζ

ωωζ

++

++
=  

Start with five parameters for the filter: 
• ωnz: the natural frequency of the zeroes in radians/second (not in Hertz) 
• ζz: the damping ratio of the zeroes 
• ωnp: the natural frequency of the poles in radians/second (not in Hertz) 
• ζp: the damping ratio of the poles 
• Ts: the servo-loop sampling period in seconds (not in msec) 
To compute radians/second from Hertz, multiply by 2π (6.283).  To compute the sampling period in 
seconds from the sampling rate in kHz, first multiply the rate by 1000 to get Hz, and then take the 
reciprocal.  Remember that the sampling period is equal to (Ixx60+1) times the servo-interrupt period. 
First, compute the following intermediate values: 

2sT2nzsTnzz21z ωωζα ++=  
2sT2npsTnpp21p ωωζα ++=  
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Then compute the filter coefficients: 
( )

z

2sTnzz2
36Ixx

α

ωζ +−
=  

z

1
37Ixx

α
=  

( )
p

2sTnpp2
38Ixx

α

ωζ +−
=  

p

1
39Ixx

α
=  

Finally, modify the proportional-gain term to compensate for the DC-gain change that the filter creates: 

p

z
2nz

2np
old30Ixxnew30Ixx

α

α

ω

ω
=  

For example, suppose we have identified a 55 Hz resonance in our mechanical coupling.  To compensate 
for this, we decide to put a lightly damped band-reject filter (damping ratio 0.2) at 50 Hz natural 
frequency, and a heavily damped band-pass filter (damping ratio 0.8) at 80 Hz natural frequency to limit 
the high-frequency gain of the filter.  The servo update time is the default of 442 microseconds. 

sec000442.0
sec

sec610sec*442sT =−=
µ

µ  

secrad2.314Hz50*2nz == πω  
secrad7.502Hz80*2np == πω  
2sT2nzsTnzz21z ωωζα ++=  

2000442.0*22.314000442.0*2.314*2.0*21 ++=  
0748.1=  

2sT2npsTnpp21p ωωζα ++=  
2000442.0*27.502000442.0*7.502*8.0*21 ++=  

4049.1=  
Next we compute the filter coefficients: 

( ) ( )
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36Ixx −=

+−
=

+−
=

α

ωζ
 

930.0
0748.1

1

z

1
37Ixx ===

α
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1
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Finally, we compute the DC gain adjustment, assuming for the example that our existing proportional 
gain term Ixx30 had been 500,000: 
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169,979
4049.1

0748.1
22.314

27.502
000,500

p

z
2nz

2np
old30Ixxnew30Ixx ===

α

α

ω

ω
 

Use to Create a Low-Pass Filter 
It is also possible to use this filter component as a low-pass filter if reducing roughness of operation is 
more important than high system bandwidth.  Typically, the low-pass filter is used if a low-resolution 
position sensor is used. 

Automatic Specification 
The Turbo PMAC Executive program allows the set up of a low-pass filter easily, without the need to 
understand how it works.  Enter the cutoff frequency of the filter (the frequency above which should not 
pass much signal strength) and choose whether to create a first-order or second-order filter.  The 
Executive program will compute the desired characteristics of the band-reject and band-pass filters, 
compute the coefficients, and download them to Turbo PMAC. 

Manual Specification 
To calculate a low-pass filter manually, specify the cutoff frequency in radians per second, and the servo-
update frequency in seconds. 

First-Order Filter:  To calculate a first-order low-pass filter, consider the continuous transfer function 
for the filter: 

( )
ω

ω

ω +
=

+
=

s1/s

1
sF  

where ω  is the cutoff frequency in radians per second (equal to 2πf, where f is the cutoff frequency in 
Hertz).  This value ω is equal to 1/τ, where τ is the time constant of the filter. 
Next, convert this to a discrete-time transfer function using the approximation s=(1-z-1)/Ts, where Ts is the 
servo update time in seconds. 
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In Turbo PMAC terms, the gain term is multiplied into the existing gain term Ixx30: 

sT1
sT

*old30Ixxnew30Ixx
ω

ω

+
=  

The pole term uses the first-order notch filter pole parameter Ixx38.  The other filter parameters Ixx36, 
Ixx37 and Ixx39 are set to zero if the filter is used only as a low-pass filter. 

sT1

1
38Ixx

ω+
−=  

For example, to implement a first-order low-pass filter with a cutoff frequency of 50 Hz on a Turbo 
PMAC with a servo update time of 442 µsec, we compute: 

139.0000442.0*50**2sT == πω  

old30Ixx*122.0
139.01

139.0
*old30Ixxnew30Ixx =

+
=  

877.0
139.01

1
38Ixx −=

+
−=  

039Ixx,37Ixx,36Ixx =  
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Second-Order Filter:  To calculate a second-order low-pass filter, we consider the continuous transfer 
function for a generalized second-order filter: 

( ) 2nn22s

2nsF
ωζω

ω

++
=  

where ωn is the cutoff frequency of the filter in radians per second, and ς is the damping ratio – a value of 
0.707 produces a Butterworth filter here. 
First, compute the following intermediate value:  

2sT2nsTn21 ωζωα ++=  

Then compute the filter coefficients: 
( )

α

ζω 2sTn2
38Ixx

+−
=  

α

1
39Ixx =  

Ixx36 and Ixx37 should be set to 0 if no other use is made of this filter. 
Finally, modify your proportional-gain term to compensate for the DC-gain change that the filter creates: 

α

ω 2sT2n
old30Ixxnew30Ixx =  

For example, to implement a second-order low-pass filter with a cutoff frequency of 60 Hz and a damping 
ratio of 0.707 on a Turbo PMAC with a servo update time of 250 µsec, we compute the following: 

0942.0000250.0*60**2sTn == πω  
146.10942.00942.0*707.0*21a 2 =++=  

( )
861.1

146.1

20942.0*707.0*2
38Ixx −=

+−
=  

873.0
146.1
139Ixx ==  

old30Ixx*00774.0
146.1

20942.0
old30Ixxnew30Ixx ==  

037Ixx,36Ixx =  
Use to Create a Velocity-Loop Integrator 
This filter can also be used to create an integrator inside the velocity loop, independent of the integral 
gain term in the position loop.  This additional integrator can provide additional stiffness and disturbance 
rejection.  However, it may hinder quick response to acceleration commands. 

Manual Specification 
Consider a PI filter in the velocity loop with transfer function: 

( )
1

iv
pv z1

KKzV
−−

+=  

where Kpv is the velocity-loop proportional gain, and Kiv is the velocity-loop integral gain.  This can be 
manipulated to produce: 
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In Turbo PMAC terms, the gain term (Kpv+Kiv) is multiplied into the existing gain term Ixx30: 
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( )ivpvoldnew KK*30Ixx30Ixx +=  

The zero and pole terms use the first-order notch filter parameters Ixx36 and Ixx38, respectively.  The 
second-order parameters Ixx37 and Ixx39 are set to zero if the filter is used only as an integrator. 

ivpv

pv

KK
K

36Ixx
+

−=  

138Ixx −=  
Use to Create a Lead-Lag Filter 
This filter can be used simply as a lead-lag filter if the roots are real rather than imaginary.  A lead-lag 
filter is very similar in performance to a PID filter.  It is useful when filter settings are determined 
analytically rather than experimentally.  When a basic lead-lag servo filter is desired, all servo gains 
Ixx31 to Ixx35 should be set to zero; Ixx30 is still used as the generalized gain term. 

The PMAC Executive program presently does not have any screens to assist in the automatic 
specification of a lead-lag filter. 

Manual Specification 
The generalized analytical form of a digital lead-lag filter is: 

( )
( )

( )
( )dz

cz
bz
azK)z(L

+
+

+
+

=  

where the (z+a)/(z+b) term is the lead filter, with a < b, the (z+c)/(z+d) term is the lag filter, with c > d, and 
K is the DC gain term.  In Turbo PMAC’s real-time implementation, the transfer function of the filter is: 

2z2d1bdz1

2z2c1acz1K)z(L
−+−+

−+−+
=  

Turbo PMAC term Ixx30 is set to K; Ixx36 is set to ac; Ixx37 is set to c2; Ixx38 is set to bd; and Ixx39 is 
set to d2. 
Servo-Loop Modifiers 
The PID filter has several modifying terms – non-linearities in control terminology – that can be 
important to optimize the filter for performance and safety.  Each is covered briefly below. 
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Ixx63: Integration Limit 
Ixx63 is a saturation limit for the integrator, which limits the magnitude of the integrator output.  If set to 
a negative value, it trips the servo loop with a fatal following error if the integrator saturates.  Setting 
Ixx63 to 0 clears the integrator and thus its output.  (Setting integral gain term Ixx33 to 0 only stops 
further input to the integrator.) 
Ixx64, Ixx65: Deadband Compensation 
Ixx64 and Ixx65 permit both the creation of a deadband and compensation for physical deadband (as in 
proportional hydraulic valves).  Ixx65 specifies the magnitude of the deadband compensation zone in 
terms of magnitude of the servo following error.  Ixx64 specifies the gain inside that zone relative to the 
overall proportional gain Ixx30.  Positive values of Ixx64 increase the gain inside the zone, compensating 
for physical deadband; negative values of Ixx64 decrease the gain inside the zone, with Ixx64=-16 
producing true deadband. 

n=-16

23
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Ixx67: Following Error Limit 
Ixx67 is a saturation limit on the magnitude of the following error input to the P and I terms of the filter.  
It does not limit the true following error, or the error value compared to the Ixx11 and Ixx12 following 
error limit parameters.  Setting Ixx67 to 0 disables the PI control terms, while leaving the D derivative 
term (i.e. the velocity loop) and the feedforward terms active.  This setting is useful if only velocity 
control is truly desired.  If Ixx67 is set to 0, Ixx11 should also be set to 0 to make sure the motor does not 
trip on a fatal following error fault. 

Ixx68: Friction Feedforward 
Ixx68 is a non-linear friction feedforward term.  The magnitude of Ixx68, multiplied by the sign of the 
instantaneous commanded velocity, is added directly to the output of the servo filter.  It is meant to 
compensate for dry (Coulomb) friction. 
Ixx69: Output Limit 
Ixx69 is a saturation limit on the output of the servo filter.  If the output value is limited by Ixx69, the 
input to the position-loop integrator is turned off automatically, and the output of the integrator remains 
constant in this condition. 
Ixx29, Ixx79: Offset Terms 
If Turbo PMAC is not performing commutation for Motor xx, Ixx29 is a fixed offset term on the output 
of the servo filter, in units of a 16-bit DAC (even if some other device is used).  If Turbo PMAC is 
performing commutation for the motor, Ixx29 and Ixx79 serve as phase offsets in the commutation 
algorithm. 

Extended Servo Algorithm 
For systems with more difficult dynamics, such as multiple resonances and low-frequency resonances, the 
Extended Servo Algorithm (ESA) may be used instead of the PID filter.  The choice of servo filter may be 
made on a motor-by-motor basis. 
The ESA, while more powerful and flexible than the PID, is not as easy to understand or tune 
interactively.  The PEWIN32PRO Executive program has auto-tuning software for the ESA.  However, 
tuning the ESA manually requires significant control-theory knowledge and experience.  This discussion 
assumes such knowledge. 
The ESA has 30 terms in seven blocks of polynomial coefficients.  As with the PID, it does support single 
and dual feedback using the Ixx03 and Ixx04 feedback address variables.  However, the ESA is more 
flexible with regard to what is done with dual feedback; it is not limited to separate position and velocity 
loops.  The feedback selected with Ixx03 and the commanded trajectory values are pre-multiplied by the 
Ixx08 scale factor; the feedback selected with Ixx04 is pre-multiplied by the Ixx09 scale factor. 
As with the PID, or a user-written servo, the ESA can be used with or without Turbo-PMAC based 
commutation.  If the motor is not commutated by Turbo PMAC, the computed control output is written to 
the register specified by Ixx02; if it is commutated by Turbo PMAC, the control output is the torque 
(quadrature) command into the commutation algorithm. 
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PMAC: Extended Servo Algorithm Block Diagram
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The ESA for Motor xx is selected by setting the first supplemental motor I-variable Iyy00/50 (I3300 for 
Motor 1, I3350 for Motor 2, etc. – see full table in the Software Reference Manual) to 1, and by setting bit 
0 of Ixx59 to the default of 0 to disable the “user-written servo.”  With this setting, the servo loop terms 
are supplemental I-variables Iyy10/60 through Iyy39/89 (I3310 – I3339 for Motor 1, I3360 – I3389 for 
Motor 2, etc.).  The following table shows the variables used for each gain term: 

I-Var. for 
Odd-

Numbered 
Motors 

I-Var. for 
Even-

Numbered 
Motors 

Gain 
Name 

Range I-Var. for 
Odd-

Numbered 
Motors 

I-Var. for 
Even-

Numbered 
Motors 

Gain 
Name 

Range 

Iyy10 Iyy60 s0 -1.0≤Var<+1.0 Iyy25 Iyy75 TS -223≤Var<223 
Iyy11 Iyy61 s1 -1.0≤Var<+1.0 Iyy26 Iyy76 L1 -1.0≤Var<+1.0 
Iyy12 Iyy62 f0 -1.0≤Var<+1.0 Iyy27 Iyy77 L2 -1.0≤Var<+1.0 
Iyy13 Iyy63 f1 -1.0≤Var<+1.0 Iyy28 Iyy78 L3 -1.0≤Var<+1.0 
Iyy14 Iyy64 h0 -1.0≤Var<+1.0 Iyy29 Iyy79 k0 -1.0≤Var<+1.0 
Iyy15 Iyy65 h1 -1.0≤Var<+1.0 Iyy30 Iyy80 k1 -1.0≤Var<+1.0 
Iyy16 Iyy66 r1 -1.0≤Var<+1.0 Iyy31 Iyy81 k2 -1.0≤Var<+1.0 
Iyy17 Iyy67 r2 -1.0≤Var<+1.0 Iyy32 Iyy82 k3 -1.0≤Var<+1.0 
Iyy18 Iyy68 r3 -1.0≤Var<+1.0 Iyy33 Iyy83 KS -223≤Var<223 
Iyy19 Iyy69 r4 -1.0≤Var<+1.0 Iyy34 Iyy84 d1 -1.0≤Var<+1.0 
Iyy20 Iyy70 t0 -1.0≤Var<+1.0 Iyy35 Iyy85 d2 -1.0≤Var<+1.0 
Iyy21 Iyy71 t1 -1.0≤Var<+1.0 Iyy36 Iyy86 g0 -1.0≤Var<+1.0 
Iyy22 Iyy72 t2 -1.0≤Var<+1.0 Iyy37 Iyy87 g1 -1.0≤Var<+1.0 
Iyy23 Iyy73 t3 -1.0≤Var<+1.0 Iyy38 Iyy88 g2 -1.0≤Var<+1.0 
Iyy24 Iyy74 t4 -1.0≤Var<+1.0 Iyy39 Iyy89 GS -223≤Var<223 

The ESA consists of a series of blocks, most with multiple terms, each taking an input value, which could 
be the output of another block, and computing an output value, which could be the input to another block.  
Many of the blocks have polynomial transfer functions; an nth order polynomial implies the storage of n 
cycles of history for the block. 

Terms whose names consist of a letter and a number multiply a single control value that is i cycles old, 
where i is the number in the name (e.g. t2 multiplies a value two cycles old).  If the term is in the 
numerator of the block, it multiplies an input value to that block; if it is in the denominator of the block, it 
multiplies an output value from that block.  These terms have a range of +/-1.0, with 24-bit resolution. 
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Terms whose names consist of two letters, with the second letter an S, multiply the results of an entire 
block.  These terms are treated as integers with a range of +/-8,388,608. 

The PID terms Ixx30 – Ixx39, Ixx63 – Ixx65, and Ixx67 are not used.  Ixx68 is used as the “friction 
feedforward” term for the ESA, just as it is for the PID.  Ixx69 is used for the ESA, but in a slightly 
different manner from the PID.  In the PID, Ixx69 is a truncation limit on the control effort output that 
does not affect smaller command values; in the ESA it is an output scale factor that affects all output 
command values. 

Cascading Servo Loops 
The open structure of Turbo PMAC’s servo loops and the ability to specify which registers are used for 
its inputs and outputs provide the user with powerful capabilities such as the ability to “cascade” servo 
loops.  In this technique, the output of one servo loop (one Turbo PMAC “motor”) is used as an input to 
another servo loop, bringing the capabilities of both loops to bear on a single actuator.  The outer loop 
does not drive an actuator directly; instead, it dynamically modifies the set point of the inner loop in an 
effort to drive its own error to zero. 

This technique has many possible uses.  The most common is to be able to close an auxiliary loop around 
a standard position loop.  The auxiliary loop controls some quantity affected by the position loop’s 
motion, such as torque or force applied, or distance from a surface.  The coupling of the loops can be 
turned on and off, permitting easy switching between control modes. 
Common uses of this technique include: 
• Web tensioning 
• Torque-limited screwdriving 
• Metal bending 
• Controlled-force part insertion 
• Height control over uneven surface (e.g. for auto-focus) 
The inner loop in these applications is typically a standard position loop driving a real actuator with a 
standard position feedback device such as an encoder or resolver.  The first step in setting up such an 
application is to get this loop working in standard positioning mode (running at continuous velocity if 
appropriate). 

The outer loop in these applications uses a feedback sensor measuring whatever quantity the outer loop is 
to be controlled.  Often these force or torque transducers such as strain gages or tensioning dancer arms, 
or distance (gap) transducers employing capacitive or ultrasonic mechanisms. 

By engaging and disengaging the outer loop, the user can switch between standard position control using 
just the inner loop, as when not meeting the resistance of a surface, and control of the auxiliary function, 
as when pushing with controlled force against a surface.  The transition is simple to perform, and smooth 
in operation. 

A second use of this technique is to build a more complex filter than you can with the standard filter for a 
single motor (e.g. incorporating a double notch filter).  By using the output of the first filter as the input to 
the second, you can chain them together and get the action of both filters between the command and the 
output.  While the general principle is the same, the details of the setup and the process for getting this 
going will differ.  The sections immediately following cover the process for setting up hybrid control.  A 
special section further down describes the differences in setting up using two loops to control a single 
quantity. 
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Selecting Turbo PMAC Motors to Use 
Any two Turbo PMAC motors can be used for the inner and outer loops.  If no integration is required in 
passing the information from outer loop to inner loop (see below), using a lower-numbered motor for the 
outer loop will avoid adding a servo-cycle delay.  This has the possibility of delivering higher 
performance in closing the outer loop.   

However, in many applications, the performance of the outer loop will be high enough even with the 
added delay, and some users will find it easier to add the additional outer-loop motor as a higher-
numbered motor than the real motors.  For example, Motors 1, 2, and 3 are the real X, Y, and Z axes, 
respectively; Motor 4 is added as the W axis to close a loop around motor 3 as the Z axis. 

Inner Loop General Setup 
In hybrid control applications, first set up the inner loop as a standard positioning motor, get it well tuned 
and operating as needed when controlling this actuator in position/velocity mode.  For the hybrid control, 
we will simply add a command from the outer loop through the master position input; otherwise, 
operation of this inner loop remains the same. 

Outer Loop General Setup 
Set up the outer loop to use the alternate sensor as its feedback with its Ixx03 and Ixx04 feedback address 
parameters (through the conversion table).  Often, the control quantity of this loop will not be a position 
value, but since all Turbo PMAC terminology is in terms of position, you should beware of possible 
confusion.  One least-significant bit (LSB) of the feedback sensor is considered a count by Turbo PMAC.  
As with positioning motors, the scale factor of the axis-definition statement can permit you to program 
this motor in engineering units (e.g. Newtons or pounds of force). 

You will not be able to tune the outer loop until you have linked it with the inner loop.  The next section 
describes the steps in linking the loops. 

Cascaded Loops for Hybrid Control
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Joining the Loops 
After the inner loop is working properly, and have done the basic setup of the outer loop, join the loops 
together. 

To Integrate Outer Loop Command or Not 
Sometimes the output from the outer loop will be numerically integrated before being used as a position 
input to the inner loop.  If it is integrated, the outer loop’s command itself will effectively be a velocity 
value; if it is not integrated, the value will be a position value.  In general, if the steady-state condition 
with the outer loop engaged has a non-zero velocity, as in web-tensioning applications, this value should 
be integrated.  However, if the steady-state condition is at zero velocity, as in part-insertion applications, 
integration should not be used. 

Outer Loop Output Address: Ixx02 
The key to this technique is to link the output of the outer loop to the master position of the inner loop.  
The Ixx02 variable for the outer loop’s motor that specifies the address of the servo output can specify 
any open register.  This is just a temporary holding register for the value, so it does not need to be the 
register of an output device.  Commonly the open RAM registers in the address range $0010F0 - $0010FF 
are used to hold this value. 

If Ixx01 for this motor is set to 2, the register specified by Ixx02 will be an X register.  (Note that the 
outer-loop motor will never be commutated, so it will never be necessary to set bit 0 of Ixx01 to 1.)  If 
you do not need to integrate this value before using it for the inner loop (the decision is discussed below), 
writing this value to an X register will permit the inner loop to read this value directly, without any 
processing by the encoder conversion table.  However, if the value must be integrated, Ixx01 for the 
outer-loop motor should be set to 0 so the value is written to a Y register. 

Integrating in the Conversion Table 
If the command output of the outer loop is integrated before using it as an input into the inner loop, treat 
the holding register the same as the register from an Acc-28 A/D converter.  A conversion-table entry that 
integrates a register of Acc-28 style has a leading hex method digit of $5.  The register is to be treated as a 
signed quantity, so the bit-19 mode switch bit is set to 0.  For example, if the holding register were at 
address Y:$0010F0, the entry’s first line would be $5010F0. 

The second line of the entry is an offset value that is subtracted from the reading before integration.  Since 
this is using a computed and not measured value, this should be set to 0. 

Inner Loop Master Address: Ixx05 
The Ixx05 master position address variable for the inner loop’s motor contains the address of the result in 
the encoder conversion table.  This must be an X register.  If the outer loop wrote its output directly to an X 
register, the inner-loop motor’s Ixx05 can contain the address of this same register.  For example, if Motor 4 
were to pick up a value left in open register X:$10F1, this could be specified with I405=$10F1. 

If the outer-loop’s command were processed through the conversion table, this Ixx05 will contain the 
address of the result in the conversion table.  Remember that you can set this address by reference to the 
conversion-table I-variable number.  If the conversion-table entry were set up with I8004 and I8005, you 
could specify the use of the resulting value for Motor 5 with I505=@I8005. 

Inner-Loop Following Enable and Mode: Ixx06 
The Ixx06 variable for the inner loop’s motor controls whether or not the outer loop is engaged.  When bit 
0 of Ixx06 is set to 0, the outer loop is not engaged, and the inner loop will function independently.  When 
bit 0 of Ixx06 is set to 1, the outer loop is engaged, and its output will command a modification to the 
total commanded position of the inner loop. 
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Ixx06 for the inner loop’s motor also controls how the outer loop’s corrections interact with commanded 
positions for the inner loop.  When Ixx06 bit 1 (the following mode control bit) is set to 0, the inner 
loop’s commanded positions are relative to a fixed origin, and these commanded moves effectively cancel 
out whatever corrections have come in through the master position port.  When Ixx06 bit 1 is set to 1 
(offset mode), the corrections that come in through the master position port effectively offset the origin 
for programmed commanded moves, permitting commanded moves and master corrections to be 
superimposed.  This distinction in mode is true even if following is disabled. 

When the outer loop is engaged (Ixx06 bit 0 = 1), usually the following must be in offset mode (Ixx06 bit 
1 =1), making the required value of Ixx06 be 3 for this operation.  Even if there are no explicit commands 
in the motion program for the axis assigned to the inner loop’s motor at this time, any motion command 
for the coordinate system containing this motor implicitly commands that motor to its previous 
commanded position.  If the following is not in offset mode, this will take out the corrections that have 
come in since the last programmed move or move segment. 

When the following is disabled (Ixx06 bit 0 = 0), to command the inner loop’s motor to a definite 
physical position, put the following in normal mode (Ixx06 bit 1 = 0), making the required value of Ixx06 
be 0 for this operation. 

Inner-Loop Master Scale Factor: Ixx07 
The Ixx07 variable for the inner loop’s motor, the master scale factor, is a gain term for the outer loop in 
this use.  Set to 1 to keep the net outer-loop gain (inner-loop Ixx07 times outer-loop Ixx30) as low as 
possible.  It can be set to a negative value if necessary to invert the sense of the coupling between the two 
loops. 

Tuning the Outer Loop 
In the cases of hybrid control, typically you will need only proportional gain (Ixx30) in the outer loop or 
possibly integral gain as well (Ixx33).  Most applications will require no derivative gain (Ixx31), and 
because in most applications the outer loop is just trying to maintain a constant command value, usually 
feedforward terms (Ixx32 and Ixx35) are not important. 

If you are integrating the outer loop’s command value before using it in the inner loop, your Ixx30 
proportional gain term probably will be extremely low (often around 10). 

It is possible to use the Executive’s tuning tools to tune the outer loop gains as you would a standard loop. 

Programming the Outer Loop Motor 
With the outer loop engaged, commanding the position of the outer-loop motor will cause the outer loop’s 
feedback loop to calculate offsets into the inner loop command in an attempt to drive the outer-loop’s 
feedback device to the commanded value.  This outer-loop command can be a motor jog command, or it 
can be a programmed axis command.  If a programmed axis command, the axis to which the outer-loop 
motor is assigned can be in the same coordinate system as the inner-loop motor, or in a different 
coordinate system. 

Most commonly, the outer-loop motor will be assigned to an axis in the same coordinate system as the 
inner-loop motor, and commanded in the same coordinate system.  Axis-naming conventions and 
standards (e.g. RS/EIA-267) consider these as secondary axes and suggest the name of U when matched 
with an X axis, V when matched with Y, and W when matched with Z. 
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Setup Example 
In this example, Motors 1, 2, and 3 are the X, Y, and Z-axes, respectively, in Coordinate System 1 of a 
Cartesian stage.  Each uses quadrature feedback with 0.1-micron resolution, and is programmed in 
millimeters.  Motor 4 is used to control the gap height of the vertical tool over the surface.  It uses a capacitive 
gap sensor through an Acc-28 16-bit A/D converter, with the LSB of the ADC measuring 0.25 microns.  It is 
assigned to the W-axis in the same coordinate system, also programmed in millimeters (of gap). 
I8003=$1F8E00 ; ECT 4th entry: unsigned A/D from Y:$78E00 

Gap virtual motor basic setup 
I400=1 ; Activate Motor 4 
I401=2 ; Output to an X register 
I402=$10F0 ; Output to open register X:$10F0 
I403=@I8003 ; Use result from ECT 4th entry for position 
I404=@I8003 ; Use result from ECT 4th entry for velocity 

Vertical positioning motor link to virtual motor 
I305=$10F0 ; Use #4 output as master input 
I307=1 ; Set lowest possible master scale factor 

Coordinate system setup 
&1 
#1->10000X ; X-axis positioning in millimeters 
#2->10000Y ; Y-axis positioning in millimeters 
#3->10000Z ; Z-axis positioning in millimeters 
#4->4000W ; Vertical gap in millimeters 

Changing the Mode of Control 
Whenever the following mode control bit is changed, re-align the relationship between the corresponding 
motor and axis positions for the inner loop.  While this is done automatically any time a program is 
started with an R or S command, if this bit is changed in the middle of a motion program, command this 
re-alignment explicitly by issuing a PMATCH command.  This is an on-line command; from a motion 
program, it must be issued with the CMD"PMATCH" syntax.   
This command generally must be bracketed before and after with DWELL commands; the first to stop any 
lookahead and blending (this can be a DWELL 0), and the second to give the on-line command time to 
execute in background from the command queue before the next programmed move is calculated.   
Mode Changing Example 
The following code segment shows how the transition to engaging the outer loop can be accomplished.  
This example continues the one above, in which the Z-axis has been assigned to the inner loop’s motor, so 
it is a position axis, and the W-axis has been assigned to the outer loop’s virtual motor. 
Z10 ; Pure position move on inner loop 
DWELL0 ; Stop lookahead 
I306=3 ; Engage following, put in offset mode 
CMD"&1PMATCH" ; Re-align motor and axis position 
DWELL10 ; Give PMATCH command time to execute 
W5 ; Outer loop command 

The following code segment shows how the transition to disengaging the outer loop can be accomplished. 
W5 ; Outer loop command 
DWELL0 ; Stop lookahead 
I306=0 ; Disengage following, put in normal mode 
CMD"&1PMATCH" ; Re-align motor and axis position 
DWELL10 ; Give PMATCH command time to execute 
Z0 ; Pure position move on inner loop 
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Special Instructions for Extended Single-Loop Setup 
When using cascaded servo loops for extended filtering of a single control quantity, several details of the 
setup will be different.  The outer loop will be set up first, using the real feedback device, and writing 
directly to the registers that command the amplifier, commutating if necessary.  This servo loop should be 
tuned as well as possible by itself. 
When ready to engage the inner loop as well, do the following: 
1. Set Ixx01 for the outer-loop motor to 2 to point the output to an X register.  This also disables 

commutation for the motor if you had been using it before. 
2. Set Ixx02 for the outer-loop motor to the address of an open register, usually $0010Fx. 
3. Set Ixx00 for the inner-loop motor to 1 to activate it. 
4. Set Ixx01 and Ixx02 for the inner-loop motor to the same values you had for the outer-loop motor 

when running it alone.  If commutating with Turbo PMAC, also set Ixx70 – Ixx84 for the inner-loop 
motor to the same values you had for the outer-loop motor. 

5. Set Ixx24 and Ixx25 flag parameters for the inner-loop motor to the same values you had for the 
outer-loop motor when running it alone. 

6. Set Ixx03 and Ixx04 feedback address parameters for the inner-loop motor to the address of a register 
that will always be set to 0.  Register $35C0 at the end of the conversion table is suggested. 

7. Set Ixx05 for the inner-loop motor to the same address as the outer-loop motor’s Ixx02 to pick up the 
intermediate value. 

8. Set Ixx06 for the inner-loop motor to 1 to enable the use of the Ixx05 register. 
9. Set the Ixx07 master position scale factor for the inner loop motor to 1. 
10. Set gain term Ixx30 for the inner-loop motor to 65,536, and Ixx31 – Ixx39 to 0.  This should make the 

inner loop a pass-through and your performance should be the same as with the outer loop alone. 
11. Now adjust the gains of the inner-loop motor to get the additional filtering you desire. 
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User-Written Servo Algorithms 
Turbo PMAC supports the installation and automatic execution of user-written servo algorithms.  These 
can be used if the standard PID and ESA filters are not suitable to get the required servo performance. 
Alternately, they can be used for non-servo purposes, with the algorithm guaranteed to execute at the 
servo update rate.  This can be valuable for fast updates of I/O. 

There are two methods for creating these user-written servo algorithms.  The first is a compiled method 
called Open Servo, using Turbo PMAC’s high-level language, compiled by the PEWIN32 PRO Executive 
program.  The second is an assembled method using a Motorola cross-assembler for the DSP56300 
family.  The compiled method is easier to use and more flexible, permitting the use of floating-point 
mathematics.  The assembled method generates code that is far more efficient and more compact.  Both 
methods are discussed below. 

Only a single user-written servo algorithm may be installed in a Turbo PMAC.  This algorithm can be 
executed by any motor on the Turbo PMAC.  If you desire that different motors execute different user-
written servo algorithms, this must be accomplished by branching within a single algorithm. 

Open Servo Compiled Algorithms 
Turbo PMAC’s Open Servo feature permits writing a custom algorithm in a high-level language that will 
execute on Turbo PMAC’s high-priority servo interrupt.  This algorithm can be used either for actual 
servo control functions, or for other tasks that must execute at a very high priority, such as very high-
frequency I/O, special pre-processing of feedback data, or special post-processing of servo commands. 

Open Servo algorithms are compiled into DSP machine code in the host computer before being 
downloaded into Turbo PMAC’s active memory.  They may be retained in Turbo PMAC’s non-volatile 
flash memory using the SAVE command.  When executed, they replace only the standard servo-loop 
algorithm for the motor.  All other tasks, including trajectory generation, motion and PLC program 
execution, and safety checking, are still executed by the Turbo PMAC’s built-in firmware. 

The Open Servo feature is a second method for creating user-written servo algorithms in Turbo PMAC.  
Previously, this could be done only by writing the algorithm in assembly language for the DSP56300 
family using Motorola’s cross-assembler, and downloading the assembled code to the Turbo PMAC.  The 
Open Servo feature permits these algorithms to be written without the need to understand and use 
assembly language. 

Turbo PMAC can hold and execute only a single Open Servo algorithm.  This algorithm can be run by 
multiple motors.  The sections below explain tools for this single algorithm to access motor-specific 
registers; if different procedures are desired for different motors, this must be handled by explicit logic in 
the algorithm. 

The compiled Open Servo program is similar to the compiled PLC programs, but there are two key 
differences: 
• Open Servo algorithms run on the servo interrupt, with guaranteed execution every cycle (or the 

Turbo PMAC will watchdog); compiled PLC programs either run on the real-time interrupt (PLCC 0) 
with possible pre-emption by motion program calculations, or in background (PLCC 1 – 31) with no 
deterministic execution rate. 

• Open Servo algorithms have specific access mechanisms to special registers used for servo functions. 

Requirements 
The Open Servo requires a Turbo PMAC controller (Turbo PMAC, Turbo PMAC2, UMAC, or QMAC) 
with version 1.938 or newer firmware to execute the algorithm.  It requires a PC running PEWIN32PRO 
version 3.2 or newer PMAC Executive program. 
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Computational Features 
The Open Servo provides powerful computational features to permit easy writing of sophisticated and 
flexible algorithms. 

Access to Turbo PMAC Variables 
Open Servo algorithms can utilize all of Turbo PMAC’s I, P, Q, and M-variables, reading and writing to 
them as appropriate.  As in other user programs, it uses floating-point arithmetic to process these variable 
values, even those that are stored as fixed-point values (see Floating-Point vs. Fixed-Point Mathematics, 
below).  Q-variables are accessed from Open Servo algorithms according to the Coordinate System 1 
addressing scheme, no matter which coordinate system the motor executing the Open Servo algorithm is 
assigned to. 

Compiler-Assigned Pointer Variables 
For direct and efficient access to Turbo PMAC registers, Open Servo algorithms support two types of 
pointer variables for which the register assignment is made at compilation time, not at program execution 
time.   

L-variables are pointers to short (24-bit) registers, treated as integer (fixed-point) values.  These work in 
the same way as L-variables do in compiled PLC programs.  They can access either X or Y short 
registers, either as entire 24-bit registers (treated as signed integers only), or as portions of the registers 1, 
4, 8, 12, 16, or 20 bits wide (treated as signed or unsigned integers, except for 1-bit variables, which are 
unsigned only). 

F-variables are pointers to long (48-bit) registers.  If the F-variable definition is an L format (e.g. F1-
>L:$10F0), the register is accessed as a 48-bit floating-point register.  If the F-variable definition is a D 
format variable (e.g. F2->D:$88), the register is accessed as a 48-bit signed integer, but conversion to 
or from Turbo PMAC’s 48-bit floating-point format is performed automatically, so it can be used in 
floating-point mathematics. 

Note: 

Do not confuse L-variables, which are short-word compiler pointers, with L-format 
F-variables and M-variables, which are long-word variables. 

Turbo PMAC itself cannot recognize L-variables or F-variables; these variables have meaning only to the 
compiler on the host computer. 

By contrast, when using Turbo PMAC’s M-variable pointers, the register assignment is made when the 
line is executed, each time it is executed.  This assignment requires about 600 nanoseconds additional 
computation time (on a 100 MHz CPU) each time the variable is accessed.  However, this does permit the 
M-variable definition to be changed during execution, enabling techniques such as indirect addressing. 

It is possible to use L-variables for fast integer arithmetic while retaining the run-time flexibility of M-
variable definitions, but this adds the run-time definition-access computational penalty described above. 
Instead of directly defining L-variables to registers for the compiler, you can reference a range of L-
variables to Turbo PMAC M-variable definitions with the LMOVERLAY {start},{end} compiler 
directive.  This directive must precede the actual Open Servo program.  For example, LMOVERLAY 
10,20 instructs the compiler that the definitions of L10 through L20 are to be assigned at run time using 
the definitions of M10 through M20 respectively at the time each statement is executed, not at 
compilation time. 

Using the M-variable definition and accessing this definition at run time permits indirect addressing 
techniques through real-time modification of this M-variable definition using another pointer variable. 
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Floating-Point vs. Fixed-Point Mathematics 
Each statement in the Open Servo can be executed using either floating-point or integer (fixed-point) 
mathematics.  In a floating-point statement, all variables used are processed through an intermediate 
working format that is 48-bit floating-point, regardless of the storage format of the variable.  Floating-
point statements can utilize any of Turbo PMAC’s I, P, Q, or M-variables, and the compiler’s long F-
variable pointers.  They cannot use the compiler’s short fixed-point L-variable pointers.  All constants 
used in these statements are stored as 48-bit floating-point values. 

In an integer statement, all variables used are processed through an intermediate working format that is 
24-bit signed integer, regardless of the storage format of the variable.  Integer statements can only utilize 
the compiler’s short fixed-point L-variable pointers.  They cannot use the compiler’s long F-variable 
pointers, or Turbo PMAC’s I, P, Q, or M-variables.  All constants used in these statements are stored as 
24-bit signed integers.  All constants used and intermediate values computed must fit in the range of these 
integers: -8,388,608 to +8,388,607.  No mathematical functions (e.g. SIN, COS) may be used in an 
integer statement. 

If a constant appears on a line before any variable (e.g. IF (0=P1) …), the line is assumed to be 
floating-point.  This means that the statement IF (0=L1) is illegal, because it mixes floating-point and 
fixed-point data types. 

Short-word integer operations will execute more than 10 times faster than the same operations done as 
long floating-point operations, but usually will not have the dynamic range to handle the actual control 
calculations.  They can be useful for efficient calculation of associated logic, however. 

Note: 

 PMAC’s built-in servo algorithms (PID and Extended Servo Algorithm) use long 
[48-bit/56-bit] fixed-point mathematics.  This format is not supported in the Open 
Servo. 

If conversion between integer and floating-point data types is required, Open Servo provides the ITOF 
(integer-to-float) and FTOI (float-to-integer) functions.  The ITOF function (with an integer expression 
as its argument) can be used in a floating-point statement, such as: 
P20=ITOF(L10+L11)*3.14159/P628 

The FTOI function (with a floating-point expression as its argument) can be used in a fixed-point 
statement, such as: 
L10=L9+FTOI(P5*100)-5 

The FTOI function will round the value of the floating-point expression to the nearest integer. 
It is not permissible to nest FTOI and ITOF functions within an expression. 
Arrays.  Open Servo algorithms support two types of arrays: variable arrays and register arrays.  Both 
provide useful capabilities. 

Variable Arrays:  Variable arrays work with the Turbo PMAC’s standard PMAC I, P, Q, and M-
variables.  The number of the array index is placed inside parentheses, and specifies the variable number 
for the specified type of variable.  The expression that determines this number is a floating-point 
expression, so it can use Turbo PMAC I, P, Q, or M-variables, constants (which will be treated as 
floating-point values) and the compiler’s F-variables, but it cannot use the compiler’s L-variables (unless 
the value has been converted to floating-point with the ITOF function).  The resulting value of this 
floating-point expression is rounded to the nearest integer automatically, to select the variable number to 
be used.  Some examples of statements using these variable arrays are: 
P(P1)=P10*32 
P30=I(ITOF(L10)*100+30)*P29 
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Register Arrays:  Register arrays work with the compiler’s short L-variables and long F-variables.  
These arrays must be declared to the compiler before the start of the actual Open Servo algorithm.  In use, 
the number of the array index is placed inside square brackets, and specifies the address offset from the 
declared beginning of the array.  The expression that determines this number is a fixed-point expression, 
so it can only use the compiler’s L-variables and constants that fit within the range of a 24-bit signed 
integer. 

L and F-variable register arrays must be declared to the compiler before the start of the actual Open Servo 
algorithm.  Examples of these definitions are: 
L100->X:$010000[32] 
F200->D:$030040[64] 
F300->L:$030080[128] 

The declared array size must be a power of 2 in the range 2 to 8192.  L-variable register arrays always use 
full 24-bit X or Y registers, treating the values as signed integers. 

Operators 
As with any Turbo PMAC user program, Open Servo can utilize the following mathematical and logical 
operators: 
• + (addition) 
• - (subtraction 
• x (multiplication) 
• / (division) 
• % (modulo, remainder) 
• & (bit-by-bit AND) 
• | (bit-by-bit OR) 
• ^ (bit-by-bit XOR) 

All of these operators can be used in either floating-point or integer statements.  Integer division rounds 
the result to the nearest integer; in the case where the fraction is exactly 0.5, it will round to the next more 
positive integer (e.g. -7.5 to -7, and 7.5 to 8). 

Comparators 
As with any Turbo PMAC user program, Open Servo can utilize the following comparators in conditional 
statements: 
• = (equal to) 
• > (greater than) 
• < (less than) 
• ~ (approximately equal to [within 0.5]) 
• != (not equal to) 
• !> (not greater than, less than or equal to) 
• !< (not less than, greater than or equal to) 
• !~ (not approximately equal to [not within 0.5]) 
The ~ and !~ comparators can only be used in floating-point statements.  Note that the <>, >=, and <= 
comparators, which can be used in some programming languages, cannot be used in the Open Servo or 
other Turbo PMAC programs. 

Functions 
As with any Turbo PMAC user program, Open Servo can utilize the following mathematical functions.  
Note that these functions can only be used in floating-point statements within the Open Servo: 
• SIN (trigonometric sine) 
• COS (trigonometric cosine) 
• TAN (trigonometric tangent) 
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• ASIN (trigonometric arc sine 
• ACOS (trigonometric arc cosine) 
• ATAN (trigonometric arc tangent) 
• ATAN2 (special 2-argument, 4-quadrant arc tangent)* 
• ABS (absolute value) 
• INT (greatest integer within) 
• EXP (exponentiation) 
• LN (natural logarithm) 
• SQRT (square root) 
The trigonometric functions use degrees if Turbo PMAC variable I15 is set to the default value of 0; they 
use radians if I15 is set to 1.  The present value of I15 is evaluated each time a trigonometric function is 
executed. 

Note:  
The ATAN2 function uses Q0 as its second argument – the cosine argument.  The 
first argument – the sine argument – is inside the parentheses immediately 
following ATAN2.  The Q0 used in Open Servo is always Coordinate System 1’s 
Q0, no matter which coordinate system the executing motor has been assigned to. 

Special Saturation-Check Function 
The Open Servo has a special function to check a signed quantity against an unsigned limit magnitude 
and saturate the quantity at the magnitude of the limit.  The function FLIMIT({value},{limit}) 
compares the signed quantity {value} against the positive value {limit} and the negative value –
{limit}.  If {value} is greater than {limit}, the function returns the value of {limit}; if 
{value} is less than –{limit}, the function returns the value of -{limit}.  Otherwise, the function 
simply returns the value of {value}.  Both quantities – {value} and {limit} – must be floating-
point expressions (the expressions can be simply variables or constants). 
For example, the statement: 
P2=FLIMIT(P1,20000) 

is equivalent to: 
IF (P1>20000) 
  P2=20000 
ELSE  
  IF (P1<-20000) 
    P2=-20000 
  ELSE 
    P2=P1 
  ENDIF 
ENDIF 

The FLIMIT function reduces the size of both the source code and the resulting compiled code. 
Special Access to Motor Values and Registers 
The Open Servo algorithms have several special statements to support useful features for servo loop 
execution. 

MTRNUM Function:  The MTRNUM function returns the number of the motor (1 – 32) for which the 
algorithm is presently executing.  The number is returned as a fixed-point (integer) value.  For example, 
the statement L10=MTRNUM*100 would set fixed-point variable L10 to 200 when the Open Servo 
algorithm is executing for Motor 2, or to 1800 when executing for Motor 18.  Similarly, the statement 
P10=ITOF(MTRNUM*100+30) would set floating-point variable P10 to 230 when the Open Servo 
algorithm is executing for Motor 2, or to 1830 when executing for Motor 18. 
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COPYREG Command:  The COPYREG command copies five key registers for the executing motor into 
five consecutive P-variables, where they can easily be used for calculations.  The user does not have to 
know the addresses of these registers.  In doing this copying, Turbo PMAC automatically converts the 
data to 48-bit floating-point format. 
The syntax of this command is COPYREG {P-variable name}, where {P-variable name} 
specifies the number of the first variable into which data will be copied.  The five registers to be copied 
by this command are: 
• Actual Velocity (1/[Ixx09*32] counts / [Ixx60+1] servo cycles) 
• Desired Velocity (1/[Ixx08*32] counts / [Ixx60+1] servo cycles) 
• Following Error (1/[Ixx08*32] counts)  
• Actual Position (1/[Ixx08*32] counts) 
• Desired Position (1/[Ixx08*32] counts) 
The actual position value is derived from the register selected by Ixx03 for the motor (Position-Loop 
Feedback Address), with the source value multiplied by the Ixx08 scale factor and extended into a 48-bit 
long word.  The actual velocity value is derived from the position value selected by Ixx04 for the motor 
(Velocity-Loop Feedback Address), taking this cycle’s actual velocity-loop position value minus the 
value at the previous loop closure and multiplying the difference by the Ixx09 scale factor.  Note that this 
scale factor is not necessarily the same as for the desired velocity. 
For the desired position value, Turbo PMAC adds the trajectory commanded position and the master 
position (from the position following, or electronic gearing function), then subtracts the compensation 
position (from the position, or leadscrew compensation tables), creating a net desired position value.  The 
desired velocity value is simply this cycle’s desired position value minus the value at the previous loop 
closure. 
The following error value is the desired position the actual position.  The subtraction is done using 48-bit 
fixed-point values; then the difference is converted to floating-point format.  There are several advantages 
to using the following error value directly.  First, it saves some computational time.  Second, when the 
commanded and actual positions get very large, it preserves fractional position data better.   
If the command COPYREG P5 were used, the Actual-Velocity value would be copied into P5, Desired 
Velocity into P6, Following Error into P7, Actual Position into P8, and Desired Position into P9.  Note 
the differing units between the actual and desired velocity registers.  (The desired velocity value is not 
typically used in actual servo loop closure.  Turbo PMAC uses this register in the numerical integration 
process to compute the desired position value each servo cycle.) 
Offsets from Registers of Executing Motor:  The compiler’s L-variables and F-variables can be 
declared by address offset to specific registers of the executing motor.  In this way, they automatically 
index properly from motor to motor, permitting the same variables and code to be used for multiple 
motors.  These variables can be declared by offset to the motor’s R0 register, which is the motor’s 
command output register ($BF for Motor 1), or by offset to the motor’s R1 register, which is the motor’s 
status register ($B0 for Motor 1).  L-variables can be declared to 24-bit X or Y registers this way; F-
variables can be declared to 48-bit fixed-point or floating-point registers this way.  Some examples: 
L220->X:(R1-$27)  ; Ixx08 scale factor register 
L270->Y:(R1+0)  ; Motor status register 
F392->D:(R1-$24)  ; Motor master position register 
F34->L:(R0+11)  ; Ixx16 maximum commanded speed 

The offset must be in the range –64 <= {offset} <= 63 (-$40 <= {offset} <= $3F). 
Returned Value:  The RETURN command takes the integer value inside the following parentheses and 
places it in a 24-bit signed integer register where Turbo PMAC’s standard firmware will take it and use it as 
the servo command.  Typically, the commanded value will be computed as a floating-point value, so must 
be converted to an integer with the ITOF function.  Typical uses of the RETURN command could be: 
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RETURN(FTOI(P345)) 
L10=FTOI(P92/65536) 
RETURN(L10) 

The RETURN command will typically be the last line of an Open Servo algorithm.  Putting it earlier in the 
algorithm will not cause the command data to be used any sooner by the Turbo PMAC.  If the Open 
Servo program is used for a task other than servo-loop closure, there is no need to use the RETURN 
command.  In this case, when the Open Servo algorithm reaches the CLOSE statement that is required at 
the end of the program, it will write a 0 to this holding register automatically. 

Turbo PMAC will take the resulting value and add the contents of the torque compensation register 
(usually from the motor’s TCOMP torque compensation table) to it. If Turbo PMAC is not performing 
commutation for this motor (Ixx01 bit 0 = 0), it will take this sum and copy it to the register specified by 
Ixx02.  If you do not use the RETURN command in this case, Turbo PMAC will still copy the zero value 
that it has placed in the holding register that would have been used by the RETURN command into the 
register specified by Ixx02. 

If Turbo PMAC is performing commutation for this motor (Ixx01 bit 0 = 1), it will use the resulting sum 
as the “quadrature current” (torque) command input to the commutation algorithm.  In this case, Ixx02 
specifies the multiple output registers from the commutation algorithm. 

The Ixx29 and Ixx79 offset terms are added automatically by Turbo PMAC, just as if the built-in servo 
algorithms were used. 

The returned value must be an integer value in the range –8,388,608 to +8,388,607.  Most of the 
command output ranges associated with Turbo PMAC’s automatic servo loops are expressed as 16-bit 
values, with a range of –32,768 to +32,767.  The values associated with RETURN are therefore 256 times 
larger.  The actual command output device will not necessarily have this full 24-bit resolution (and 
probably will not).  In general, however, an n-bit output device uses the high “n” bits of the 24-bit 
returned value. 

Variable Value Assignments 
Mathematical operations in an Open Servo algorithm are performed with variable value assignment 
statements, just as in other PMAC programs.  The syntactical rules for these statements are the same as in 
other PMAC interpreted and compiled programs.  Any I, P, Q, M, L, or F-variable can be assigned a 
value, whether referenced directly or as part of any array. 

Logical Control 
Logical branching and looping control in Open Servo algorithms is performed with IF / [ELSE] / ENDIF 
branching constructs, and WHILE / ENDWHILE looping constructs, just as in other PMAC programs.  The 
syntactical rules for these statements are the same as in PMAC PLC programs; they do not support a few 
features possible in motion programs (such as an action on the same line as a condition), and they do 
support a few features not possible in motion programs (such as multiple-line conditions).  Refer to the 
Program Command section of the Software Reference manual for details (see IF, ELSE, ENDIF, 
WHILE, ENDWHILE, AND, OR). 

If WHILE / ENDWHILE loops are used in an Open Servo, it is the user’s responsibility to make sure that 
the algorithm never gets stuck in a loop so long that other tasks are compromised.  Turbo PMAC will not 
release automatically from a loop in an Open Servo for any other task of equal or lower priority.  Failure 
to release from a loop in a timely fashion can result in servo error (failure to complete one cycle’s servo-
interrupt tasks by the next servo interrupt), run-time error (failure to compute commanded move 
equations in time for that move to start, causing the motion program to abort), or watchdog timer error 
(failure to cycle through all required tasks in a timely fashion, causing the Turbo PMAC to shut down 
completely). 
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Processor Utilization 
Servo algorithms are one of the most important tasks executed by the Turbo PMAC’s processor, but far 
from the only one.  While Turbo PMAC’s DSP processor is very efficient, it is still possible to overload 
the processor, particularly with floating-point algorithms executing in compiled code from the Open 
Servo.  These do not run nearly as efficiently as the standard servo algorithms, which have been written in 
assembly language and use fixed-point mathematics. 

Generally, it is recommended that the portion of processor time devoted to phase and servo tasks not 
exceed 50%, in order to allow sufficient time for lower-priority tasks, such as motion program and PLC 
program calculations.  To find out how much processor time an Open Servo algorithm occupies, refer to 
the Evaluating the Turbo PMAC’s Computational Load section.  This can be found in the Turbo PMAC 
Computational Features section of this manual. 

Memory Utilization 
The DSP563xx CPU for the Turbo PMAC employs Harvard architecture, with separate areas of program, 
or instruction, memory, and data memory.  The actual instructions of the Open Servo are loaded into P 
program memory; all of the data registers it uses are in X and Y data memory.  

If an Option 5Cx 80 MHz CPU configuration is ordered, employing the DSP56303, only 3K words of 
program memory are available for the Open Servo (P:$040000 through P:$040BFF).  This may not be 
enough for large algorithms, so it is recommended for the user to order a 100 MHz Option 5Dx or 160 
MHz 5Ex CPU configuration, utilizing the DSP56309 and DSP56311 CPUs, respectively, for any 
complex algorithms.  With these processors, 19K words of program memory are available for Open Servo 
code (P:$040000 through P:$044BFF).  For reference, the Open Servo example below that mimics the 
basic PID algorithm occupies 330 words of program memory. 

The downloader will indicate how many words of program memory the program has just compiled 
occupies.  This can be found also by reading memory location P:$040014 (use an RHP:$040014 on-line 
command), which contains the location of the end of the Open Servo algorithm in the Turbo PMAC 
program memory; subtract the starting location $040000 (remember that these are hexadecimal values) to 
get the program length. 

For general data memory, most users will utilize some of Turbo PMAC’s 8192 P-variables to store 
values.  It is the user’s responsibility to keep track of which P-variables are used for Open Servo 
algorithms and which are employed for other user tasks.  Q-variables may also be used for Open Servo 
algorithms; they are always accessed according to Coordinate System 1’s numbering.  It is the user’s 
responsibility to make sure that these P or Q-variables are not used for other tasks as well. 

Many users will find it advantageous to utilize motor-specific registers that are not otherwise being used 
because the Open Servo is executing for that motor.  Registers listed as being gains or intermediate values 
for either the PID or the ESA servo algorithms may safely be used by the Open Servo.  The registers in 
the range $000092 – $0000AC (for Motor 1; equivalent registers for other motors) with the exception of 
$0000A5 (previous net desired position) may be used for this.  Note that the integrated position error 
register at $00009E and the previous net desired velocity register at $00009A are automatically zeroed 
when the loop is opened.  It is not necessary to use these registers in the same format as the automatic 
servo algorithms would. 

Note that any of these registers representing an I-variable for either the PID or ESA algorithms would be 
overwritten by any command writing to that I-variable; that the values in such a register are copied into 
flash memory on a SAVE command; that the last saved value from such a register is copied from flash 
memory on a board reset.  Some users may want to utilize these I-variable registers as gains for their own 
servo algorithms – it is not necessary to use them for the same purpose, or with the same scaling, as the 
built-in algorithms would. 
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For large amounts of extra data memory, it is recommended to use the User Buffer set up with the on-line 
DEFINE UBUFFER command.  The User Buffer occupies a number of registers at the high end of X/Y 
data memory.  With an Option 5x0 standard memory configuration, the end of data memory is at 
X/Y:$0107FF; if DEFINE UBUFFER 2048 is declared, all data memory from $010000 through 
$0107FF is reserved for the user’s own purposes.  With an Option 5x3 extended memory configuration, 
the end of data memory is at X/Y:$03FFFF; there is by default a User Buffer of 65,536 words, reserving 
all memory registers from X/Y:$030000 to X/Y:$03FFFF for user use.  It is the user’s responsibility to 
make sure that registers in the UBUFFER utilized for Open Servo data storage are not used for other 
purposes as well. 

Writing the Open Servo Program 
The Open Servo program should be written in a plain-text editor such as the editor in the new 
PEWIN32PRO PMAC Executive program.  While the program can be written in any plain-text editor, it 
must be compiled by the PEWIN32PRO editor’s download function.  In this program, released in October 
2001, the download routine will recognize Open Servo routines automatically, compile them, and 
download the resulting machine code.  (Older versions of the PMAC Executive program are not capable 
of doing this.) 

In the file containing the Open Servo preceding the actual program must be all L-variable and F-variable 
pointer definitions, and all #define macro substitutions, or #include references to accessible files 
that contain these definitions and substitutions.  Remember that the built-in compiler does not download 
these definitions and substitutions to the Turbo PMAC; it uses them to do the compilation properly. 

The OPEN SERVO command is a signal to the compiler that the statements following up to the (required) 
CLOSE command are to be compiled into DSP machine code before downloading.  The CLEAR 
command that is used following the OPEN command on interpreted buffers is not required for Open Servo 
algorithms, because downloading the newly compiled code automatically clears older code, but it may 
still be used here. 

Example 1: Proportional Control 
The following algorithm shows one of the simplest possible Open Servo algorithms, implementing a 
simple proportional control law using the motor’s Ixx30 parameter as the proportional gain. 
OPEN SERVO   ; Following lines to be compiled 
CLEAR    ; Not necessary, but acceptable 
COPYREG P30   ; Copy following error into P32 
P35=P32*I(ITOF(MTRNUM*100+30))/65536 ; Multiply by gain, scale 
RETURN(FTOI(P35))  ; Make an integer and output 
CLOSE 

Example 2: Bi-Quad Filter 
The next example shows an implementation of a bi-quad filter capable of running on multiple motors, 
storing values from cycle to cycle for each motor.  It uses #define substitution macros to keep the code 
readable, and the MTRNUM function for variable and register arrays to separate stored values for each 
motor.  Variable arrays (which are easier for the user to access) are used for user-set “gains”, and register 
arrays (which are quicker for the algorithm to access) are used for algorithm-calculated stored values.   

This Open Servo program implements the following transfer function: 
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It implements this as the following difference equation: 
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In order to start the algorithm correctly, it reads the servo cycle counter and compares it to the counter the 
last time the last time this algorithm was executed.  If the algorithm was not executed the previous cycle, 
it zeros out the “history” values for the algorithm.  It also does a saturation check on the commanded 
output.  This algorithm assumes a standard memory option (5x0) whose data memory ends at 
X/Y:$0107FF and a UBUFFER defined of at least 2048 words. 
Definitions and Substitutions 
#define Kp P(ITOF(MTRNUM*100+30)) ; Gain term is Pxx30 
#define A P(ITOF(MTRNUM*100+31)) ; A zero is Pxx31 
#define B P(ITOF(MTRNUM*100+32)) ; B zero is Pxx32 
#define C P(ITOF(MTRNUM*100+33)) ; C pole is Pxx33 
#define D P(ITOF(MTRNUM*100+34)) ; D pole is Pxx34 
#define E P42  ; Error term e(k) (not saved) 
#define Temp1 P45  ; Temporary value 
#define Temp2 P46  ; Temporary value 
#define Temp3 P47  ; Temporary value 
#define U P48  ; Output term u(k) (not saved) 
#define LastE F1[MTRNUM-1]  ; e(k-1) is F1[#-1] 
F1->L:$010000[32]   ; Float reg array in UBUFFER 
#define PrevE F2[MTRNUM-1]  ; e(k-2) is F2[#-1] 
F2->L:$010020[32]   ; Float reg array in UBUFFER 
#define LastU F3[MTRNUM-1]  ; u(k-1) is F3[#-1] 
F3->L:$010040[32]   ; Float reg array in UBUFFER 
#define PrevU F4[MTRNUM-1]  ; u(k-2) is F4[#-1] 
F4->L:$010060[32]   ; Float reg array in UBUFFER 
#define ServoCycle L0 
L0->X:$0,0,24,S   ; Servo cycle counter 
#define LastServoCycle L1[MTRNUM-1] 
L1->X:$010080[32]   ; Register array in UBUFFER 
#define ServoExtension L2 
L2->Y:(R1-$21)   ; Ixx60 register as integer 
#define OutputLimit 8388607 

Start of Actual Algorithm 
OPEN SERVO CLEAR 
COPYREG P40     ; Following error into P42 
; If loop was not closed last cycle, zero out stored values 
IF (ServoCycle-LastServoCycle!=ServoExtension+1) 
  LastU=0 
  PrevU=0 
  LastE=0 
  PrevE=0 
ENDIF 
LastServoCycle=ServoCycle  ; Store for next cycle 
Temp1=Kp*(E+(A+C)*LastE+A*C*PrevE) ; Compute TF numerator 
Temp2=(B+D)*LastU+B*D*PrevU  ; Compute TF denominator 
Temp3=Temp1-Temp2    ; Combine for net command 
U=FLIMIT(Temp3,OutputLimit)  ; Saturation check 
PrevE=LastE     ; Store values for next cycle 
LastE=E 
PrevU=LastU 
LastU=U 
RETURN(FTOI(U))    ; Return command value as integer 
CLOSE 
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Example 3: PMAC’s PID Filter 
The following example mimics the action of Turbo PMAC’s basic PID loop (without the notch, deadband 
compensation, position-error limiting, or friction feedforward terms), but with floating-point calculations.  
It uses the PID’s own I-variables, accessed as L-variables for speed, then converted to floating-point 
values. 

This program is a user written servo that replicates the PMAC PID loop.  It uses the following equations 
defined in the PMAC User Manual but modified for PMAC passed terms:  

K16 = 2**-16 
K128 = 1/128 
K23  = 2**-23 
FE = DPOS - APOS - From PMAC in Ix08 * 32 counts 
AVEL, DVEL  - From PMAC in Ix09 * 32 counts/servo period 
IPOS = ITOF(Ix33) * FE * K23 + IPOS 
DACEL = DVEL - PDVEL 
PDVEL = DVEL 
DACOUT = ITOF(Ix30)*K16 * ( FE + K128 *(ITOF(Ix32) * DVEL +  
ITOF(Ix35) * DACEL - ITOF(Ix31) *AVEL)  + IPOS) 

#define K16 0.000015259 ; Constant of 2^-16 
#define K128 0.0078125 ; Constant of 1/128 
#define K23 0.000000119 ; Constant of 2^-23 

Use L-variables for Quick Access to PID I-variable Registers. 
#define Ix08 L1 
L1->Y:(R1-$27) 
#define Ix09 L2 
L2->Y:(R1-$14) 
#define Ix30 L3 
L3->Y:(R1-$17) 
#define Ix31 L4 
L4->X:(R1-$1E) 
#define Ix32 L5 
L5->X:(R1-$21) 
#define Ix33 L6 
L6->X:(R1-$11) 
#define Ix35 L7 
L7->Y:(R1-$1D) 
#define Ix63 L8 
L8->Y:(R1-$11) 
#define Ix69 L9 ; Note that this is 24-bit value, not 16 
L9->Y:(R1-2) 
#define STATUS L10 
L10->X:(R1+0) 
#define IPOS F1 ; Integrated position error register 
F1->L:(R1-$12) ; Automatically zeroed on motor open loop 
#define PDVEL F2 ; Previous desired velocity register 
F2->L:(R1-$29) ; Automatically zeroed on motor open loop 
#define AVEL P0 ; Floating-point actual velocity 
#define DVEL P1 ; Floating-point net desired velocity 
#define FE P2 ; Floating-point following error 
#define APOS P3 ; Floating-point actual position 
#define DPOS P4 ; Floating-point net desired position 
#define DACOUT P5 ; Floating-point commanded output 

OPEN SERVO CLEAR 
COPYREG P0  ; Copy Motor AVEL,DVEL,FE,APOS,DPOS to float P0..4 
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; FE, APOS, & DPOS in 1 / [Ix08* 32] counts 
; AVEL in 1 / [Ix09*32] counts/servo period 
; DVEL in 1 / [Ix08*32] counts/servo period; 
;  if( Ix34 = 1 && Des_Vel0 = 1 OR Ix34 = 0) 
;  then integrate IPOS = IPOS + FE * Ix33 && Limit to Ix63 
If (STATUS&$12000 = $12000 Or STATUS&$10000 = 0) ; Test Ix34 mode 
  IPOS = FLIMIT(ITOF(Ix33)*FE*K23+IPOS, ITOF(Ix63)*ITOF(Ix08)*2)  
  ; Scale Ix63 to include Ix08 
EndIf 
DACOUT = FLIMIT(ITOF(Ix30)*K16 * ( FE + K128 *(ITOF(Ix32) * DVEL + ITOF(Ix35) 
* (DVEL - PDVEL) - ITOF(Ix31) *AVEL) + IPOS), ITOF(Ix69))  

PDVEL =DVEL  ; Store for next cycle 
RETURN(FTOI(DACOUT)) 
CLOSE 

Downloading the Program 
Each time the Executive program’s downloader sends the compiled code for an Open Servo algorithm to 
the Turbo PMAC, it first completely erases the existing user-written servo code in the Turbo PMAC.  
Therefore, always re-compile the entire Open Servo, even for the slightest change.  The CLEAR command 
used at the start of these examples is not therefore needed, but it can be included for consistency of style 
with interpreted programs. 

Remember that the download process only puts the Open Servo algorithm into the volatile active RAM 
memory.  To keep this algorithm loaded in the Turbo PMAC through a reset or power-cycling, copy it to 
non-volatile flash memory with the SAVE command first. 

Executing the Open Servo Program 
For the Open Servo algorithm to execute for a given motor, Ixx00 for the motor must be equal to 1 so that 
motor calculations are activated.  Bit 0 of Ixx59 must be set to 1 (Ixx59 = 1 or 3) so it will choose the 
user-written servo algorithm generated from the Open Servo instead of a built-in servo algorithm (PID or 
ESA).  Finally, the servo loop must be closed for this motor.  The Open Servo algorithm will not executed 
if the motor is either in the open-loop enabled state, or the killed (open-loop disabled) state. 

The Open Servo algorithm obeys the Ixx60 servo-cycle extension parameter for each Motor xx.  As with 
the built-in PID and ESA servo algorithms, it executes every [Ixx60+1] servo interrupts.  With the default 
Ixx60 value of 0, it executes every servo interrupt. 

Those users who are employing the Open Servo algorithm for tasks other than actually closing servo 
loops must be careful not to disable the algorithm unintentionally.  The algorithm will not be running 
immediately on power-up/reset unless bit 0 of Ixx80 for the motor is set to 1.  A <CONTROL-K> (kill all) 
command disables the servo loops of all motors, including a pseudo-motor running an Open Servo 
algorithm.  With the default settings of bits 21 and 22 of Ixx24 an amplifier fault or fatal following-error 
fault on any motor disables the servo loops of all motors, including a pseudo-motor running an Open 
Servo algorithm. 

The Open Servo replaces only the actual servo-loop closure algorithm for the selected motors.  Other 
tasks done as part of the servo interrupt, including encoder-conversion-table processing, commanded 
trajectory generation, position following, and time-base control, are executed by the built-in firmware, 
whether or not the Open Servo is selected for any motor.  Also, related tasks done outside of the servo 
interrupt, such as checking against a fatal following error limit, are executed by the built-in firmware. 
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Assembled User-Written Servo Algorithms 
Highly efficient user-written servo algorithms may be written in the assembly language for the DSP56300 
family of processors used in the Turbo PMAC.  This requires the use of a cross-assembler from Motorola, 
obtainable at no cost from their website.  It also requires a linking program from Delta Tau, called 
CODET.EXE and running under Microsoft Windows operating systems, available at no cost from the 
Delta Tau website. 

Writing the Algorithm 
The algorithm is written in Motorola DSP56300 assembly language using any standard text editor.  The 
code written is subject to the following restrictions. 

Program Memory Space 
The program must start at memory location P:$040000, so the first line of code must be: 
ORG P:$40000 

For a DSP56303 processor (80 MHz CPU Option 5Cx), the resulting code must end by memory location 
P:$040BFF, providing a 3-Kword buffer for the program.  For a DSP56309 processor (100 MHz CPU 
Option 5Dx) or a DSP56311 processor (160 MHz CPU Option 5Ex), the resulting code must end by 
memory location P:$044BFF, providing a 19-Kword buffer for the program.  However, in all cases, if a 
user-written phase program is used, that program starts at memory location P:$040800, limiting the user-
written servo program to a 2-Kword buffer. 

Conditions on Entry 
On entry into the user-written servo, the program can expect the following data for the executing motor in 
internal DSP registers: 
• The A10 register contains a 48-bit integer representing the desired velocity in units of 1/(Ixx08*32) 

counts per servo cycle 
• The B10 register contains a 48-bit integer representing the desired position in units of 1/(Ixx08*32) 

counts 
• The Y register contains a 48-bit integer representing the actual position in units of 1/(Ixx08*32) 

counts 
• The R0 register contains the address of the command output and command bias registers for the 

executing motor (e.g. $0000BF for Motor 1).  This must not be changed. 
• The R1 register contains the address of the first status word for the executing motor (e.g. $0000B0 for 

Motor 1).  This must not be changed. 
• The N1 register contains the block length of the motor servo registers ($80 presently), which may be 

useful in incrementing from motor to motor.  This must not be changed. 

Conditions on Exit 
On exit from the user-written servo, the Turbo PMAC firmware expects to find the control effort value in 
the A register as a 24-bit signed integer.  If Turbo PMAC commutation is enabled for this motor (Ixx01 
bit 0 = 1), this value is used as the “quadrature current” (torque) input to the commutation algorithm.  If 
Turbo PMAC commutation is disabled for this motor (Ixx01 bit 0 =0), this value is copied by Turbo 
PMAC firmware to the register specified by Ixx02.  In this case, not all of the register may be used.  DAC 
registers for a PMAC-style Servo IC use only the top 16 bits.  DAC registers for a PMAC2-style Servo IC 
use only the top 18 bits. 
The last line of the user-written servo must be: 
JMP <$001 
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Available Registers 
The following data registers may be used by the user-written servo: 
• Internal DSP registers R4, N4, R5, and N5 may be used, and do not need to be restored when done. 
• Internal DSP registers M0, M4, and M5 may be used, but must be restored to previous values when 

done. 
• Motor intermediate value registers X:$000x93/13 through X:$000x9A/1A may be used to hold values 

from cycle to cycle.  They are not used by any Turbo PMAC firmware as long as the user-written 
servo is activated. 

• Global registers X/Y:$0010F0 – $0010FF may be used.  They are not used by any Turbo PMAC 
firmware tasks, other than being set to 0 on power-up/reset. 

• Registers in the user buffer established by the DEFINE UBUF command may be used.  They are not 
used by any Turbo PMAC firmware tasks. 

• Other registers may be used as well, but it is possible for certain tasks of Turbo PMAC firmware to 
overwrite these.  For example, it is possible to use the registers for some P or Q-variables for the user-
written servo, but assigning a value to one of these variables will overwrite the register.  It is also 
possible to use the I-variables for Turbo PMAC’s standard servo algorithms as gains for the user-
written servo. 

Programming Restrictions 
Do not use any levels of the DSP’s stack, so no DO or JSR instructions are permitted. 

Do not use internal DSP address registers R2, R3, R6, and R7; modifier registers M2, M3, M6, and M7; 
offset registers N2, N3, N6 and N7. 

Assembling the Algorithm 
The assembly language algorithm must be assembled into DSP56300 machine code using Motorola’s 
cross assembler for the computing platform.  Follow the instructions from Motorola to do this. 

Linking the Algorithm 
Use the Delta Tau applet CODET.EXE, available on the Delta Tau website to convert the file that results 
from the Motorola assembler into a format that can be directly downloaded to the Turbo PMAC.  This file 
should be archived on the computer or network. 

Downloading the Algorithm 
Use any version of the PMAC Executive program to download this resulting file into Turbo PMAC’s 
program memory.  Remember that it is downloaded into volatile RAM memory.  To have the Turbo PMAC 
retain this algorithm, issue a SAVE command before the controller is reset or power removed from it. 

Executing the Algorithm 
Set bit 0 of Motor xx variable Ixx59 to 1 (Ixx59 = 1 or 3) to select the user-written servo algorithm.  As 
with the PID or the ESA, the servo loop for the motor must be closed in order for this algorithm to 
execute.  It will not execute if the motor is either open-loop enabled or killed.  If using the user-written 
servo algorithm for non-servo tasks, be aware that certain commands (e.g. <CTRL-K>) or fault 
conditions on other motors (fatal following error or amplifier fault if their Ixx24 specifies killing other 
motors on their fault) can disable your algorithm. 
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MOTOR COMPENSATION TABLES AND CONSTANTS 
Turbo PMAC has the capability to perform sophisticated table-based corrections for both position and 
torque on its motors.  These permit compensating for imperfections in the system that cannot be measured 
with the sensors used in the actual application (although reference sensors that can measure the 
imperfections must be used to characterize the errors). 

Note:  

Deadband compensation, controlled by motor parameters Ixx64 and Ixx65, is part 
of the servo feedback algorithm.  It is covered in the Setting Up the Servo Loop 
section of this manual. 

Note:  

Cutter-radius compensation is a coordinate-system function, not a motor function.  
It is covered in the Writing and Executing Motion Programs section of this manual. 

Position Compensation Tables 
Turbo PMAC is capable of performing table-based position correction, commonly called leadscrew 
compensation.  This technique, which also goes by other names, allows for a table of corrections to be 
entered into Turbo PMAC as a function of motor position.  Turbo PMAC can store up to 32 of these 
compensation tables.   

These tables are most often used to compensate for imperfections in the mechanics between the position 
sensor (often on the back of the motor) and the load whose position is to be controlled.  In many systems, 
the leadscrew that moves the load linearly as the motor rotates is the largest source of positioning error, so 
traditionally these tables are called leadscrew compensation tables.  However, these tables can also be 
used to compensate for imperfections in the sensor itself. 

Source, Target, and Assigned Motors 
Each motor can have one table that belongs to it; that is, the DEFINE COMP command that creates the 
table assigns it to the presently addressed motor, and each motor can only have one table assigned to it.  
Unless otherwise specified, the table uses position information from this motor (source data) to determine 
the location in the table, and also adds its correction to this motor (target data).  However, the source 
motors or both the source and the target motors may be specified to be motors other than the motor to 
which the table belongs. (If both motors are different, the concept of the table belonging to a motor is 
useful only for Turbo PMAC’s own bookkeeping purposes.) 

Standard Leadscrew Compensation 
A position compensation table with a single source motor, and the target motor the same as the source 
motor, forms a standard leadscrew compensation table.  This is the most commonly used type of table, as 
the errors in the direction of travel as function of that travel tend to be the largest errors. 
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PMAC Compensation Tables
Standard leadscrew compensation

e.g. ∆x = f(x)
Get linear encoder accuracy (almost!) with rotary encoder
Characterize system with linear sensor
Enter errors in PMAC

ME

∆x∆x∆x∆x∆x

DEFINE COMP 200, #1, #1, 100000

Table Length
Source Motor

Table Span in Counts
Target Motor  

Uses of Cross-Axis Compensation 
The ability to have separate source and target motors for a table has several uses.  The first is the 
traditional compensation for imperfect geometry, as in a bowed leadscrew.  For instance, on an XY table, 
if the X-axis leadscrew is bowed, the Y-axis position should receive a correction as a function of X-axis 
position.  If motor #1 is the X-axis, and motor #2 is the Y-axis, the table holding this correction would 
have motor #1 as the source motor, and motor #2 as the target motor. 

PMAC Compensation Tables
Cross-axis compensation

e.g. ∆y = f(x)
Useful for bowed leadscrews
Can be used to build electronic cam tables

DEFINE COMP 100, #1, #2, 100000

Table Length
Source Motor

Table Span in Counts
Target Motor

∆y ∆y∆y∆y∆y∆y
M

E

 
A second use for cross-axis compensation is what is often known as the electronic cam.  In this case, the 
entire movement of the target motor is caused by the entries in the compensation table, not just the 
corrections.  This method of implementing electronic cam operation has two significant advantages over 
Turbo PMAC’s time-base following, the other method of creating electronic cams: the compensation 
table is bidirectional – the master can turn in either direction – and it is absolute, so the phasing in is 
simply a matter of homing the axes.   

The time-base method, in which the motion program of the slave motors defines the motion, retains the 
advantage of being able to change on the fly through math and logic in the program, and of second or 
third order interpolation between points, rather than the compensation table’s 1st-order interpolation.  
Refer to the Synchronizing Turbo PMAC to External Events section of this manual for details. 

Dimension of the Table 
Turbo PMAC presently supports one-dimensional (1D) and two-dimensional (2D) position compensation 
tables.  Three-dimensional (3D) tables may be supported in the future.  1D tables have a single source 
motor; 2D tables have two source motors.  Note that a table with a single source motor that is different 
from the target motor (a cross-axis compensation table) is still a 1D table. 
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PMAC Compensation Tables
2D (Planar) compensation tables

e.g. ∆z = f(x,y)

Column motor span in counts
Row motor span in counts
Target motor

DEFINE COMP 15.20, #1, #2, #3, 20000, 15000

Table # of rows
Table # of columns

Row motor
Column motor  

Note:  

3D compensation may be achieved in Turbo PMAC through the use of the 
kinematic subroutines, which can be used to compute the corrections 
algorithmically.  The correction equations would be fit to the observed 
measurements, probably through a least-squares fit on polynomial equations.  
Refer to the section on kinematics algorithms in the Setting up a Coordinate 
System section of this manual for details.  Note that both the correction equations 
(the inverse kinematics) and their inverse (the forward kinematics) must be 
entered. 

Kinematic equations can also be used for 1D and 2D compensation if algorithm, 
rather than table-based, compensation is desired.  Corrections for all motors in the 
coordinate system must be done in the same kinematic algorithm.  By 
parameterizing the algorithm coefficients, the corrections can be made dynamically 
adjustable (as a function of temperature, for example). 

Using Desired vs. Actual Position 
The position compensation tables can use either the desired position or the actual position of the source 
motors to compute their corrections.  In most applications it does not matter which is used, but if the 
source and target motors are the same, the gain of the motor is very high, and there are significant 
corrections, use of actual position can affect the servo loop performance, effectively changing loop gains 
as a function of position.  Use of desired position is recommended in these cases.  See below for an 
explanation of how to specify use of desired position. 

Note that in either case, the table is a function of raw (uncorrected) motor position.  Since the entire 
purpose of the table is to permit command moves to be made to corrected positions, if the target motor is 
the same as the source motor, at a certain commanded numerical position value, the correction will not in 
general be the same as at the raw position of the same numerical value. 

Multiple Tables per Motor 
A motor may provide the source data for any of the position compensation tables; it may also be the target 
of any of the position compensation tables, with the correction of each table to the target motor’s being 
additive.  For example, it is possible to have both a repeating fine compensation table for a motor for 
cyclic errors such as sensor eccentricity, and a non-repeating coarse table.  Also, corrections may be 
applied to a motor both as functions of its own position and another motor’s position. 
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Table Range 
The compensation is defined directly for a range of source motor positions starting at zero counts (the 
most recent home or power- up/reset position) and going in the positive direction.  The size of this range 
is declared as the last argument of the DEFINE COMP command.  This argument has units of counts of 
the source motor.  The spacing between entries is the total range divided by the number of entries (which 
is the first argument of the DEFINE COMP command).  The first entry in the table defines the correction 
at one spacing from the zero position of the source motor, the second entry at two spacings, and so on. 

Rollover 
Outside of this range, the uncorrected position is rolled over to within this range – essentially a modulo 
(remainder) operation – before the compensation is done.  For 2D tables, this rollover occurs in both 
dimensions.  The rollover permits compensation of rotary axes over several revolutions, and simple 
compensation for encoder eccentricity.  Of course, if the table is made big enough to cover the entire 
source motor travel, the rollover feature will never be used. 
If the motor has a travel range to the negative side of zero, and compensation is desired here, these entries 
should be made as if they were past the positive end of the motor range.  For instance, if the motor travel 
were +/- 50,000 counts and a table entry was to be made every 500 counts (so 200 entries total), the table 
would be set up with a DEFINE COMP 200,100000 command.  The first 100 entries would cover the 
500 to +50,000 count range, and the last 100 entries would cover the -50,000 to 0 count range.  (Usually 
the table is referenced so there is a zero correction at the source motor zero position, so the last entry in 
the table should be 0.)  Essentially, the -50,000 to 0 range would be mapped into the +50,000 to +100,000 
range. 
If global variable I30 (new in V1.939 firmware) is set to the default value of 0 when the table is 
downloaded to Turbo PMAC, the correction value at 0 counts of the source motor is always 0.  In this 
case, the last entry of the table must be set to 0, or there will be a discontinuity in the correction (and 
therefore a position jump) as the source motor passes either end of the table, rolling over the correction.  
Most often, the correction is defined to be 0 at the zero position of the motor. 
If I30 is set to 1 when the table is downloaded to Turbo PMAC, the correction value at 0 counts of the 
source motor is set equal to the last entry of the table, guaranteeing smooth rollover of the table.  If the 
last entry for the table is 0, the result will be the same regardless of the setting of I30. 
Determining Compensation Values 
The values that will be entered into the compensation table are determined by comparing the raw 
measurements of the sensor that will be used in the application against a reference sensor that is installed 
only for the calibration process.  Move the axis (or the axes) to the raw position at which you want to 
make an entry.  Read the reference sensor at this position.  The entry in the table will be the raw position 
minus the reference position, with both values scaled to 1/16 of a Turbo PMAC software count, both 
measured from the motor home (zero) position. 

For standard leadscrew compensation tables (1D tables with the same motor as both source and target), 
Delta Tau provides a PC software package called Flycal that can perform these measurements on the fly 
and automatically generate these tables quickly. 

Entering Tables 
Position compensation tables are entered into the Turbo PMAC with on-line commands.  First there is the 
DEFINE COMP command, which defines the size and span of the table, and which motors it uses as its 
source and target motors.  Following this is a series of numerical constants, separated by spaces and/or 
carriage-return characters, which are entered sequentially into the table.  (If there is no table to be filled, a 
numerical constant sent to PMAC is assigned to variable P0.) 

Position compensation tables must be defined in order from those assigned to higher-numbered motors to 
those assigned to lower-numbered motors. 
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Entering 1D Tables 
If the position compensation table to be entered has both the source and target motors equivalent to the 
addressed (assigned) motor, and the table uses the actual position of this motor to calculate the 
corrections, then there is no need to specify the motors in the DEFINE COMP command.  The command 
would look something like: 
#2 DEFINE COMP 25, 500000 

This command establishes a table using Motor 2 as both the source and target motor, using the actual 
position to compute the corrections.  The next 25 numerical constants sent to Turbo PMAC would be 
entered into the table.  The first value would be the correction at 500,000/25 = 20,000 counts. (20,000 
here represents the uncorrected position.)  The second value would be the correction at 40,000 
uncorrected counts, and so on.  The 25th entry would be the correction at 500,000 counts; if I30 were set 
to 1 at the time of entry, this would be the correction at 0 counts as well.  The units of the correction itself 
are 1/16 count. 

If you desire that either the source or target motors be different from the addressed motor, or you wish to 
make the table a function of the source motor’s desired position, you must explicitly declare the motors in 
the DEFINE COMP command.  In this case, the command would look something like: 
#1 DEFINE COMP 25, #2D, #2, 500000 

This command establishes a table using Motor 2 both as the source, working from its net desired position, 
and as the target to which the corrections are applied, even though the table is assigned to Motor 1.  As in 
the above case, the next 25 numerical constants would be entered into the table, with the first value being 
the entry at 20,000 counts the second at 40,000 counts, and so on. 

1D Table Example 
Below is a simple example of the entry of a 1D table 
#1  
DEFINE COMP 8,4000 ; Table of 8 entries over 4000 cts belonging to  
 ; motor 1 ; Uses motor 1 for source (actual pos) 
 ; & target because no other motors specified 
-160 ; Correction at 4000/8 (500) cts is -160/16 = -10 cts 
80 ; Correction at 1000 counts is 5 counts 
120 ; Correction at 1500 counts is 7.5 counts 
96 ; Correction at 2000 counts is 6 counts 
20 ; Correction at 2500 counts is 1.25 counts 
-56 ; Correction at 3000 counts is -4.5 counts 
-12 ; Correction at 3500 counts is -0.75 cts 
0 ; Correction at 4000 (and 0) cts is zero 

In this example, the correction at a raw position of 1300 counts would be linearly interpolated between 
the corrections at 1000 counts and 1500 counts, as follows: 

counts5.6
500

10001300*)55.7(5Correction +=
−

−+=  

Entering 2D Tables 
If the position-compensation table has two source motors, establishing a 2D, or planar table, the entry is a 
little more complex.  Declare the length of the table (in number of entries) in both dimensions, and the 
span of the table in both dimensions.  Declare both source motors, and usually the target motor (although 
the default is the addressed motor).  The command that establishes the table will look something like: 
#2 DEFINE COMP 15.20, #1D, #2D, #3, 20000, 15000 

This command specifies that the table assigned to Motor 2 will have 15 rows and 20 columns.  Therefore, 
each row has 20 entries, and each column has 15 entries.   
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Motor 1 is the first source motor (the row motor), using its desired position; each row represents a row 
span of counts of positions of Motor 1, and each column represents a constant raw position of Motor 1.   

Motor 2 is the second source motor (the column motor), using its desired position; each column represents a 
column span of counts of Motor 2, and each row represents a constant raw position of Motor 2.   

Motor 3 is the target motor; the corrections are applied to Motor 3.   

The span of each row is 20,000 counts, so there is a spacing of 20,000/20 = 1000 counts (of Motor 1) 
between entries along the row dimension.  The span of each column is 15,000 counts, so there is a spacing 
of 15,000/15 = 1000 counts (of Motor 2) between entries along the column dimension. 

The next (15+1)*(20+1)-1=335 numerical constants sent to Turbo PMAC are entered into this table.  
Why this number of entries?  Because there are entries in each row and column at both the zero position 
and the maximum position (hence the n+1 terms), but there is no explicit entry at the origin of both source 
motors (hence the final -1). 

In this example, the first entry would be the correction at Motor 1 (raw) position 1000, Motor 2 (raw) 
position 0 – i.e. at (1000, 0).  The second entry would be at (2000, 0).  The 20th entry would be at (20,000, 
0).  The 21st entry would be at (0, 1000), the 22nd at (1000, 1000), and so on.  The 335th and last entry of 
the table would be the correction at (20,000, 15,000).  If I30 were set to 1, this value would also be the 
correction at (0, 0).  Typically the correction at the origin is made zero by definition, to serve as the 
reference point for the other corrections. 

If there is any possibility of motion going past the declared span of the table, whether for purposeful 
rollover or not, the entries at both ends of each row should be the same; likewise for each column.  
Otherwise, there will be a discontinuity in the correction at the edge of the table. 

Note three things to be careful about in the entry of a 2D table.  First, the number of rows and number of 
columns is separated by a period, not a comma.  Second, the number of rows (15 in the above example) is 
entered first, before the number of columns, but the spacing (in counts) between rows is determined by 
the span of a column (15,000 in the above example), which is entered after the span of a row.  Finally, to 
permit efficient computation in Turbo PMAC, both Row and Column 0 as well as Row and Column n 
must be entered. 
2D Table Example 
The following example shows the entry of a simple 2D table, shown in a form that makes for easy reading 
by a user.  (Turbo PMAC does not require that the table be entered with each row on a separate line, but 
this is recommended for readability.)  Note that with an implied correction value of 0 for the zeroth entry, 
Rows 0 and 4 are identical, as are Columns 0 and 5. 
#3 DEFINE COMP 4.5, #1D, #2D, #3, 50000, 40000 
   38 45 –22 –35 0 ; Row 0, Columns 1-5 
24 56 13 –34 –8 24 ; Row 1, Columns 0-5 
18 43 –9 –65 32 18 ; Row 2, Columns 0-5 
-6 28 22 –38 12 –6 ; Row 3, Columns 0-5 
 0 38 45 –22 –35 0 ; Row 4, Columns 0-5 

In this example each row covers the span of Motor 1 (0 – 50,000 counts) at a constant position of Motor 
2; each column covers the span of Motor 2 (0 – 40,000 counts) at a constant position Motor 1. 

Enabling and Disabling Tables 
All position compensation tables (as well as backlash and torque compensation tables) are enabled when 
I51 is set to 1.  All of these tables are disabled when I51 is set to 0. 
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Active Calculation of Corrections 
The position compensation is performed inside the servo loop (every servo cycle) to obtain the maximum 
speed and accuracy.  Turbo PMAC takes the position of the source motor and finds the matching position 
in the table.  Typically this is between two entries in a 1D table, or four entries in a 2D table, so Turbo 
PMAC linearly interpolates (weighted average) between these entries to obtain the correction for the 
current servo cycle.  It then adds this correction to the desired position of the target motor.  The entries of 
corrections in the table must be integer values, with units of 1/16 count (so, for an example, an entry of 48 
represents 3 counts) of the target motor.  

 
The net correction for a target motor is stored each servo cycle in a specific register for the motor.  For 
Motor 1, this is the register at D:$000090.  The suggested M-variable for this register for Motor xx is 
Mxx69.  The units of this register are 1/(Ixx08*32) counts, the same as other motor position registers.  If 
I51 is set to 1, this register is zeroed every servo cycle, and then the result of each table whose target 
motor is this motor is added to this register.  If I51 is set to 0, it is permissible to write values directly to 
this register.  Regardless of the setting of I51, the value in this register is added into the net desired 
position value for the motor every servo cycle. 

It is important to understand that the table corrections are calculated as a function of the uncorrected 
motor position, whether using desired or actual position.  For a table that uses the same motor as source 
and target, the corrected position is by definition different from the uncorrected position.  Since the 
compensations vary with position, the compensation at a given corrected position will not be exactly the 
same in general as the compensation at the uncorrected position of the same numerical value.  The 
differences are small, but may be noticeable if you are looking at the net compensation register.  This is 
important to understand if you are verifying the resulting correction of a table. 

Reporting Table Information 
The header information for a position compensation table – entered with the DEFINE COMP command – 
can be queried with the LIST COMP DEF command.  The contents of the table can be queried with the 
LIST COMP command 

Deleting Tables 
The DELETE COMP command erases the position compensation table assigned to the presently addressed 
motor (whether or not that motor is a source or target of the table).  Position compensation tables must be 
deleted in order from those assigned to lower-numbered motors to those assigned to higher-numbered 
motors. 



 Turbo PMAC User Manual 

190 Setting Up the Servo Loop 

Backlash Compensation 
Turbo PMAC can perform sophisticated backlash compensation for all motors.  If the position feedback 
utilizes a sensor on the motor and there is physical backlash in the coupling to the load (as in a typical 
gear train), the physical position of the load for a given sensor-reported position will differ depending on 
the direction of motion.  Unless this is compensated for, significant position errors can result in the 
application. 

With Turbo PMAC’s backlash compensation, on reversal of the direction of the commanded velocity, a 
pre-programmed backlash distance is added to or subtracted from the commanded position.  This 
backlash distance can be constant over the travel of the motor, or it can be a function of motor position.  
The rate at which the backlash is introduced or removed is programmable, as is the magnitude of the 
reversal required for backlash to be introduced or removed.  The backlash amount is hidden from any 
position reporting. 

Constant Backlash Parameter 
Variable Ixx86 for Motor xx is the constant backlash distance parameter.  When the direction of the 
motor’s commanded movement changes from positive to negative, this value is introduced into the active 
backlash compensation register, which is subtracted from the nominal commanded position.  When the 
direction of the motor’s commanded movement changes from negative to positive, the value of the 
backlash compensation register is reduced to zero.   

Note that a positive value of Ixx86 adds extra distance to the travel of the motor on reversal, which is 
what is desired to compensate for true physical backlash.  (The only known practical use of a negative 
backlash parameter is when the motor is electronically geared as a slave to an axis with physically greater 
backlash.)  The units of Ixx86 are 1/16 of a count, so the value should be 16 times the number of counts 
of backlash compensation required (e.g. Ixx86=72 specifies 4.5 counts of backlash). 

Backlash Take-Up Rate 
Variable Ixx85 controls the rate at which backlash is introduced or removed upon reversal for Motor xx.  
This permits the user to optimize for swift but smooth backlash compensation.  When reversal is detected, 
each background cycle (between each scan of each PLC) an amount equal to Ixx85 is added to or subtracted 
from the active backlash compensation register, as appropriate, until a value Ixx86 or 0 in that register is 
reached.  In general, the highest value of Ixx85 that produces smooth transitions should be used. 

Backlash Hysteresis 
Variable Ixx87 controls for Motor xx the number of counts in the new direction of the net commanded 
position that must be seen before PMAC determines that a reversal has occurred and the backlash must be 
changed.  As such, it acts as a “hysteresis” term.  It is particularly important if a master encoder is used to 
drive the motor, so slight dithering in the master encoder does not cause repeated introduction and 
removal of backlash.  Ixx87 has units of 1/16 count, so the default value of 64 provides a 4-count 
hysteresis. 

Backlash Compensation Tables 
A backlash compensation table created with the DEFINE BLCOMP command can be used to create 
backlash distances that vary with the position of the addressed motor.  Most often this is used in 
conjunction with a leadscrew compensation table to create the effect of a bi-directional leadscrew 
compensation table.  In this case, the backlash table (added to the constant backlash parameter) contains 
the difference between the positive-going compensation and the negative-going compensation.  Delta 
Tau’s Flycal calibration program for the PC can generate these tables automatically. 
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Entering the Table 
The backlash compensation tables are entered and operated much like the position leadscrew 
compensation tables.  However, there are no cross-axis or multi-axis backlash compensation tables.  The 
table belonging to a motor provides a backlash correction to that motor as a function of that motor’s 
position.  Backlash compensation tables must be defined in order from those belonging to higher-
numbered motors to those belonging to lower-numbered motors. 

The backlash compensation table for a motor is declared with the on-line command DEFINE 
BLCOMP{entries},{count length} for the addressed motor.  {entries} defines the number 
of points in the table, and {count length} defines the span of the table in counts of the motor.  The 
spacing between entries in the table is therefore {count length} / {entries}.   

The first entry in the table defines the table’s backlash at one spacing from the zero position of the motor, 
the second entry at two spacings, and so on.  Typically, the last entry in the table is 0. 

Calculating the Backlash 
The value of backlash distance for a given motor position derived from the backlash table is added onto 
the Ixx86 “constant” backlash parameter.  The backlash distance from the table at motor position 0 (home 
position) is zero by definition, so if a backlash table is used, Ixx86 should contain the amount of backlash 
at the home position.  The table then should hold the differences from this amount.  The contribution from 
the backlash table for a given motor position is calculated by linearly interpolating between adjacent 
entries. 

The backlash table for a motor is active only if the most recent commanded direction of movement is 
negative; it is still active if the motor is currently commanded to stand still but reached this position by 
traveling in the negative direction.  In operation, the table reads the present nominal motor position and 
computes a weighted average of the two closest table entries, creating a first-order interpolation between 
table points. 

The backlash compensation is defined directly for a range of motor position starting a zero counts and 
going in the position direction to the count length declared by the last argument in the DEFINE BLCOMP 
command.  The spacing between entries is this length divided by the number of entries (which is the first 
argument in the command).  The first entry in the table defines the correction at one spacing from the zero 
position of the motor, the second entry at two spacings, and so on. 

Outside this range, the uncorrected position is “rolled over” to within this range before the compensation 
is done.  This rollover occurs exactly as for leadscrew compensation tables; refer to that description for 
details. 

Reporting Table Information 
The header information for a backlash compensation table – entered with the DEFINE BLCOMP 
command – can be queried with the LIST BLCOMP DEF command.  The contents of the table can be 
queried with the LIST BLCOMP command 

Deleting Tables 
The DELETE BLCOMP command erases the backlash table for the presently addressed motor.  Backlash 
compensation tables must be deleted in order from those assigned to the lower-numbered motors to those 
assigned to higher numbered motors. 

Enabling and Disabling Backlash 
The constant backlash parameter Ixx86 is always (potentially) active; that is, there will be backlash 
compensation anytime Ixx86 is a non-zero value.  Backlash tables are active if I51 is set to 1; they are 
inactive if I51 is set to 0. 
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Backlash Table Example 
Imagine the calibration of an axis assigned to Motor 3 had been performed against an accurate linear 
measurement device on the load, working in both directions, and the following readings of the linear 
reference device for set positions of the motor encoder (expressed in units of the motor encoder): 

Motor Pos.  (cts) 0 500 1000 1500 2000 2500 3000 3500 
Load Pos.+ (cts) 0* 510 995 1492.5 1994 2497.5 3003.5 3500.5 
Load Pos.- (cts) 5 516 998.5 1494 2000 2501 3010.5 3508.5 
* Reference point; zero by definition 

Only the compensation table works in the positive direction, so the entries in the compensation table 
should be the negative of the difference between positive-going load position and motor position, 
expressed in 1/16 counts: 

Motor Pos.  (cts) 0 500 1000 1500 2000 2500 3000 3500 
Load - Motor (cts) 0* +10 -5 -7.5 -6 -2.5 +3.5 +0.5 
Motor - Load (1/16 cts) 0* -160 +80 +120 +96 +40 -56 -8 
* Reference point; zero by definition 

The position (leadscrew) compensation table definition to create these corrections would be: 
#3 DEFINE COMP 8,4000 
-160 80 120 96 40 -56 -8 0 

Note that the first entry is for the correction at 500 counts, and the added last entry is 0, for the correction 
at 4000 counts and 0 counts. 

There is a 5-count backlash at motor position 0, so Ixx86 should be set to 5*16, or 80. 

Next, the backlash compensation table should contain the differences between negative-going load 
position and positive-going load position, minus Ixx86: 

Motor Pos.  (cts) 0 500 1000 1500 2000 2500 3000 3500 
Load(-) - Load(+) (cts) 5 6 3.5 1.5 6 3.5 7 8 
Load(-) - Load(+)-
Ix86 (cts) 

0* 1 -1.5 -3.5 1 -1.5 2 3 

Load(-) - Load(+)-
Ix86 (1/16 cts) 

0* 16 -24 -56 16 -24 32 48 

* Reference point; zero by definition 

The backlash table definition to create these corrections would be: 
#3 DEFINE BLCOMP 8,4000 
16 -24 -56 16 -24 32 48 0 

Note that the first entry is for the correction at 500 counts, and the added last entry is 0, for the correction 
at 4000 counts and 0 counts. 

Note:  

While the range and spacing of a backlash table will typically be the same as for 
the leadscrew compensation table for the same motor, this is not required.  Even 
the presence of a leadscrew compensation table for a motor is not required to have 
a backlash table for that motor. 
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Torque Compensation Tables 
Turbo PMAC provides the capability to create a table of corrections as a function of motor position to the 
output of the servo loop.  Typically, this feature will be used with the servo loop in torque mode (whether 
or not Turbo PMAC is also performing motor commutation), so this function is called torque 
compensation table. 
The torque compensation tables are entered and operated much like the leadscrew compensation tables, 
which provide a position correction.  However, there are no cross-axis or multi-axis torque compensation 
tables.  The table belonging to a motor provides a torque correction to that motor as a function of that 
motor’s position. 
If the motor’s servo loop is outputting a velocity command, the corrections from the torque compensation 
tables would actually be velocity corrections. 
Entering Tables 
The torque compensation table for a motor is declared with the on-line command DEFINE 
TCOMP{entries},{count length} for the addressed motor.  {entries} defines the number of 
points in the table, and {count length} defines the span of the table in counts of the motor.  The 
spacing between entries in the table is therefore {count length} / {entries}.   
The first entry in the table defines the correction at one spacing from the zero position of the motor, the 
second entry at two spacings, and so on.  If I30 is set to 1 to enable automatic table rollover (highly 
recommended), the last entry in the table provides for both the correction at {count length} and at 
zero position.  Otherwise, the last entry in the table must be 0 if a continuous correction at the rollover 
point is desired. 
The correction is defined directly for the range of motor positions 0 to {count length}.  For motor 
positions outside this range, the position is “rolled over” to within this range before the correction is 
applied.  In this way, cyclic disturbances such as motor cogging torque can be compensated for.  The 
correction at the end of the table is equivalent to the correction at zero position; if you want this 
correction to be non-zero, you must have I30 set to 1 when you enter the table, so Turbo PMAC forces the 
correction at zero to this value. 
If you enter the table with I30 set to 0, the last entry in the table must be set to 0 for continuity of 
correction through table rollover.  Because the desired torque correction at the motor’s zero position is 
generally not zero, in this case, the entries in the table should contain the difference between the desired 
torque correction at that point and the desired torque correction at position zero.  The resulting table will 
yield a constant torque offset; the integral gain term in the servo loop will then compensate for this offset. 
After the table definition command, the next {entries} constants sent to PMAC are put into the table 
as table entries.  The units of the entries in the table are signed 24-bit values, with a full range of –
8,388,608 to +8,388,607.  These values are 256 times larger than the signed 16-bit values of the I-
variables affecting the output, such as Ixx69, Ixx57, Ixx29, and Ixx79, which imply a range of –32,768 to 
+32,767.  Corrections at points in between entries of the table are linearly interpolated from the adjacent 
values in the table. 
If the following table were entered: 
#1 DEFINE TCOMP 8, 2000 ; Table of 8 entries over 2000 counts for Motor 1 
32000  ; Corr at 2000/8=250 cts is 32000/256=125 16-bit DAC bits 
-12800 ; Corr at 500 cts is –12800/256=-50 16-bit DAC bits 
21248  ; Corr at 750 cts is 21248/256=83 16-bit DAC bits 
-24832 ; Corr at 1000 cts is –24832/256=-97 16-bit DAC bits 
15360  ; Corr at 1250 cts is 15360/256=60 16-bit DAC bits 
-11008 ; Corr at 1500 cts is –11008/256=-43 16-bit DAC bits 
33024  ; Corr at 1750 cts is 33024/256=129 16-bit DAC bits 
-25600 ; Corr at 2000 cts (& 0) is –25600/256=-100 16-bit DAC bits 
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then the correction applied to a 16-bit DAC at 600 counts would be: 

[ ]( ) bits35083
500750
50060050Correction =−−

−
−

+−=  

How to Calculate Table Entry Values 
Torque compensation tables are most commonly used to correct for torque ripple in motors due to 
“cogging torque” effects.  The simplest way of determining the entries in the table is to command a move 
to each point you desire in the table and using integral gain to drive the error to zero, wait for the motor to 
settle at this position.  Then read the command output of the servo loop as a 24-bit value.  This value is 
best read in the motor’s quadrature/torque command value (X:$0000BF for Motor 1).  Read as a 24-bit 
value (e.g. use RX:$BF in the Executive program’s Watch window), this can be the entry into the table 
for that position. 

Reporting Table Information 
The header information for a torque compensation table – entered with the DEFINE TCOMP command – 
can be queried with the LIST TCOMP DEF command.  The contents of the table can be queried with the 
LIST TCOMP command 

Enabling and Disabling Tables 
All torque compensation tables (as well as position and backlash compensation tables) are enabled when 
I51 is set to 1.  All of these tables are disabled when I51 is set to 0. 

Active Calculation of Corrections 
The torque compensation is performed inside the servo loop (every servo cycle) to obtain the maximum 
speed and accuracy.  Turbo PMAC takes the position of the motor and finds the matching position in the 
table.  Typically this is between two entries in a table, so Turbo PMAC linearly interpolates (weighted 
average) between these entries to obtain the correction for the current servo cycle.  It then adds this 
correction to the desired output from the position/velocity servo loop of the motor.  Both the loop output 
and the correction are 24-bit values at this point.   

The torque correction for a motor is stored each servo cycle in a specific register for the motor.  For 
Motor 1, this is the register at Y:$0000BF, and the net output with correction is stored at X:$0000BF.  If 
I51 is set to 0, it is permissible to write values directly to the correction register.  Regardless of the setting 
of I51, the value in this register is added into the net desired output value for the motor every servo cycle. 

Deleting Tables 
The DELETE TCOMP command erases the torque compensation table for the presently addressed motor.  
Torque compensation tables must be deleted in order from those assigned to the lower-numbered motors 
to those assigned to higher numbered motors. 
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TURBO PMAC GENERAL PURPOSE I/O USE 
Turbo PMAC controllers have substantial input/output capabilities that are not directly related to servo 
operation.  I/O points are both digital and analog, both input and output.  Board-level Turbo PMAC 
controllers have some on-board general-purpose I/O, and more can be added with accessory boards.  With 
the modular UMAC systems, I/O boards can be added according to the needs of the particular application. 

This section summarizes the general-purpose I/O capabilities of the Turbo PMAC family.  More details 
can be found in the hardware reference manuals for the particular Turbo PMACs, or the manuals for the 
particular accessory boards. 

Turbo PMAC General-Purpose I/O (JOPTO) Port 
The JOPTO port on a Turbo PMAC (J5 on Turbo PMAC PC, PCI, and VME) provides eight general-
purpose digital inputs and eight general-purpose digital outputs.  Each input and each output has its own 
corresponding ground pin in the opposite row.  The 34-pin connector was designed for easy interface to 
OPTO-22 or equivalent optically isolated I/O modules.  Delta Tau’s Acc-21F is a 180-cm (six-foot) cable 
for this purpose.  Note that these I/O points are not optically isolated on the Turbo PMAC itself. 

Hardware Characteristics 
A Turbo PMAC is shipped standard with a ULN2803A sinking (open-collector) output IC for the eight 
outputs.  These outputs can sink up to 100 mA each, but must have a pull-up resistor to go high.   

Do not connect these outputs directly to the supply voltage, or damage to the Turbo PMAC will result 
from excessive current draw. 

CAUTION: 
Having Jumpers E1 and E2 set wrong can damage the IC. 

A high-side voltage (+5 to +24V) can be provided into Pin 33 of the JOPTO connector and allow this to 
pull up the outputs by connecting pins 1 and 2 of Jumper E1.  Jumper E2 must also connect pins 1 and 2 
for a ULN2803A sinking output.  

CAUTION: 
Having Jumpers E1 and E2 set wrong can damage the IC. 

It is possible for these outputs to be sourcing drivers by substituting a UDN2981A IC for the ULN2803A.  
This IC (U3 on the Turbo PMAC PC, U26 on the Turbo PMAC Lite, U33 on the Turbo PMAC VME) is 
socketed, and so may be replaced easily.  For this driver, pull-down resistors should be used.  With a 
UDN2981A driver IC, Jumper E1 must connect pins 2 and 3, and Jumper E2 must connect pins 2 and 3.   

Jumper E7 controls the configuration of the eight inputs.  If it connects pins 1 and 2 (the default setting), 
the inputs are biased to high-side voltage (+5V to +24V) for the OFF state and they must be pulled low 
for the ON state.  These inputs are best thought of as 24V-tolerant 5V logic, with a switching point at 2-
3V.  If E7 connects pins 2 and 3, the inputs are biased to ground for the OFF state and must be pulled 
high for the ON state.  In either case, a high voltage is interpreted as a 0 by the Turbo PMAC software, 
and a low voltage is interpreted as a 1. 

Software Access 
Usually these inputs and outputs are accessed in software through the use of M-variables.  In the 
suggested set of M-variable definitions, variables M1 through M8 are used to access outputs 1 through 8, 
respectively, and M11 through M18 to access inputs 1 through 8, respectively.  This port maps into Turbo 
PMAC’s memory space at Y-address $078802. 
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Turbo PMAC Multiplexed I/O (JTHW) Port 
The Multiplexer port on the JTHW (J3) connector of a Turbo PMAC has eight input lines and eight 
output lines.  The output lines can be used to multiplex large numbers of inputs and outputs on the port, 
and Delta Tau provides accessory boards and software structures (special M-variable definitions TWB, 
TWD, TWR, and TWS) to capitalize on this feature.  Up to 32 of the multiplexed I/O boards may be 
daisy-chained on the port, in any combination. 

Alternately, the eight inputs and eight outputs on the port can be used directly by assigning M-variables to 
the I/O points themselves.  This port maps into Turbo PMAC’s memory space at Y-address $078801.  
The suggested M-variable definitions for this use are M40 to M47 for the eight outputs, and M50 to M57 
for the eight inputs.   

Turbo PMAC Control Panel Port 
The control-panel port on the JPAN connector (J2 on Turbo PMAC PC, PCI, VME) of a Turbo PMAC is 
a 26-pin connector with dedicated control inputs, dedicated indicator outputs, a quadrature encoder input, 
and an analog input.  The control inputs are active low in their automatic function with internal pull-up 
resistors.  They have predefined functions unless the control-panel-disable I-variable (I2) has been set to 
1.  If this is the case, they may be used as general-purpose inputs by assigning M-variables to their 
corresponding memory-map locations (bits of Y address $078800). 

Control-Panel Inputs 
The JOG-/, JOG+/, PREJ/ (return to pre-jog position), and HOME/ inputs affect the motor selected by the 
FDPn/ lines (see below).  The STRT/ (run), STEP/, STOP/ (abort), and HOLD/ (feed hold) inputs affect 
the coordinate system selected by the FDPn/ lines.   

WARNING 
Do not change the selector inputs while holding one of the jog inputs low.  
Releasing the jog input will then not stop the previously selected motor.  This can 
lead to a dangerous situation. 

The four low-true BCD-coded input lines FDP0/ (LSBit), FDP1/, FDP2/, and FDP3/ (MSBit) form a low-
true BCD-coded nibble that selects the active motor and coordinate system (simultaneously).  Usually 
these are controlled from a single 4-bit motor/coordinate-system selector switch.  Variable I59 bank 
selects which group of eight motors and coordinate systems can be specified by the switch.  The motor 
selected with these input lines will respond to the motor-specific inputs.  It will also have its position 
following function turned on (Ixx06 bit 0 is set to 1 automatically); the motor just de-selected has its 
position following function turned off (Ixx06 bit 0 is automatically set to 0). 

Control-Panel Outputs 
There are five dedicated low-true outputs on the JPAN connector, usually used to light LEDs.  They are 
BRLD/ (buffer-request LED), IPLD/ (in-position LED), EROR/ (fatal following error LED), F1LD/ (first 
warning – following error LED), and F2LD/ (which goes true when the watchdog timer trips).  BRLD/, 
ERLD/, and F2LD/ are global status lines.  IPLD/ and F1LD/ are coordinate-system specific status lines.  
If I2=0, they refer to the panel-selected coordinate system (by FDPn/ and I59).  If I1=1, they refer to the 
host-selected coordinate system (&n). 

If I2=0 but no coordinate system is selected (all FPDn/ inputs are floating or pulled high), these lines can 
be used as general purpose outputs, addressed as bits 20-23 of Y:$078802. 
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Turbo PMAC2 General-Purpose I/O (JIO) Port 
The JIO port on a Turbo PMAC2 (on Acc-5E for a UMAC Turbo) has 32 discrete digital I/O lines for 
general-purpose use.  The lines are configurable by byte for input or output (on the DSPGATE2 I/O IC, 
the lines are individually configurable for input or output, but the buffer ICs are only byte-configurable), 
and individually configurable for inverting or non-inverting format. 

Hardware Characteristics 
When configured as an output, each line has a 5V CMOS totem-pole driver.  This driver can sink or 
source up to 20 mA.  There is a 10 kΩ pull-up resistor to 5V on each line for input purposes, but the 
driver IC can hold the line high or low despite this resistor.  When configured as an input, the buffer IC 
presents a high-impedance input either sinking or sourcing; no significant current will flow.  The pull-up 
resistor on the line will bias the line high in the absence of anything actively pulling the line low at 
significantly lower impedance. 

Note:  

Because all of these lines default to inputs at power-up/reset, any lines to be used 
as outputs will pull to +5V at power-up/reset until software configures them as 
outputs. 

Suggested M-Variables 
Note:  

In a UMAC Turbo system, it is possible to have the DSPGATE2 IC driving the 
JIO port at a base address other than the standard $078400.  However, this is 
unlikely, so the following discussion assumes the standard base address of 
$078400 for this IC. 

The 32 I/O lines are memory-mapped into PMAC’s address space in registers Y:$078400 and Y:$078401.  
Typically these I/O lines are accessed individually with M-variables.  A complete list of the suggested M-
variables is shown in the Software Reference; a few are shown here:   
M0->Y:$078400,0  ; I/O00 Data Line; J3 Pin 1 
M1->Y:$078400,1  ; I/O01 Data Line; J3 Pin 2 
… 
M23->Y:$078400,23  ; I/O23 Data Line; J3 Pin 24 
M24->Y:$078401,0  ; I/O24 Data Line; J3 Pin 25 
M25->Y:$078401,1  ; I/O25 Data Line; J3 Pin 26 
… 
M31->Y:$078401,7  ; I/O31 Data Line; J3 Pin 32 

Direction Control 
The direction control bit for each of these I/O bits is in the corresponding bit in the matching X register.  
For example, the direction control bit for I/O03 is located at X:$078400,3; the direction control bit for 
I/O30 is located at X:$078401,6.  Because the buffer ICs can be switched only by byte, it is best to define 
8-bit M-variables for the direction control.  Suggested definitions are: 
M32->X:$078400,0,8  ; Direction control for I/O00 to I/O07 
M34->X:$078400,8,8  ; Direction control for I/O08 to I/O15 
M36->X:$078400,16,8  ; Direction control for I/O16 to I/O23 
M38->X:$078401,0,8  ; Direction control for I/O24 to I/O31 

These M-variables should take values of 0 or 255 ($FF) only; 0 sets the byte to input, 255 sets the byte to 
output.   
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In addition, the bi-directional buffer IC for each byte has a direction control line accessible as a software 
control bit.  These control lines and bits must match the ASIC direction bits.  The buffer direction control 
bits are at PMAC address Y:$070800, with bits 0 to 3 controlling the four bytes of the JIO port.  A bit 
value of 0 specifies input; 1 specifies output.  Suggested M-variable definitions are: 
M33->Y:$070800,0  ; Buffer direction control for I/O00 to I/O07 
M35->Y:$070800,1  ; Buffer direction control for I/O08 to I/O15 
M37->Y:$070800,2  ; Buffer direction control for I/O16 to I/O23 
M39->Y:$070800,3  ; Buffer direction control for I/O24 to I/O31 

In the default configuration automatically set at power-up/reset, I/O00 to I/O31 are set up as inputs (M32 
through M39 = 0).  This is done for maximum safety; no lines can be forced into an undesirable high or 
low state.  Any of these lines that are to be used as outputs must be changed to outputs by user programs 
Usually this is done in PLC 1 acting as a reset PLC, scanning through once on power-up/reset, then 
disabling itself. 

Inversion Control 
Each line on the JIO port is individually controllable as to whether it is an inverting I/O point (0=+5V; 
1=0V) or a non-inverting I/O point (0=0V; 1=+5V).  Registers X:$078404 and X:$078405 contain the 
inversion control bits: 
• X:$078404 bits 0 to 23 control I/O00 to I/O23, respectively 
• X:$078405 bits 0 to 7 control I/O24 to I/O31, respectively 
A value of 0 in the control bit sets the corresponding I/O point as non-inverting.  A value of 1 in the 
control bits sets the corresponding I/O point as inverting.  At power-up/reset, PMAC automatically sets 
all of the I/O points on the JIO port as non-inverting. 

Alternate Uses 
Each general-purpose I/O point on the JIO port has an alternate use as a supplemental fixed-use I/O point 
on a supplemental machine interface channel (1* or 2*).  The points are individually controllable as to 
general-purpose use or fixed use by control registers Y:$078404 and Y:$078405.  Refer to these registers 
in the memory-I/O map to see the alternate uses of each point.  At power-up/reset, Turbo PMAC 
automatically sets up all of the I/O points on the port for general-purpose use. 

Note:  
The byte-wide direction control of the buffer ICs must be set properly for the 
alternate uses of the I/O points, just as for the general-purpose I/O uses. 

Turbo PMAC2 Multiplexed I/O Port (JTHW) 
The JTHW multiplexer port has 16 discrete digital I/O lines for general-purpose use.  Most people will 
use them in the default configuration of eight inputs and eight outputs, and to support multiplexed I/O 
accessories from Delta Tau.  When used in this manner, no special setup of the I/O points is required.  
However, if it is desired to use these I/O points directly, the following discussion explains their use. 

The lines are configurable by byte for input or output (on the DSPGATE2 I/O IC, the lines are 
individually configurable for input or output, but the buffer ICs are only byte-configurable), and 
individually configurable for inverting or non-inverting format. 

Note:  
Variable I20 for a Turbo PMAC2 specifies the base address for the first MACRO 
IC in the system, the DSPGATE2 IC that controls the JTHW multiplexer port.  
This variable must be set correctly for the automatic multiplexer port functions to 
work correctly.  Usually, this base address is $078400, and the following 
discussions assume that the system is set up this way. 
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Multiplexer Port Accessories 
Delta Tau provides several accessories that can connect to the JTHW multiplexer port, with automatic 
firmware support for accessing the I/O on these boards.  These accessories provide a direct flat-cable 
connection to the JTHW port, and the port is configured automatically at power-up/reset to work with any 
of these boards.  These accessories include: 
• Acc-8D Opt. 7 Resolver-to-Digital Converter Board 
• Acc-8D Opt. 9 Yaskawa Absolute Encoder Interface Board 
• Acc-18 Thumbwheel Board (obsolete) 
• Acc-34x 32-Input 32-Output Boards 
For the Acc-8D Option 7 and Acc-8D Option 9 boards, special settings of Ixx91 and Ixx95 support 
absolute position reads from these devices.  There is also special M-variable formats for accessing I/O 
data on most of these boards: 
• Acc-8D Opt. 7: TWS-format M-variables for absolute position data 
• Acc-18: TWD-format M-variables for binary-coded decimal reads of digits 
• Acc-34x: TWS-format M-variables for serial access of 32-bit input or output word 

Hardware Characteristics 
When configured as an output, each line on the multiplexer port has a 5V CMOS totem-pole driver.  This 
driver can sink or source up to 20 mA.  There is a 10 kΩ pull-up resistor to 5V on each line for input 
purposes, but the driver IC can hold the line high or low despite this resistor.  When configured as an 
input, the buffer IC presents a high-impedance input either sinking or sourcing; no significant current will 
flow.  The pull-up resistor on the line will bias the line high in the absence of anything actively pulling 
the line low at significantly lower impedance. 

Suggested M-Variables 
The 16 I/O lines are memory-mapped into PMAC’s address space in register Y:$078402.  Typically these 
lines are used as a unit with specially designed multiplexing I/O accessories and appropriate multiplexing 
M-variables (TWB, TWD, TWR, and TWS formats), in which case Turbo PMAC handles the direct control 
of these I/O lines automatically.  However, these lines can also be accessed individually with M-variables.  
The complete list of M-variables is shown in the Software Reference Manual; a few are shown here: 
M40->Y:$078402,8  ; SEL0 Line; J2 Pin 4 
… 
M47->Y:$078402,15  ; SEL7 Line; J2 Pin 18 
M48->Y:$078402,8,8,U ; SEL0-7 Lines treated as a byte 
M50->Y:$078402,0  ; DAT0 Line; J2 Pin 3 
… 
M57->Y:$078402,7  ; DAT7 Line; J2 Pin 17 
M58->Y:$078402,0,8,U ; DAT0-7 Lines treated as a byte 

Direction Control 
In the default configuration automatically set at power-up/reset, DAT0 to DAT7 are set up as non-
inverting inputs; SEL0 to SEL7 are set up as non-inverting outputs with a zero (low voltage) value.  If 
any of the multiplexer port accessories are to be used, this configuration must not be changed. 

The direction control bit for each of these I/O bits is in the corresponding bit in the matching X register.  
For example, the direction control bit for DAT3 is located at X:$078402,3; the direction control bit for 
SEL6 is located at X:$078402,14.  Because the buffer ICs can be switched only by byte, it is best to 
define 8-bit M-variables for the direction control.  Suggested definitions are: 
M60->X:$078402,0,8  ; Direction control for DAT0 to DAT7 
M62->X:$078402,8,8  ; Direction control for SEL0 to SEL7 
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These M-variables should take values of 0 or 255 ($FF) only; 0 sets the byte to input, 255 sets the byte to 
output. 

In addition, the bi-directional buffer IC for each byte has a direction control line accessible as a software 
control bit.  These control lines and bits must match the ASIC direction bits.  In the ISA and PCI-bus 
versions of the Turbo PMAC, the buffer direction control bits are at Turbo PMAC address Y:$070800, 
with bits 4 and 5 controlling the two bytes of the JTHW port.  A bit value of 0 specifies input; 1 specifies 
output.  Suggested M-variable definitions are: 
M61->Y:$070800,4  ; Buffer direction control for DAT0 to DAT7 
M63->Y:$070800,5  ; Buffer direction control for SEL0 to SEL7 

In the VME-bus versions of the Turbo PMAC, the buffer direction control bits are at Turbo PMAC 
address Y:$070802, with bits 0 and 1 controlling the two bytes of the JTHW port.  A bit value of 0 
specifies input; 1 specifies output.  Suggested M-variable definitions are: 
M61->Y:$070802,0  ; Buffer direction control for DAT0 to DAT7 
M63->Y:$070802,1  ; Buffer direction control for SEL0 to SEL7 

If it is desired to change either of these I/O bytes, it must be done by user programs. Usually this is done 
in PLC 1 acting as a reset PLC, scanning through once on power-up/reset, and then disabling itself. 

Inversion Control 
Each line on the JTHW port is individually controllable as to whether it is an inverting I/O point (0=+5V; 
1=0V) or a non-inverting I/O point (0=0V; 1=+5V).  Register X:$078406 contains the inversion control bits: 
• X:$078406 bits 0 to 7 control DAT0 to DAT7, respectively 
• X:$078406 bits 8 to 15 control SEL0 to SEL7, respectively 

A value of 0 in the control bit sets the corresponding I/O point as non-inverting.  A value of 1 in the 
control bits sets the corresponding I/O point as inverting.  At power-up/reset, PMAC automatically sets 
all of the I/O points on the JTHW port as non-inverting.  To use any of the multiplexed I/O accessory 
boards on the JTHW port, all I/O points on the port must be left non-inverting. 

Alternate Uses 
Each general-purpose I/O point on the JTHW port has an alternate use as a supplemental fixed-use I/O 
point on a supplemental machine interface channel (1* or 2*).  The points are individually controllable as 
to general-purpose use or fixed use by control register Y:$078406.  Refer to this register in the memory-
I/O map to see the alternate uses of each point.  At power-up/reset, Turbo PMAC automatically sets up all 
of the I/O points on the port for general purpose use. 

Note:  

Because of the byte-wide direction-control buffer ICs, it is not possible to use all 
of the I/O points on the JTHW in their alternate uses. 

Turbo PMAC Analog Input (JANA) Port 
The analog input (JANA) port is present only if Option 12 is ordered for the Turbo PMAC2 or a Turbo 
PMAC PCI board.  Option 12 provides 8 12-bit analog inputs (ANAI00-ANAI07).  Option 12A provides 
8 additional 12-bit analog inputs (ANA08-ANAI15) for a total of 16 inputs. 

Hardware Characteristics 
The analog inputs can be used as unipolar inputs in the 0V to +5V range, or bipolar inputs in the -2.5V to 
+2.5V range.  Each input has a 470Ω input resistor in-line, and a 0.033 µF resistor to ground.  This 
provides a 16 µsec time constant on each input line. 
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The analog-to-digital converters on Turbo PMAC require +5V and -12V supplies.  These supplies are not 
isolated from digital +5V circuitry on PMAC.  If the Turbo PMAC2 is plugged into the bus (ISA, PCI, or 
VME), these supplies are taken from the bus power supply.  In a standalone application, these supplies 
must be brought in on terminal block TB1. 

The -12V and matching +12V supply voltages are available on the J1 connector to supply the analog 
circuitry providing the signals.  The +12V supply is not used by Turbo PMAC; it is merely passed 
through to the J1 connector for convenience.  If use of this supply is desired, it must come either from the 
bus supply through Turbo PMAC’s bus connector, or from TB1. 

Multiplexing Principle 
Only one pair of analog-to-digital converter registers is available to the Turbo PMAC processor at any 
given time.  The data appears to the processor at address Y:$078800 on a Turbo PMAC2; it appears at 
Y:$078808 on a Turbo PMAC PCI.  The data from the selected analog input 0 to 7 (ANAI00-ANAI07) 
appears in the low 12 bits; the data from the selected analog input 8 to 15 (ANAI08-ANAI15) appears in 
the high 12 bits.  This data is present only if Option 12A has been ordered. 

The input is selected and the conversion is started by writing to this same word address Y:$078800.  A 
value of 0 to 7 written into the low 12 bits selects the analog input channel of that number (ANAI00-
ANAI07) to be converted in unipolar mode (0V to +5V).  A value of 0 to 7 written into the high 12 bits 
selects the analog input channel numbered 8 greater (ANAI08-ANAI15) in unipolar mode.  If the value 
written into either the low 12 bits or the high 12 bits is 8 higher (8 to 15), the same input channel is 
selected, but the conversion is in bipolar mode (-2.5V to +2.5V). 

De-multiplexing I-Variables 
Turbo PMAC I-variables I5060 – I5096 permit the automatic de-multiplexing of these multiplexed A/D 
converters (and of multiplexed A/D converters on external Acc-36 and Acc-59 boards as well). 

I5060 controls the number of A/D converter pairs accessed in the de-multiplexing ring, up to 16 pairs.  
Variables starting at I5061, and possibly up to I5076, specify the Turbo PMAC address of each ADC pair 
to be read.  The addresses of all eight pairs on the JANA port are located at $078800. 

Variables starting at I5081, and possibly up to I5096, specify which pair of ADCs at the address specified 
by the I-variable numbered 20 lower is read (e.g. I5081 for I5061), and how it is to be converted.  I5081 – 
I5096 are 24-bit values, represented by 6 hexadecimal digits.  Legitimate values are of the format 
$00m00n, where m and n can take any hex value from 0 through F.  

For the on-board Option 12 and 12A ADCs on a Turbo PMAC2, the m value determines which of the 
inputs ANAI08 to ANAI15 that come with Option 12A is to be read, and how it is to be converted, 
according to the following formulas: 
• 8#ANAIm −=  ; 0 to +5V unipolar input 
• #ANAIm =  ; -2.5V to +2.5V bipolar input 
For the on-board Option 12 and 12A ADCs on a Turbo PMAC2, the n value determines which of the 
inputs ANAI00 to ANAI07 that come with Option 12A is to be read, and how it is to be converted, 
according to the following formulas: 
• #ANAIn =   ; 0V to +5V unipolar input 
• 8#ANAIn +=   ; -2.5V to +2.5V bipolar input 
The results of this A/D de-multiplexing are placed in registers at addresses Y:$003400 to Y:$00341F, 
using bits 12 to 23 of these registers.  The value of the A/D converter found in the low 12 bits of the 
source register is placed in the register with the even-numbered address; the value of the A/D converter 
found in the high 12 bits of the source register is placed in the register with the odd-numbered address.  
Refer to the Turbo PMAC memory map or I5061 – I5076 description for details.  Suggested M-variables 
for the result registers are M5061 – M5076. 
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In operation, Turbo PMAC reads one ADC pair each phase cycle and copies it into the appropriate 
memory registers.  Therefore, it reads each ADC pair every I5060 phase cycles.  If these values are used 
as feedback for a servo loop, the loop should not be closed more often than the ADC is read. 

UMAC Digital I/O Boards 
The UMAC has an extensive family of digital I/O boards.  The following table summarizes these boards 
and their properties: 

ACC # of 
Inputs 

Input 
Range 

Drivers for 
Inputs 

# of 
Outputs

Output 
Range 

Output 
Drivers 

Notes 

9E 48 12V-
24V 

Sink/Source by 
wiring 

0 – – Isolated I/O 

10E 0 – – 48 5V – 24V Sink/Source by 
factory option 

Isolated I/O 

11E 24 12V-
24V 

Sink/Source by 
wiring 

 5V – 24V Sink/Source by 
factory option 

Isolated I/O 

14E 0 - 48 5V TTL/Sinking 48 - 0 5V Sinking with 
pull-ups 

TTL, each 
reversible 

65E 24 12V-
24V 

Sourcing only 24 5V – 24V Sourcing only Isolated, 
protected I/O 

66E 48 12V-
24V 

Sourcing only 0 – – Isolated, 
protected I/O 

67E 0 – – 48 5V – 24V Sourcing only Isolated, 
protected I/O 

Addressing UMAC I/O Boards 
All of these boards utilize Delta Tau’s memory-mapped IOGATE ASIC, which supports 48 I/O points 
mapped as 6 consecutively addressed 8-bit registers.  In the next two 8-bit registers are setup and control 
bits.  The base address of the IOGATE IC is set by jumpers on the Acc- 9E, 10, and 11E boards, set by 
DIP-switches on the 14E, 65E, 66E, and 67E boards. 

The Acc-14E, 65E, 66E, and 67E boards support automatic identification by the UMAC CPU.  Status 
variables I4950 – I4965 indicate which of these boards are present, and at what addresses.  The Turbo 
Setup program can identify and display the results of these variables automatically, indicating which 
boards are present.  It can also identify the presence of Acc-9E, 10E, and 11E boards, but because these 
older boards lack self-identification features, it cannot tell which type of board each one is. 

Boards With Jumper-Set Addresses 
For the Acc-9E, 10E, and 11E boards, the base address of the board is set by putting a jumper on one and 
only one of the E-points E1 – 4.  The registers on the board are found at eight consecutive addresses: 
{Base} through {Base + 7}.  The byte – low (bits 0 – 7), middle (bits 8 – 15), or high (bits 16 – 23) – of 
Turbo PMAC’s 24-bit word in which the registers are found is determined by the setting of the jumper 
bank E6A – H.  The settings for the base addresses for these boards are summarized in the following 
table: 

Address 
Jumper 

E6A H Pins 1&2 E6A H Pins 2&3 E6A H Pins 1&2 

E1 Y:$078C00 Bits 0 - 7 Y:$078C00 Bits 8 - 15 Y:$078C00 Bits 16 - 23 
E2 Y:$078D00 Bits 0 - 7 Y:$078D00 Bits 8 - 15 Y:$078D00 Bits 16 - 23 
E3 Y:$078E00 Bits 0 - 7 Y:$078E00 Bits 8 - 15 Y:$078E00 Bits 16 - 23 
E4 Y:$078F00 Bits 0 - 7 Y:$078F00 Bits 8 - 15 Y:$078F00 Bits 16 - 23 
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Boards With Switch-Set Addresses 
For the Acc-14E, 65E, 66E, and 67E boards, the base address of the board is determined by the settings of 
DIP switches SW1-1 through SW1-4.  When these boards are used with a UMAC Turbo CPU, SW1-5 
and SW1-6 must always be ON.  These boards always appear in the low byte (bits 0 – 7) of the 24-bit 
word. 

Switch Settings SW1-3 ON 
SW1-4 ON 

SW1-3 OFF 
SW1-4 ON 

SW1-3 ON 
SW1-4 OFF 

SW1-3 OFF 
SW1-4 ON 

SW1-1 ON 
SW1-2 ON 

Y:$078C00 Y:$079C00 Y:$07AC00 Y:$07BC00 

SW1-1 OFF 
SW1-2 ON 

Y:$078D00 Y:$079D00 Y:$07AD00 Y:$07BD00 

SW1-1 ON 
SW1-2 OFF 

Y:$078E00 Y:$079E00 Y:$07AE00 Y:$07BE00 

SW1-1 OFF 
SW1-2 OFF 

Y:$078F00 Y:$079F00 Y:$07AF00 Y:$07BF00 

Note that both types of boards can be set up to the same addresses in some cases.  It is, of course, very 
important not to have any addressing conflicts. 

Setting up UMAC I/O Boards 
I/O points on the IOGATE IC itself are selectable by byte for input or output.  However, only the Acc-
14E TTL-level I/O board gives you a choice as to which I/O points will be inputs and which will be 
outputs.  On all the other of these boards, the surrounding buffer/driver circuitry determines how each I/O 
point must be used.  The IOGATE IC must be set up each power-on/reset to determine the direction of 
each I/O point; typically this is done in a “one-shot” PLC program.  The manual for each board shows 
example program code that could be used to do this. 

In typical applications, very little setup of the IOGATE IC is required for operation with the UMAC I/O 
boards.  However, the IOGATE IC has special features that are useful in unusual applications.  The 
following section details how the control register and the setup registers of the IOGATE IC can be used to 
provide great flexibility 

Control Register 
The control register at address {Base + 7} permits the configuration of the IOGATE IC to a variety of 
applications.  The control register consists of 8 write/read-back bits – Bits 0 - 7. 

Direction Control Bits 
Bits 0 to 5 of the control register simply control the direction of the I/O for the matching numbered data 
register.  That is, Bit n controls the direction of the I/O at {Base + n}.  A value of 0 in the control bit (the 
default) permits a write operation to the data register, enabling the output function for each line in the 
register.  Enabling the output function does not prevent the use of any or all of the lines as inputs, as long 
as the outputs are off (non-conducting).  A value of 1 in the control bit does not permit a write operation 
to the data register, disabling the output, reserving the register for inputs.   

For example, a value of 1 in Bit 3 disables the write function into the data register at address {Base + 3}, 
ensuring that lines IO24 - IO31 can always be used as inputs. 

Register Select Control Bits 
Bits 6 and 7 of the control register together select which of 4 possible registers can be accessed at each of 
the addresses {Base + 0} through {Base + 5}.  They also select which of two possible registers can be 
selected at {Base + 6}. 
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The following table explains how these bits select registers: 

Bit 7 Bit 6 Combined 
Value 

Byte 
Value* 

{Base + 0} to {Base + 5} 
Register Selected 

{Base + 6} Register 
Selected 

0 0 0 $00 Data Register Data Register 
0 1 1 $40 Setup Register 1 Setup Register 
1 0 2 $80 Setup Register 2  
1 1 3 $C0 Setup Register 3 n. a. 

* With bits 0 to 5 set to 0 

In a typical application, non-zero combined values of Bits 6 and 7 are only used for initial configuration 
of the IC.  These values are used to access the setup registers at the other addresses.  After the 
configuration is finished, zeros are written to both Bits 6 and 7, so the data registers at the other registers 
can be accessed. 

Setup Registers 
There are a total of four registers accessible at each of the IC addresses {Base + 0} to {Base + 5}: three 8-
bit setup registers and an 8-bit data register.  The setup registers control how data is written to and read 
from the data registers. 

Setup Register 1: Inversion Control 
Setup Register 1 at each address {Base + 0} through {Base + 5}, which is selected by writing a 1 to Bit 6 
of the Control Word at {Base + 7} and a 0 to Bit 7, is the inversion control register for the Data Register 
at the same address.  Each bit of Setup Register 1 controls the inversion of the matching bit of the Data 
Register at the same address. 

A value of 0 in a bit of Setup Register 1 specifies an inverting I/O point for the matching bit of the Data 
Register at the same address.  That is, for an output, a value of 0 produces a low (conducting) output, and 
a value of 1 produces a high (non-conducting) output.  For an input, a line pulled low produces a 1 value, 
and a line pulled high or permitted to float high produces a 0 value. 

A value of 1 in a bit of Setup Register 1 specifies a non-inverting I/O point for the matching bit of the 
Data Register at the same address.  That is, for an output, a value of 0 produces a high (non-conducting) 
output, and a value of 1 produces a low (conducting) output.  For an input, a line pulled low produces a 0 
value, and a line pulled high or permitted to float high produces a 1 value. 

Setup Register 2: Read Control 
Setup Register 2 at each address {Base + 0} through {Base + 5}, which is selected by writing a 0 to Bit 6 
of the Control Word at {Base + 7} and a 1 to Bit 7, is the read control register for the Data Register at the 
same address.  Each bit of Setup Register 2 controls what data is read from the matching bit of the Data 
Register at the same address. 

The action of a bit of Setup Register 2 is dependent on the setting of the matching bit of Setup Register 3 
for the same address.  If the matching bit of Setup Register 3 is 0, selecting unlatched inputs, the bit of 
Setup Register 2 controls whether the pin value is read, or the value in the writeable register is read.  A 
value of 0 in the bit of Setup Register 2 selects the pin value to be read from the matching bit of the Data 
Register at the same address; a value of 1 in the bit selects the writeable register value. 

If the matching bit of Setup Register 3 is 1, selecting latched inputs, the bit of Setup Register 2 controls 
whether the directly latched data is read, or the value that is the result of a Gray-code-to-binary 
conversion.  A value of 0 in the bit of Setup Register 2 selects the directly latched value to be read from 
the matching bit of the Data Register at the same address; a value of 1 in the bit selects the value that is 
the result of a Gray-code-to-binary conversion. 
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Setup Register 3: Latch Control 
Setup Register 3 at each address {Base + 0} through {Base + 5}, which is selected by writing a 1 to Bit 6 
of the Control Word at {Base + 7} and a 1 to Bit 7, is the latch control register for the Data Register at the 
same address.  Each bit of Setup Register 3 controls whether latched or unlatched data is read from the 
matching bit of the Data Register at the same address. 

A value of 0 in the bit of Setup Register 3 selects unlatched data to be read from the matching bit of the 
Data Register at the same address; a value of 1 in the bit selects latched data to be read. 

For both the latched and unlatched settings, the matching bit of Setup Register 2 controls exactly what 
type of data is read from the Data Register. 

Data Registers 
The Data Register at each address {Base + 0} through {Base + 5}, which is selected by writing a 0 to Bit 
6 of the Control Register at {Base + 7} and a 0 to Bit 7, provides the working interface for the 8 
input/output lines matched to that address.  The processor reads from or writes to the data register to 
access the input/output lines. 

If there is a value of 1 in Bit n (n = 0 to 5) of the Control Word, a write operation to the Data Register at 
address {Base + n} has no effect on the I/O line, effectively disabling the output function for all 8 lines 
associated with the register. 

A read operation from a Data Register can access one of 4 types of data for each I/O line associated with 
the register (individually selectable), depending on how the Setup Registers 2 and 3 at the same address 
have been configured. 

The following table summarizes how the Setup Register bits control what data is read in the matching bit 
of the Data Register: 

Setup Register 3 Bit Value Setup Register 2 Bit Value Data Type Read 
0 0 Pin Value Read 
0 1 Writeable Register Read 
1 0 Latched Input Read 
1 1 Converted Gray Code Read 

Pin Data Read 
If the pin value has been selected to be read, the line voltages for the eight I/O lines is read as an input, 
even if it is being driven as an output.   

Writeable Register Data Read 
If the writeable register value has been selected to be read, the value written by the processor into the data 
register is read back, even if this does not match the voltage state of the pin. 

Latched Input Read 
If the latched input has been selected to be read, the input value last latched by the falling edge of line En 
for address {Base + n} is read, even if the input value has changed since then. 

Converted Gray Code Read 
If the converted Gray code input has been selected to be read, the input value last latched by line En for 
address {Base + n} and processed through the Gray code conversion circuitry is read. 
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MAKING AN APPLICATION SAFE 
Delta Tau Data Systems has provided many safety features on the Turbo PMAC controller, and invested 
many resources to make Turbo PMAC a safe product.  However, the ultimate responsibility for the safety 
of a control system using Turbo PMAC must lie with the system designer, utilizing the safety features on 
Turbo PMAC and in other parts of the system. 

Following Error Limits 
Turbo PMAC has three following error limits for each motor. Following error is the difference between 
the commanded position and the actual position at any time.  The following error limit is an important 
protection against serious system faults such as loss of feedback, which can cause dangerous conditions 
like full speed runaway. 

Fatal Following Error Limit 
One of these limits (Ixx11) is a fatal limit which causes a shutdown of the motor: servo loop opened, zero 
output commanded, amplifier disabled (i.e. the motor is killed), moves for the motor and programs for the 
motor’s coordinate system aborted.   

Which motors get killed – only the offending motor, all in the coordinate system, or all in Turbo PMAC – 
is determined by bits 21 and 22 of Ixx24 for the faulted motor.  This limit is intended for conditions in 
which something has gone seriously wrong (e.g. loss of feedback or power stage) and all operation should 
cease.   

After the motor or motors have been killed due to the fatal following error limit, closed-loop control can 
be re-established with the J/ command (single motor), the A command (coordinate system), or the 
<CTRL-A> command (entire card). 

WARNING 
Although this limit may be disabled by setting Ixx11 to zero, but this is strongly 
discouraged in any application that has the potential to kill or injure people, or 
even to cause property damage.  Disabling the fatal limit removes an important 
protection against serious fault conditions that can cause runaway situations, 
bringing the system to full power output faster than anybody could react. 

Good tuning of the motor’s servo loop is important for safety reasons as well as performance reasons.  
The smaller the true following errors are made during proper operation, the tighter the Ixx11 limits can be 
set without getting nuisance trips.  Particularly important in this regard are the feedforward terms that can 
dramatically reduce the errors at high speeds and accelerations. 

Warning Following Error Limit 
The second limit (Ixx12) is a warning limit – when exceeded, Turbo PMAC sets status bits for the motor 
and the motor’s coordinate system, and can set output lines on the control panel connector, the machine 
connectors, and through the programmable interrupt controller (for ISA and PCI bus Turbo PMACs).  
This permits special action to be taken, either by Turbo PMAC itself through a PLC program, by the host, 
which can find out through an interrupt or by polling the card, or by an operator notified with one of the 
external signals. 

The warning following error status bit for the motor can be used as the trigger condition for any of Turbo 
PMAC’s automatic triggered moves (homing-search move, jog-until-trigger, programmed RAPID-mode 
move-until-trigger) if bit 0 of Ixx97 is set to 1.  This permits easy implementation of tasks such as homing 
into a hard stop, torque-limited screwdriving, etc. 
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Integrated Following Error Protection 
In addition to the normal following error protection provided by the Ixx11 variable for each motor, Turbo 
PMAC can shut down the motor if the time-integrated value of the following error exceeds a preset value.  
This integrated error feature can protect against those cases in which the magnitude of the measured 
following error never gets very large – for example, a loss of feedback followed by a very short 
commanded move. 

Turbo PMAC performs the integrated following error check only if the Ixx63 integration limit parameter 
is less than zero.  When this is the case, the magnitude of Ixx11 is used for the normal unintegrated 
following error check.  In addition, the value of the PID integrator is compared against the Ixx63 
integration limit magnitude.  If the integrator value has saturated at +/-Ixx63 (the limiting function in the 
PID loop will not let it exceed this value), then Turbo PMAC will trip (kill) this motor on an integrated 
following error fault, just as it would for a normal following error fault. 

For the integrated following error limit to be effective, the Ixx33 integral gain must be greater than zero, 
and preferably set as high as can be tolerated.  Also, the Ixx34 integration mode parameter must be set to 
0, so that the integrator is on during programmed moves.   

Remember that the integrator stops increasing in magnitude if the command output has saturated at Ixx69.  
The magnitude of Ixx63 must be small enough that it will trip before the output saturates.  The magnitude 
of Ixx63 that would cause output saturation at Ixx69 from the integrator alone is: 









∗
∗
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The magnitude of Ixx63 must be less than this value for the shutdown function to be effective.  
Remember that there will be other components to the output, for instance from the proportional gain.  
With a bare motor, test to see that this limit can trip the motor reliably. 

When a motor is killed due to integrated following error fault, the standard following error fault motor 
status bit is set.  In addition, a separate integrated following error fault motor status bit is set.  Both bits 
are cleared when the motor is re-enabled. 

Position (Overtravel) Limits 
Turbo PMAC has both hardware and software overtravel position limit features.  These are intended to 
prevent motion accidentally commanded out of the legal range of positions. 

Hardware Overtravel Limit Switches 
The axis-interface circuitry associated with each servo interface channel in a Turbo PMAC system has 
positive and negative hardware overtravel limit switch inputs.  The exact nature of this input circuitry and 
instructions for connecting the limit switches are described in the Hardware Reference Manual for each 
Turbo PMAC and axis-interface accessory. 

Generally, these inputs are optically isolated, with a failsafe circuit design.  The limit switches must be 
normally closed, conducting current through the opto-isolator when the axis is not in the limit.  This 
conducting condition produces a zero state in the flag register for the channel in the Servo IC; the 
processor must read this zero to permit motion in that direction. 

Anything that stops current from flowing through the opto-isolator, whether from actually hitting the 
limit, from cable disconnection, or from loss of power supply for the limit circuit, produces a one state in 
the Servo IC.  When the processor sees this, it will not permit motion in that direction. 
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Variable Ixx25 for the motor must contain the address of the flag register for the channel into which these 
limit switches are wired.  Bit 17 of Ixx24 must be set to the default value of 0 to use these limit inputs.  If 
this bit is set to 1, Turbo PMAC will not monitor these limit inputs.  This bit can be set permanently to 1 
if the motor does not have limit switches; it can be set to 1 temporarily for operations such as homing into 
a limit. 

On hitting a limit, Turbo PMAC decelerates the offending motor at a user-programmed rate as defined by 
the motor’s Ixx15.  If the motor is in a coordinate system that is running a motion program at the time, all 
motors in the coordinate system are decelerated to a stop at their own Ixx15 rate.  The effect is equivalent 
to issuing an A (abort) command.  If the coordinate system has been executing a path move, this 
deceleration will not necessarily be along that path. 

Note:  

Turbo PMAC brings the commanded trajectory for the motor to a stop at the Ixx15 
rate as soon as it detects a limit condition.  If there is significant following error at 
the time, the actual position can try to catch up to the commanded position for a 
long period of time.  With a large enough following error, it is possible that the 
commanded position would be well past the limit and into the hard stop.  It is 
important to set a reasonable fatal following error limit and to allow sufficient 
room past the limit switch to absorb errors up to that following error limit. 

The limit input pins are direction sensitive: the positive-end limit pin stops positive direction moves only 
(those coming at it from the negative side), and the negative-end limit pin stops negative direction moves 
only (those coming at it from the positive side).  This makes it possible to command a move out of the 
limit that you have run into.  However, this also makes it essential to have your limit switches wired into 
the proper inputs, or they will be useless. 

Software Overtravel Limit Variables 
Turbo PMAC also has positive and negative software limits for each motor to complement or replace the 
hardware limits.  These limits can use the motor’s desired as well as actual positions.  Motor variables 
Ixx13 and Ixx14 define the positive and negative actual position limits, respectively, in counts, for Motor 
xx.  These limits are referenced to the motor’s zero (home) position, and do not change if the 
programming origin for the associated axis is offset.   

Turbo PMAC continually compares the motor’s actual position to these limits.  The behavior on 
exceeding one of these limits is the same as hitting a hardware limit.  A value of zero in one of these 
parameters disables that software limit.   

If bit 15 of Ixx24 for the motor is set to 1, Turbo PMAC will compare the motor’s desired position also, 
calculated ahead of time for programmed moves, to the software limits.  This permits the motor to come 
to a full stop within the limits, not just begin to decelerate at the limits.  This in turn can provide an extra 
useful range of motion at the perimeter of a machine.   

Note:  

Turbo PMAC cannot pre-calculate the desired position for indefinite jog moves J+ 
and J-, and so will not begin to decelerate on these moves until the present desired 
position exceeds a software limit.  If it is desired that jog moves stop within the 
limits, a J+ command should be replaced by a definite jog to the positive limit; a 
J- command should be replaced by a definite jog to the negative limit. 
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For a LINEAR or CIRCLE-mode move executed with the special lookahead buffer active and exceeding 
a desired position limit, the move will come to a stop along the programmed path exactly at the limit, 
decelerating as controlled by the Ixx17 maximum-acceleration parameters for the motors in the 
coordinate system.  This is the equivalent of the \ quick-stop command.  In this case, it is possible to 
resume motion along the path after changing the offending limit parameter.  (If bit 14 of Ixx24 is set to 1, 
motion of these moves in lookahead mode will not stop on hitting a limit; instead, the commanded 
position of the offending motor will saturate at the limit value.) 

Motor variable Ixx41 defines the difference (in counts) between the motor’s actual and desired position 
limits, permitting the desired position limits to be set inside the actual position limits.  The positive 
desired position limit is set at (Ixx13 - Ixx41); the negative desired position limit is set at (Ixx14 + Ixx41).  
This can be important to ensure that the limit deceleration of path moves within lookahead stay on the 
path, and to enable the program to be resumed if desired.  Ixx41 should be set large enough to make sure 
that the actual position during the deceleration from exceeding a desired position limit does not exceed 
the actual position limit. 

The software position limits are disabled automatically during homing search moves, until the homing 
trigger is found.  As soon as the trigger is found, the software limits are re-activated, using the new home 
position as the reference.  The software position limits are always referenced to the motor’s zero position, 
whether established by a homing search move, an absolute position read, or just at power-up/reset.  If the 
programming origin of the axis assigned to the motor is offset, the software position limits are not 
automatically offset with the programming origin. 

Velocity Limits 
Vector Velocity Limit 
Turbo PMAC has a vector velocity limit parameter (Isx98), known as maximum feedrate for each 
coordinate system.  For programs run by this coordinate system, the value of any F (feedrate) command 
in the program is compared to Isx98.  If the value is greater than Isx98, the value of Isx98 is used instead 
as the feedrate command.  Isx98 is expressed in the same user velocity units (axis length units divided by 
Isx90 milliseconds) as the feedrate command itself. 

Motor Velocity Limit 
Turbo PMAC has a programmable velocity limit parameter for each motor (Ixx16), in units of counts per 
millisecond, which has several functions.  First, it serves as the commanded velocity for the motor in 
RAPID-mode moves if the motor’s rapid velocity-select parameter Ixx90 for the motor is set to the 
default value of 1. 

Second, for simple LINEAR-mode moves with move segmentation disabled (Isx13=0), Ixx16 serves as 
the maximum velocity permitted.  If the commanded velocity requested of a motor exceeds the limit for 
the motor, the move is slowed so that the velocity limit is not exceeded.  In a multi-axis programmed 
move, all axes in the coordinate system are slowed proportionally so that no change in path occurs.   

In addition, for LINEAR and CIRCLE-mode moves executed with segmentation enabled (Isx13>0) and 
the special lookahead buffer active, it serves as the maximum velocity for each segment of the motion.  
This can be particularly valuable for non-Cartesian systems programmed with Turbo PMAC’s kinematic 
equations; very high motor velocities can inadvertently be commanded near “singularities.”  The 
lookahead algorithm can detect these problems beforehand, and slow the motion down along the path into 
the problem point, observing the Ixx17 motor acceleration limits. 

Velocities are compared to these limits assuming no feedrate override (% value of 100); if feedrate 
override (a.k.a. time-base control) is used, the velocity limits scale with the override. 
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Acceleration Limits 
Turbo PMAC has two programmable acceleration limits for each motor, one for jogging, homing, and 
RAPID-mode moves (Ixx19), and one for LINEAR and CIRCLE-mode programmed moves (Ixx17).  
Both parameters are in units of counts per (millisecond-squared).  PVT and SPLINE-mode moves do not 
observe either of these limits.   

If the commanded acceleration requested of a motor by the change in velocity and the acceleration time 
parameters exceeds the limit for the motor, the acceleration time is extended so that the acceleration limit 
is not exceeded.  In a multi-axis programmed move, all axes in the coordinate system are slowed 
proportionally so that no change in path occurs.  Accelerations are compared to these limits assuming no 
feedrate override (% value of 100); if feedrate override (a.k.a. time-base control) is used, the acceleration 
limits scale with the square of the override percentage.   

Without the special lookahead buffer enabled, the Ixx17 acceleration limit works only on LINEAR-mode 
moves with segmentation disabled (Isx13=0).  In this mode of operation, the acceleration time can be 
extended only equal to the move time of the incoming move.  If this is not enough of an extension to 
observe the acceleration limit, the limit will be violated. 

The Ixx17 limit works on LINEAR and CIRCLE-mode moves executed with segmentation enabled 
(Isx13>0) and the special lookahead buffer active.  Ensuring that all these moves observe this acceleration 
limit is the most important feature of the special lookahead buffer. 

Command Output Limits 
Turbo PMAC has a programmable output limit (on the command Turbo PMAC sends to the amplifier or 
the internal commutation algorithm) for each axis (Ixx69) that acts as a torque/force limit for current-
mode, sine-wave, or direct-PWM amplifiers, or a speed limit for velocity-mode amplifiers.  If this limit is 
engaged to change what the servo loop commands, Turbo PMAC’s anti-windup protection activates to 
prevent oscillation when coming out of the limiting condition.  In addition, there is a limit on the size of 
the error that the feedback filter is permitted to see (the Ixx67 “position error” limit), which has the effect 
of slowing down too sudden a move in a controlled fashion. 

Integrated Current (I2T) Protection 
Turbo PMAC can be set up to fault a motor if the time-integrated current levels exceed a certain 
threshold.  This can protect the amplifier and/or motor from damage due to overheating.  It can either 
integrate the square of current over time – commonly known as I2T (eye-squared-tee) protection, or 
integrate the absolute value of current over time – usually called |I|T (eye-tee) protection.  I2T protection 
is used when the most thermally sensitive components are resistive in nature (e.g. motor windings or FET 
transistors), because their power dissipation is proportional to the square of current. |I|T protection is used 
when the most thermally sensitive components have a constant voltage drop (e.g. bipolar transistors), 
because their power dissipation is proportional to the magnitude of current.  Because the use of the square 
of current is more common, this protection is generically referred to as “I2T.” 

Some amplifiers have their own internal integrated-current protection, but many others do not.  Turbo 
PMAC’s integrated-current protection can be used in either case.  It can be used with any amplifier for 
which Turbo PMAC computes current commands, whether or not Turbo PMAC also performs the 
commutation and/or digital current loop functions.  If Turbo PMAC is closing the current loop for the 
motor, this function uses the measured current values; otherwise it uses the commanded current values.  
This protection is not suitable for use in systems in which Turbo PMAC outputs a velocity command, 
either as an analog voltage or a pulse frequency. 
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Two I-variables control the functioning of the I2T protection for each motor.  Ixx57 is the continuous 
current limit magnitude.  It has the same units as the Ixx69 instantaneous output limit, bits of a 16-bit 
DAC (even if some other output device is used).  Both have a maximum magnitude of 32,767, which is 
the size of Turbo PMAC’s maximum possible output.  If Ixx57 is a positive value, I2T protection will be 
used; if Ixx57 is a negative number, |I|T protection will be used.  Generally Ixx57 will be 1/4 to 1/2 of the 
magnitude of Ixx69. 

Ixx58 is the integrated current limit parameter.  If Ixx58 is set to 0, this function is disabled.  If Ix58 is 
greater than 0, Turbo PMAC will compare the integrated current value to Ixx58.  When the integrated 
current value exceeds this value, Turbo PMAC will fault this motor as if an amplifier fault had occurred.  
The offending motor is killed; if it was in a coordinate system running a motion program, that motion 
program aborted; other motors are killed according to the setting of bits 21 and 22 of Ixx24. 
Turbo PMAC’s I2T function works according to the following equation: 
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Turbo PMAC’s |I|T function works according to the following equation: 

t
32768

57Ixx
32768

dI

32768
qI

SumSum ∆


























−













+














+=  

where: 

Iq  (quadrature current) is the commanded torque-producing output of the PID filter in units of a 16-
bit DAC; 

Id  (direct current) is the magnetization current command as set by Ixx77.  This is usually zero 
except when Turbo PMAC is doing vector control of induction motors. 

∆t  is the time since the last sample in servo cycles 

If Sum exceeds Ixx58, an integrated-current fault will occur.  When commanded current levels are below 
Ixx57, Sum will decrease, but it will never go below zero. 

PMAC I2T Protection Feature

I2T Fault

2I2I
Normalized

Saturation

Integrator
Charge-Up

Integrator
Discharge

2

32768
Ix57







2Ix57

2

32768
Ix69







2Ix69

20.1232768

time
(servo cycles)

~

~ ~
~

 
Example:  With command output limit Ixx69=32767 (maximum), integrated current limit Ixx57=16384 
(half of maximum), and magnetization current Ixx77=0, the motor hits an obstruction, and the command 
output saturates at 32767.  The integrated-current protection function will calculate during this time: 
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[ ] t75.0Sumt25.02021SumSum ∆∆ +=−++=  

Sum will increase at a rate of 0.75 per servo cycle.  At the default servo cycle update rate of 2.25 kHz, 
Sum will increase at a rate of 2250*0.75=1688 per second.  If you want the motor to trip after 3 seconds 
of this condition, you should set Ixx58 to 1688*3 = 5064. 

When an integrated-current fault occurs on a motor, Turbo PMAC reacts just as for an amplifier fault 
error.  The offending motor is killed and possibly other motors as set by bits 21 and 22 of Ixx24.  Turbo 
PMAC sets the amplifier fault motor status bit.  For an integrated-current fault, Turbo PMAC also sets a 
separate integrated-current fault motor status bit.  Both bits are cleared when the motor is re-enabled. 

Note:  

When Turbo PMAC is not commutating a motor with I2T protection, make sure 
magnetization current parameter Ixx77 is still set to 0.  In this setup, Ixx77 will not 
affect operation, but it will affect integrated-current calculations. 

Amplifier Enable and Fault Lines 
The use of the amplifier-enable (AENAn) output and the amplifier-fault (FAULTn) input lines for each 
motor are important for safe operation.  Without the use of the enable line, disabling the amplifier relies 
on precise zero offsets in Turbo PMAC’s analog output and the amplifier’s analog input. 

Without the use of the fault line, Turbo PMAC may not know when an amplifier has shut down and may 
not take appropriate action. 

Note:   

With the default sinking drivers for the amplifier enable signals, using the low-true 
enable polarity (low voltage – conducting – is enable; high voltage – non-
conducting – is disabled) provides better failsafe protection against loss of power-
supply.  If either the +5V supply for Turbo PMAC’s computational section, or the 
+15V analog supply is lost, the amplifier will be disabled automatically, because 
the output transistor will go into its non-conducting state.  If you desire this failsafe 
protection but cannot connect a signal of this polarity directly to the amplifier, you 
must use intermediate circuitry to change the signal format.  With the alternate 
sourcing drivers, the high-true enable polarity provides better failsafe protection. 

Encoder-Loss Detection 
Most Turbo PMAC controllers have encoder-loss detection circuitry for each encoder input.  Designed for 
use with encoders with differential line-driver outputs, the circuitry monitors each input pair with an 
exclusive-or (XOR) gate.  If the encoder is working properly and connected to the Turbo PMAC, the two 
inputs of the pair should be in opposite logical states – one high and one low – yielding a true output from 
the XOR gate.   

If the input circuits for the encoder have been configured so that both lines of the pair have pull-up 
resistors (this is not the default – either an E-point jumper must be changed or a SIP resistor pack reversed 
in its socket), then an encoder or cabling failure will cause both inputs into the same logical state, yielding 
a false output from the XOR gate, and setting an error status bit.  Note that in this setting, a single-ended 
encoder cannot be used on the channel. 
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The following table shows the resistor pack for each channel for Turbo PMACs and accessories with this 
feature.  To enable the encoder-loss feature, pin 1 of the resistor pack (marked by a dot on the package) 
should be placed at the opposite end of the socket from pin 1 of the socket (marked by a white-ink square 
on the circuit board).  For the 4-channel accessories (Acc-24E2x and 24C2x), the first four channels 
shown are for accessories addressed as an even-numbered Servo IC (2, 4, 6, or 8); the second four 
channels shown are for accessories addressed as an odd-numbered Servo IC (3, 5, 7, or 9). 

Resistor Packs for Encoder Loss Circuitry 

Device Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5/1 Ch. 6/2 Ch. 7/3 Ch. 8/4 
PMAC-PCI RP60 RP62 RP66 RP68 RP97 RP99 RP103 RP105 
PMAC2-PCI RP43 RP48 RP44 RP49 RP104 RP109 RP105 RP110 
QMAC RP55 RP57 RP66 RP68 - - - - 
Acc-24P2 RP74 RP75 RP85 RP86 RP139 RP140 RP150 RP151 
Acc-24E2 RP22 RP24 RP22* RP24* RP22 RP24 RP22* RP24* 
Acc-24E2A RP22 RP24 RP22* RP24* RP22 RP24 RP22* RP24* 
Acc-24E2S RP19 RP21 RP27 RP29 RP19 RP21 RP27 RP29 
Acc-24C2A RP33 RP34 RP63 RP64 RP33 RP34 RP63 RP64 
* On the daughter board for the accessory module 

The following table shows the address of the encoder-loss status bit for each channel of each device.  The 
address is always for a Y-register.  The x shown in some of the addresses represents the hex digit 8, 9, A, 
or B, the same as the base address of the card itself.  The bit value is 1 for a valid encoder signal; 0 to 
signify encoder loss. 

Device Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5/1 Ch. 6/2 Ch. 7/3 Ch. 8/4 
PMAC-PCI $70801,1 $70801,2 $70801,3 $70801,4 $70801,5 $70801,6 $70801,6 $70801,7 
PMAC2-PCI $78403,8 $78403,9 $78403,10 $78403,11 $78403,8 $78403,9 $78403,10 $78403,11
QMAC $78403,8 $78403,9 $78403,10 $78403,11 - - - - 
Acc-24P2 $7xF00,0 $7xF00,1 $7xF00,2 $7xF00,3 $7xF00,4 $7xF00,5 $7xF00,6 $7xF00,7 
Acc-24E2 $7xF08,5 $7xF09,5 $7xF0A,5 $7xF0B,5 $7xF0C,5 $7xF0D,5 $7xF0E,5 $7xF0F,5 
Acc-24E2A $7xF08,5 $7xF09,5 $7xF0A,5 $7xF0B,5 $7xF0C,5 $7xF0D,5 $7xF0E,5 $7xF0F,5 
Acc-24E2S $7xF08,5 $7xF09,5 $7xF0A,5 $7xF0B,5 $7xF0C,5 $7xF0D,5 $7xF0E,5 $7xF0F,5 
Acc-24C2A $7xF08,5 $7xF09,5 $7xF0A,5 $7xF0B,5 $7xF0C,5 $7xF0D,5 $7xF0E,5 $7xF0F,5 

As of this writing, there is no automatic action taken on detection of encoder loss.  Users who want to 
take action on detecting encoder loss should write a PLC program to look for a change in the encoder loss 
bit and take the appropriate action.  Generally, the only appropriate response is to kill (open loop, zero 
output, disabled) the motor with lost encoder feedback; other motors may be killed or aborted as well. 

The following example shows how all motors can be killed on detection of the loss of signal for Encoder 
1, used as feedback for Motor 1, on a Turbo PMAC. 
#define Mtr1OpenLoop  M138 
#define Enc1LossIn  M180 
#define Mtr1EncLossStatus P180 
#define Lost   0 ; Low-true fault 
#define OK    1 
Mtr1OpenLoop->Y:$0000B0,18,1 ; Standard definition 
Enc1LossIn->Y:$078403,8,1  ; CTRL0 input 
OPEN PLC 18 CLEAR 
; Logic to disable and set fault status 
IF (Mtr1OpenLoop=0 AND Enc1LossIn=Lost) ; Closed loop, no enc 
 CMD^K 
 Mtr1EncLossStatus=1 
ENDIF 
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; Logic to clear fault status 
IF (Mtr1OpenLoop=0 AND Enc1LossIn=OK AND Mtr1EncLossStatus=0) 
 Mtr1EncLossStatus=0 
ENDIF 
CLOSE 

Refer to the individual hardware reference manuals for more details of the implementation of this 
function. 

User-Written Safety Algorithms 
You can write your own safety-checking algorithms easily in a PLC program.  These algorithms are best 
implemented in a compiled background PLC program, which scans at the same rate as Turbo PMAC’s 
own built-in safety checks – once per background cycle.  The above program of monitoring encoder loss 
is a good example of this type of program. 

Watchdog Timer 
Turbo PMAC has an on-board watchdog timer.  This subsystem provides a fail-safe shutdown to guard 
against software and hardware malfunction.  To keep it from tripping the hardware circuit for the 
watchdog timer requires that two basic conditions be met.  First, it must see a DC voltage greater than 
approximately 4.75V.  If the supply voltage is below this value, the circuit’s relay will trip and the card 
will shut down.  This prevents corruption of registers due to insufficient voltage.   

The second necessary condition is that the timer must see a square wave input (provided by the Turbo 
PMAC software) of a frequency greater than approximately 25 Hz.  In the foreground, the servo-interrupt 
routine decrements a counter (as long as the counter is greater than zero), causing the least significant bit of 
the timer to toggle.  This bit is fed to the timer itself.  At the end of each background cycle, the CPU resets 
the counter value to a maximum value set by variable I40 (or to 4096 if I40 is set to the default of 0). 

If the card, for whatever reason, due either to hardware or software problems, cannot set and clear this bit 
repeatedly at 25 Hz or greater, the timer will trip and the Turbo PMAC system will shut down. 

Actions on Watchdog Timer Trip 
When the timer trips due to either under-voltage or under-frequency, the system is latched into a reset 
state, with a red LED indicating watchdog failure.  The processor stops operating and will not 
communicate.  All Servo, MACRO, and I/O ICs are forced into their reset states, which force discrete 
outputs off, and proportional outputs (DAC, PWM, PFM) to zero-level. 

Turbo PMAC systems have discrete outputs indicating the state of the watchdog timer.  On Turbo PMAC 
boards, there is a solid-state open-collector output called “FEFCO/” that is turned on when the timer trips.  
In Turbo PMAC2 systems there is a hard-contact relay with both normally open and normally closed 
contacts.  In a system, these outputs should be used to drop power to the amplifiers and other key circuitry 
if the card fails. 

Once the watchdog timer has tripped, power to the Turbo PMAC must be cycled off and on, or the INIT/ 
hardware reset line must be taken low, then high, to restore normal functioning. 

Diagnosing Cause of Watchdog Timer Trip 
Because the watchdog timer is designed to trip on a variety of hardware and software failures, and the trip 
makes it impossible to query the card, it can be difficult to determine the cause of the trip.  The following 
procedure is recommended to figure out the cause: 
1. Reset the Turbo PMAC normally (with the re-initialization jumper OFF).  If it does not trip again 

immediately, there is an intermittent software or hardware problem.  Check for the following: 
• Software events that overload the processor at times (e.g. additional servo-interrupt tasks, 

intensive lookahead) or possible erroneous instruction (look for firmware or program checksum).  
Review the Evaluating the Turbo PMAC’s Computational Load section of this manual. 
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• 5V power-supply disturbances 
• Loose connections 

2. If there is an immediate watchdog timer trip in Step 1, power up with the re-initialization jumper ON.  
If it does not trip now, there is a problem in the servo/phase task loading for the frequency, or an 
immediate software problem on the board.  Check for the following: 
• Phase and servo clock frequencies vs. the number of motors used by Turbo PMAC.  These 

frequencies may need to be reduced. 
• A PLC 0 or PLCC 0 program running immediately on power-up (I5 saved at 1 or 3) and taking 

too much time. 
• User-written servo or phase program not returning properly. 

3. If there is an immediate watchdog timer trip in Step 2, check for hardware issues: 
• Correct settings of clock-frequency jumpers (Turbo PMAC) 
• Jumpers set for external servo and phase clock, but none provided 
• Disconnect any accessories and repeat to see if they are causing the problem 
• Check for adequate 5V power supply levels (check at the Turbo PMAC CPU, not at the supply) 
• Inspect for hardware damage 

4. If nothing is found in Step 3, power up with the firmware reload (bootstrap) jumper ON.  If there is 
no watchdog timer trip here and you can do basic communications (??? should cause a BOOTSTRAP 
ROM reply), there is a problem with your operational firmware and it must be reloaded. 

Hardware Stop Command Inputs 
Turbo PMAC controllers have hardware inputs that can stop a move or a program with user-set 
decelerations.  The Abort input stops motion of all axes in the selected coordinate systems, as determined 
by the motor/system select inputs, starting immediately, and with each motor decelerating at a rate set by 
Ix15.  The Hold input performs the same function, except that the axes are decelerated at rates such that 
the desired multi-axis path is maintained during deceleration.   

These dedicated inputs are on Turbo PMAC’s control panel connector (JPAN; J2).  Which coordinate 
system they act on is determined by the binary number produced by the four low-true input lines FPD0/ 
(LSBit), FPD1/, FPD2/, and FPD3/ (MSBit).  A value of zero (all high) disables the functions; values of 1 
through 8 select the numbered coordinate system. 

Host-Generated Stop Commands 
These functions and several others can also be performed from the host with one- or two-character 
commands.  For instance, <CTRL-A> performs the same function as the Abort input with all coordinate 
systems selected, and A aborts the software-addressed coordinate system.  <CTRL-O> holds all 
coordinate systems, and H holds the software-addressed coordinate system.  In addition <CTRL-Q> stops 
all programs at the end of the upcoming move, and Q stops the program of the software-addressed 
coordinate system.  <CTRL-K> disables all motors immediately and K disables the software-addressed 
motor (if the motor is in a coordinate system that is running a motion program, an Abort command should 
be issued before the K command. 

Any of these commands may be issued from within a Turbo PMAC program, using the 
COMMAND"{command}" or the COMMAND^{letter} syntax.  However, a motor-kill (K) command 
for a motor in the coordinate system will be rejected automatically when issued from within a motion 
program running in that coordinate system. 
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The following table summarizes the different commands that can be used to stop motion and their 
attributes: 

Command Scope Begin 
Immed?

Stop on 
Path? 

Stop at 
Prog Pt? 

Decel 
Rate 

Notes 

J/ Motor Yes –- No Ixx19-
21 

 

A C.S. Yes No No Ixx15 No easy restart 
<CTRL-A> Global Yes No No Ixx15 No easy restart 

Q C.S. No Yes Yes TA, TS Finishes calculated moves 
<CTRL-Q> Global No Yes Yes TA, TS Finishes calculated moves 

/ C.S. No Yes Yes TA, TS End of currently executing 
move*, undoes blending 

H C.S. Yes Yes No Isx95 Similar to %0 
<CTRL-O> Global Yes Yes No Isx95 Similar to %0 

\ C.S. Yes Yes No Ixx17/ 
Isx95 

Acts as H command if 
outside of lookahead 

K Motor Yes No No — Must stop program first 
<CTRL-K> Global Yes No No — Must stop program first 

Program Checksums 
Firmware Checksum 
Turbo PMAC continually computes the checksum of its internal program (firmware) as a background 
task.   Each time it has computed the checksum, it compares this value to a reference register in memory 
(obtainable with the CHECKSUM command) that has been manually entered with the correct value.  Turbo 
PMACs shipped from the factory are preloaded with the correct reference value for that firmware version 
at the factory.   

If Turbo PMAC detects a mismatch between its calculated checksum and the reference checksum, it sets 
global status bits (bits 12 and 13 of X:$000006 – accessible with the ??? command) and stops 
performing any checksum operations.  This leaves the calculated value frozen in the running checksum 
register X:$001080.  Turbo PMAC does take any other action in the event of a firmware checksum error; 
it is up to the host or a Turbo PMAC PLC program to decide what action to take. 

When a Turbo PMAC is upgraded to new firmware by replacement of the PROM IC in standard CPU 
sections or downloading of new firmware into the flash EEPROM IC in Option CPU sections, the 
reference checksum value will be updated automatically for the new firmware.   

User-Program Checksum 
Turbo PMAC continually computes the checksum of the fixed user program buffers as a background task.  
Each time it has computed the checksum, it compares this value to the checksum value that was computed 
the last time one of these buffers was closed, stored in X:$001090. 

If Turbo PMAC detects a mismatch between these two checksums, it sets a global status bit (bit 13 of 
X:$000006 – accessible with ???) and stops performing any program or firmware checksum operations 
(communications checksum is independent), freezing the running checksum value in X:$001080.  It does 
not shut down operation automatically.  It is up to the host or a Turbo PMAC PLC program to decide 
what action to take if there is a checksum error. 
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Communications Data Integrity 
Turbo PMAC provides a variety of techniques for ensuring valid transmission of data, including serial 
parity checking, framing error checking, serial full-duplex communications, and bidirectional checksum 
computation on both serial and bus communications.  For more details on how these techniques work, 
refer to the Writing Host Communications Programs section of this manual. 
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EXECUTING INDIVIDUAL MOTOR MOVES 
Once the motor is defined and basically working with reasonable gains, command some basic moves for 
the motor.  Jogging commands make simple moves for the motor, independent of other motors, without 
writing a motion program.  Use these moves for development, diagnostics, and debugging, but they may 
also be used in an actual application. 

Another type of simple motor move is the homing search move.  This is basically a jog-until-trigger type 
of move, where Turbo PMAC commands the motor to move until it sees a pre-defined trigger.  It then 
brings the motor to a stop and returns to the trigger position (possibly with an offset), and sets the motor 
position to zero. 

A homing search move should be performed when it is not known where home position is.  If there is an 
incremental position sensor, and it is not known the location on power-up; therefore, typically the homing 
search move is the first move done in this type of system.  However, if the home position known, but just 
wish to return to that position, there is no need to do a homing search move; simply command a move to 
the zero position (e.g. J=0 or X0) 

The trajectories for jogging and homing moves are the same as for rapid-mode program moves.  
However, these moves are specified directly to the motor, specified by number, rather than the axis, 
specified by letter.  The moves are described in unscaled units (all based on counts and milliseconds). 

Jogging Move Control 
The velocity and acceleration for jogging moves is controlled by I-variables for the motor jogged.  The 
destination is controlled by jog commands.  These are described below. 

Jog Acceleration 
Variable Ixx20 for Motor xx specifies the acceleration time for jogging, homing, and programmed 
RAPID-mode moves, in milliseconds.  Ixx21 specifies the time in each half of the S-curve acceleration 
profile for these moves, also in milliseconds.  If Ixx20 is less than two times Ixx21, the acceleration time 
used will be twice Ixx21.   

The acceleration rate limit for jog/home/RAPID moves is set by Ixx19 (in counts/msec2).  If Ixx20 and 
Ixx21 are so small that Ixx19 would be exceeded, the acceleration time is extended so that Ixx19 is not 
exceeded.  To specify the acceleration by rate instead of time, set the acceleration time parameters small 
enough that the limiting acceleration rate parameter is always used. 

Note: 

To specify the acceleration by rate, do not set both acceleration time parameters 
Ixx20 and Ixx21 to zero.  This will cause a division-by-zero error in the move 
calculations that could cause erratic movement.  The minimum acceleration time 
setting should be Ixx20=1 and Ixx21=0. 

Jog Speed 
Jogging speed is specified by Ixx22, which is a magnitude of the velocity, in counts per millisecond.  
Direction is specified by the jog command itself.   
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Jog Commands 
The commands to jog a motor are on-line (immediate) commands that are motor-specific; they act on the 
currently addressed motor. 

Note: 

A jog command to a motor will be rejected if the motor is in a coordinate system 
that is currently executing a motion program, even if the motion program is not 
commanding that motor to move.  PMAC will report ERR001 if I6 is set to 1 or 3. 

Indefinite Jog Commands 
J+ commands an indefinite positive jog for the addressed motor; J- commands an indefinite negative 
jog; J/ commands an end to the jog, leaving the motor in position control after the deceleration.  It is 
possible for the J/ command to leave the commanded position at a fractional count, which can cause 
dithering between the adjacent integer count values.  If this is a problem, the J! command can be used to 
force the commanded position to the nearest integer count value.  (Alternatively, ½-count of deadband 
created with Ixx64 and Ixx65 can prevent dithering at fractional count values. 

Jogging to a Specified Position 
Jog commands to a specified position, or of a specified distance, can be given.  J= commands a jog to the 
last pre-jog position; J={constant} commands a jog to the (unscaled) position specified in the 
command; J=={constant} commands a jog to the (unscaled) position specified in the command and 
makes that position the pre-jog position; J^{constant} commands a jog of the specified distance from 
the actual position at the time of the command (J^0 can be useful to take up remaining following error); 
J:{constant} commands a jog of the specified distance from the commanded position at the time of 
the command. 

Jog Moves Specified by a Variable 
Jogging moves to a position or of a distance specified by a variable are possible.  Each motor has a 
specific register (L:$0000D7 for Motor 1, L:$000157 for Motor 2, etc., suggested M-variables Mxx72) 
that holds the position or distance to move on the next variable jog command.  This register contains a 
floating-point value scaled in encoder counts.  It should be accessed with an L-format (floating-point) M-
variable.  The J=* command causes PMAC to use this value as a destination position.  The J^* 
command causes PMAC to use the value as a distance from the actual position at the time of the 
command.  The J:* command causes PMAC to use the value as a distance from the commanded position 
at the time of the command. 

Issuing Commands During Jog Moves 
It is permissible to issue a jog command to a motor that is already jogging.  On receipt of the new 
command, Turbo PMAC will break into the already planned trajectory and create a smooth blend to the 
trajectory of the new command as determined by the present acceleration and velocity commands.  The 
existing trajectory is extended out for Ixx92 milliseconds (default 10 msec) after receipt of the new 
command; during this time the new trajectory is calculated.  The calculations for the new move must be 
able to complete within Ixx92 msec. 

Parameters Used by Jog Commands 
Each time one of these commands is given, the acceleration and velocity parameters at that time control 
the response to the command.  To change speed or acceleration parameters of an active jog move, change 
the appropriate parameters, and then issue another jog command. 
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Triggered Motor Moves 
Triggered moves in Turbo PMAC are double moves, with a pre-trigger portion and a post-trigger portion.  
Upon the trigger event, Turbo PMAC will break into the pre-trigger move and calculate a post-trigger 
move ending at a pre-specified distance from the trigger point. 

Types of Triggered Moves 
There are three types of triggered motor moves: 

1. Homing search moves (on-line or motion-program) 
2. On-line jog-until-trigger moves 
3. Motion-program RAPID move-until trigger 

These moves all work basically in the same manner, just in different contexts.  Triggering and position-
capture functions are the same in all three types of moves.  Each will be described in detail below. 

Types of Trigger Conditions 
There are fundamentally two types of triggers for these triggered moves: input triggers and following-
error triggers.  Bit 1 of motor variable Ixx97 determines which of these is used for the motor’s triggered 
moves. 

Input Triggering 
If bit 1 of Ixx97 is 0 (Ixx97 = 0 or 1), the trigger condition for the motor is an input trigger.  In this, the 
default case, the trigger is caused by one or two of the inputs mapped into the register whose address is 
specified by Ixx25.  Usually, Ixx25 contains the address of a flag register in a Servo IC, or a register in 
memory containing the contents of flag data copied in from the MACRO ring.  For the super-accurate 
hardware-capture (see below), Ixx25 must specify the flags of the same hardware channel as the encoder 
used for position-loop feedback.  If bit 18 of Ixx24 is set to 1, Turbo PMAC expects the capture trigger 
and position to come from over the MACRO ring; if bit 18 of Ixx24 is 0, Turbo PMAC expects these 
from hardware channels directly connected to the controller’s CPU. 

Trigger Signal(s) and Edge(s) 
Two setup variables for the Servo IC channel determine which edges of which signals will cause the 
trigger.  I7mn2 for Servo IC m Channel n (node-specific variable MI912 on a MACRO Station) specifies 
whether the index channel is used or not, whether an input flag is used or not, and which edges of the 
index and/or flag will be cause the trigger.  If both index and flag are selected, the two signals are 
combined with Boolean hardware logic inside the IC to create the trigger. 

If I7mn2 specifies the use of a flag, I7mn3 (node-specific variable MI913 on a MACRO Station) selects 
which of the four input flags for the channel is used.  For a PMAC-style Servo IC, the choices are HMFL, 
+LIM, -LIM, and FAULT; for a PMAC2-style Servo IC, the choices are HOME, MLIM, PLIM, and 
USER. 

Edge vs. Level Triggering 
There is a subtle difference between PMAC-style and PMAC2-style Servo ICs that lead to different 
modes of failure if the trigger move starts with the inputs already in the trigger state (there is no 
difference otherwise).  PMAC-style Servo ICs are edge triggered, requiring a transition (edge) from non-
trigger state to trigger state to generate the actual trigger.  With these ICs, there will be no trigger 
generated in this case, and the pre-trigger move will continue, perhaps indefinitely.   

However, PMAC2-style Servo ICs are level triggered only requiring that the IC see the input(s) in the 
trigger state to generate the actual trigger.  With these ICs, a trigger will be generated immediately in this 
case, and there will be little or no motion at all. 
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Merits of Dual Trigger 
In homing-search moves, it is common practice to use a combination of a homing switch and the index 
channel as the home trigger condition.  The index channel of an encoder, while precise and repeatable, is 
not unique in most applications, because the motor can travel more than one revolution.  The homing 
switch, while unique, is typically not extremely precise or repeatable.  By using a logical combination of 
the two, you can get uniqueness from the switch, and precision and repeatability from the index channel.  
In this scheme, the homing switch is used to select which index channel pulse is used as the home trigger. 

Although the homing switch does not need to be placed extremely accurately in this type of application, it 
is important that its triggering edge remain safely between the same two index channel pulses.  Also, the 
homing switch pulse must be wide enough to always contain at least one index channel pulse. 

Following-Error Triggering 
Sometimes it is desired that a trigger occur when an obstruction such as a hard stop is encountered, as 
when using an end stop for the homing reference.  To support this type of functionality, Turbo PMAC 
permits triggering on a warning following error condition instead of an input flag.  This is sometimes 
called “torque-mode” triggering, because it effectively triggers on a torque level (except for velocity-
mode amplifiers) because output torque command is proportional to following error.  It is also called a 
“torque-limited” mode, because it provides an easy way to create moves that are limited in torque, and 
that stop when the torque limit is reached (as in torque-limited screw driving). 

To enable this torque-mode triggering for Motor xx, set Ixx97 to 3, specifying both following-error 
trigger and software capture (there is no hardware signal to create a hardware capture).  In this mode, the 
trigger for a move-until-trigger is a true state of the warning following-error status bit for the motor.  
Variable Ixx12 sets the warning following-error magnitude for the motor, with units of 1/16 of a count.  
When Turbo PMAC detects that the magnitude of the following error has exceeded this value, it will read 
the present feedback position as the trigger position, then move relative to this position.  

When using torque-mode triggering, it is a good idea to set the integral gain term Ixx33 to 0 to prevent a 
large “charge-up” of the integrator when it hits the hard stop.  It may also be desirable to set the Ixx69 
output limit lower to limit the possible torque directly when the obstruction is reached. 

Note that if the warning following error status bit is true at the start of the move, the trigger will occur 
almost immediately. 

Capturing the Trigger Position 
Because the post-trigger move ends at a commanded position expressed relative to the position at the time 
of the trigger, it is necessary for Turbo PMAC to “capture” the position at the time of the trigger.  
Fundamentally, there are two ways of doing this: hardware capture and software capture. 

Hardware Capture 
The Servo ICs of a Turbo PMAC have dedicated registers to latch the encoder counter instantly upon 
receipt of the pre-specified input trigger state.  The latching action occurs entirely in the IC hardware, 
requiring no software action, so the captured position is accurate to the exact count regardless of motor 
speed.  This means that there is no need to slow down the move to get an accurate capture. 

Hardware capture is selected for Motor xx trigger moves by setting Ixx97 to the default value of 0, 
specifying both hardware capture and input triggering.  If hardware capture is selected, the position-loop 
feedback as selected by Ixx03 must come through the encoder counter of a Servo IC.  It must use the 
same hardware channel as the flag set selected by Ixx25.  This means that if you are using dual feedback 
on the motor, the flag set specified by Ixx25 should be the same channel as your position-loop feedback, 
not your velocity-loop feedback. 
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Hardware Capture with Acc-51 Interpolators 
To utilize the hardware-capture feature on triggered moves using sinusoidal encoder feedback through an 
Acc-51 high-resolution interpolator, several additional firmware features (introduced in firmware revision 
V1.940) must be activated.  Because the capture flags must be of the same Servo IC and channel as the 
position loop feedback, Ixx25 must be set to the address of the channel on the interpolator board.  
However, the interpolator board does not provide amplifier-enable and fault flags, or overtravel limit 
flags, so variables Ixx42 and Ixx43, respectively, are used to specify different addresses for these flags 
(probably on the axis card). 

Next, because the Acc-51 produces 10 bits of fractional count data for each increment of the hardware 
counter in the Servo IC, instead of the usual 5 bits, bit 11 of Ixx24 must be set to 1 for the captured 
hardware count value to be scaled properly when converted to motor position. 

Finally, starting with Revision D of the PMAC2-style “DSPGATE1” Servo IC (introduced early in 2002) 
used on the Acc-51E and Acc-51C interpolator boards, hardware capture with sub-count resolution 
became possible.  Note that this capability is not required for hardware capture using the interpolator 
board, and probably should not be used for homing.  To activate this feature for the channel in the Servo 
IC, variable I7mn9 must be set to 1.  To use this fractional data in a move-until-trigger on Motor xx, bit 
12 of Ixx24 must be set to 1. 

Software Capture 
If use of hardware capture for trigger position is not possible for some reason, software capture is 
possible.  Software capture is specified for Motor xx by setting Ixx97 to 1 (with input trigger) or 3 (error 
trigger).  If software capture has been selected, Turbo PMAC software uses the most recent servo cycle’s 
motor actual position as the trigger position, regardless of the source, when the software notices that the 
trigger has occurred. 

When software capture is used, there is a potential delay between the actual trigger and Turbo PMAC’s 
position capture of one background cycle, which could be several milliseconds.  This delay can lead to 
inaccuracies in the captured position; the speed of the motor at the time of the trigger must be kept low 
enough to achieve an accurate enough capture.  For homing, a two-step procedure can be used: a fast, 
inaccurate capture followed by a slow, accurate capture. 

Post-Trigger Move 
On detection of the trigger, Turbo PMAC will break into the pre-trigger move trajectory and create a 
smooth blend to the trajectory of the post-trigger move as determined by the present acceleration and 
velocity commands.  The post-trigger move ends at a pre-determined distance from the captured position 
– the method for specifying this distance depends on the type of move (see in each section below).  The 
existing trajectory is extended out for Ixx92 milliseconds (default 10 msec) after detection of the trigger; 
during this time the new trajectory is calculated.  The calculations for the post-trigger move must be able 
to complete within Ixx92 msec. 

The blending from the pre-trigger to the post-trigger move, and from the post-trigger move to a stop, will 
use the acceleration parameters Ixx19, Ixx20, and Ixx21 in force when the trigger is found.  The 
magnitude of the velocity of the post-trigger move will be the same as the pre-trigger move, if the post-
trigger move is long enough to reach that velocity.  Usually, the post-trigger move will involve a reversal 
from the pre-trigger move, but this is not necessarily the case. 

Homing Search Moves 
The purpose of a homing search move is to establish an absolute position reference when an incremental 
position feedback sensor is used.  The move until trigger construct is ideal for finding the sensor that 
establishes the home position and automatically returning to this position. 
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Homing Acceleration 
The acceleration for homing search moves is controlled by the same parameters – Ixx19 (maximum 
acceleration), Ixx20 (acceleration time), and Ixx21 (S-curve time) – as for jogging moves.  These are 
described in the above section on jogging moves. 

Homing Speed 
Ixx23 specifies the speed and direction of the homing-search move.  If Ixx23 is greater than zero, the pre-
trigger homing-search move will be in positive direction.  If it is less than zero, the pre-trigger move will 
be in the negative direction.  The magnitude of Ixx23 (expressed in counts/msec) controls the speed of 
both the pre-trigger and post-trigger moves (should they be long enough to get to this speed). 

Home Trigger Condition 
The trigger condition for homing-search moves, as for other triggered moves, is specified by Ixx97, 
Ixx24, and Ixx25, as described above in detail.  If no trigger is found, the pre-trigger move will continue 
indefinitely, or until stopped by an error condition such as hitting overtravel limits. 

Post-Trigger Move 
Variable Ixx26 specifies the (signed) distance from the trigger-captured position to the end of the post-
trigger move.  The units of Ixx26 are 1/16 count.  The endpoint of the commanded post-trigger move is 
the new motor position zero (the motor’s “home” position).  The change of the motor’s reported position 
reference occurs at the beginning of the post-trigger move.  As soon as this is done, reported positions are 
referenced to this new zero position (plus or minus any axis offset in the axis definition statement – if the 
axis definition is #1->10000X+3000, the home position will be reported as 3000 counts).  Also at this 
point, the motor’s “home search in progress” status bit is cleared, and the “home complete” status bit is 
set. 

If the post-trigger move fails with an error condition, it is not necessary to re-home the motor, as the 
home position is already known.  A command such as J=0 can move the motor to the home position once 
the source of the problem has been cleared up. 

If software overtravel limits are used (Ixx13, Ixx14 not equal to zero), they are re-enabled at this time 
after having been automatically disabled during the search for the trigger.  The trajectory to this new zero 
position is then calculated, including deceleration and reversal if necessary.  Note that if a software limit 
is too close to zero, the motor may not be able to stop and reverse before it hits the limit.  In normal 
termination, the motor will stop under position control with its commanded position equal to the home 
position.  If there is a following error, the actual position will be different by the amount of the following 
error. 

Failure to Find Trigger 
The pre-trigger move of a homing search will continue indefinitely if it fails to find the trigger condition it 
is looking for.  Typically, it will be stopped by an overtravel position limit switch or fatal following error 
limit at the end of travel in this case.  If you want a programmed limit to the length of the pre-trigger 
move, you should use an incremental jog-until-trigger command or programmed move-until-trigger, with 
the first value specifying the distance to move in the absence of a trigger, and the second the distance 
from the trigger to the end of the post-trigger move (replacing Ixx26).  Once the post-trigger move is 
finished, a HOMEZ command (see below) can be used to set this position to be the motor zero position. 
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Home Command 
The homing search move can be executed either through an on-line command (which can be given from a 
PLC program using the COMMAND"" syntax) or a motion program statement. 

On-Line Command 
A homing search move can be initiated with the on-line motor-specific command HOME (short form HM), 
for example #1HM.  This is simply a command to start the homing search; Turbo PMAC provides no 
automatic indication that the move is completed, unless set up to recognize the in-position (IPOS) 
interrupt. 

Monitoring for Finish: If monitoring the motor from the host or from a PLC program to see if it has 
finished the homing move, it is best to look at the home complete and desired velocity zero motor status 
bits, accessed either with the ? command or with M-variables.  The home complete bit is set to zero on 
power-up/reset; it is also set to zero at the beginning of a homing search move, even if a previous homing 
search move was completed successfully.  It is set to one as soon as the trigger is found in a homing 
search move, before the motor has come to a stop.   

Note: 

The home search in progress bit is the inverse of the home complete bit during the 
move: it is 1 until the trigger is found, then 0 immediately after.  Therefore the 
monitoring should also look for the desired velocity zero status bit to become 1, 
which will indicate the end of the post-trigger move. 

Monitoring for Errors: A robust monitoring algorithm will also look for the possibility that the homing 
search move could end in an error condition.  Often this is just part of the general error monitoring that is 
done at all times, looking for overtravel limits, fatal following errors, and amplifier faults.  If an error 
does occur during the homing move, it is important to distinguish between one that occurs before the 
trigger has been found, and one that occurs after.  If the error occurs after, Turbo PMAC knows where the 
home position is, and the homing search does not need to be repeated.  Once the error cause has been 
fixed, the motor can simply be moved to the home position with a command such as J=0. 

Buffered Motion-Program Command 
The homing search move also can be commanded from within a motion program with the HOMEn 
command, where n is the motor number.  Note that this command specifies a motor; unlike other motion 
program commands that specify an axis move.  In a motion program, Turbo PMAC’s automatic program 
sequencing routines monitor for the end of the move.  When the move is successfully completed, program 
execution continues with the next command. 
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Multiple homing moves can be started together by specifying a list or range of motor numbers with the 
command (e.g. HOME1,3 or HOME2..6).  Further program execution will wait for all of these motors to 
finish their homing moves.  Separate homing commands, even on the same line (e.g. HOME1 HOME2) 
will be executed in sequence, with the first finishing before the second starts.  It is not possible to execute 
partially overlapping homing moves from a single motion program. 

Note: 

Note carefully the difference in syntax between the on-line command and the 
buffered command.  The on-line command is simply HOME or HM, and it acts on 
the currently addressed motor, so the motor number must be specified in front of 
the command (e.g. #1HM).  In the buffered command, the motor number is part of 
the command, following immediately after HOME or HM letters (e.g. HM1). 

Homing from a PLC Program 
Turbo PMAC PLC programs can command homing search moves by giving on-line commands with the 
COMMAND"" statement (e.g. COMMAND"#1HM").  These commands simply start the homing search 
move; code must be written to monitor for finishing if that is desired.  The motor number must be 
specified in the specific command string, or with the ADDRESS#n statement; without this statement, 
motor addressing is not modal within PLC programs. 

Motion vs. PLC Program Homing 
The following table summarizes the differences between homing using motion programs and PLC 
programs. 

Motion Programs PLC Programs 
Program execution point stays on the line 
containing the Home command until the 
homing move is finished. 

The PLC does not automatically monitor 
for the start and end of the homing move. 

Home command can be combined with 
programmed axis moves. 

Axis motion can only be performed 
through Jog commands. . 

The C.S. must be ready to run a motion 
program. 

The C.S. does not need to be ready to run 
a motion program. 

Can only home motors defined in the C.S. 
running the program. 

Can home any motor not defined in a C.S. 
presently running a program. 

Motors can be homed simultaneously, one 
after another, or any combination of the 
two.  All motors started together must 
finish before next action can start. 

Motors can be homed in any order.  This 
includes starting one motor in the middle 
of another motor's home move. 

The motion program must be started by an 
on-line command, a PLC program, or 
another motion program. 

The PLC can be started by an on-line 
command, a PLC program, another 
motion program, or automatically at 
power-up or reset. 

Zero-Move Homing 
To declare the current position the home position without commanding any movement, use the HOMEZ 
(on-line) or HOMEZn (motion program) command.  These are like the HOME command, except that they 
immediately take the current commanded position as the home position.  The Ixx26 offset is not used 
with the HOMEZ command.  This no-move homing is useful both for early development, before the true 
homing procedure is developed, and for specialized homing routines not supported by Turbo PMAC’s 
automatic homing procedures. 
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Note:  

If there is a following error when the HOMEZ command is given, the reported 
actual position after the HOMEZ command will not be exactly zero; it will be equal 
to the negative of the following error. 

Homing Into a Limit Switch 
It is possible to use a limit switch as a home switch.  However, first disable the limit function of the limit 
switch for the move to finish normally; if this is not done, the limit function will abort the homing search 
move.  Even so, the home position has been set; a J=0 command can then be used to move the motor to 
the home position. 

Note:  

On PMAC-style servo channels, the polarity of the limit switches is the opposite of 
what many people would expect.  The -LIMn input should be connected to the 
limit switch at the positive end of travel; the +LIMn input should be connected to 
the limit switch at the negative end of travel. 

To disable the limit function of the switch, set bit 17 of variable Ixx24 (bit value $20000) for the motor to 
1.  It is a good idea to use the home offset parameter Ixx26 to bring the home position out of the limit 
switch, so the limits can be re-enabled immediately after the homing search move, without being in the 
limit. 

The following examples show two quick routines to do this type of homing.  One uses a motion program 
and the other a PLC program.  The same function could also be done with on-line commands. 

;*********** Motion Program Set-up Variables (to be saved) ************* 
CLOSE 
I123=-10   ; Home speed 10 cts/msec negative 
I124=$000000  ; PMAC-style flags, normal mode 
I125=$78000   ; Use Servo IC 0 Channel 1 flags for Motor 1  
I126=32000   ; Home offset of +2000 counts 
    ; (enough to take you out of the limit) 
I7102=3   ; Capture on rising flag and rising index 
I7103=2   ; Use +LIM1 as flag (negative end switch) 

;*********** Motion program to execute routine ********************* 
OPEN PROG 101 CLEAR 
I124=$20000   ; Disable +/-LIM as limits 
HOME1    ; Home #1 into limit and offset out of it 
I124=$0   ; Re-enable +/-LIM as limits 
CLOSE    ; End of program 

;*********** PLC Set-up Variables (to be saved) ************************ 
CLOSE 
I123=-10   ; Home speed 10 cts/msec negative 
I124=$000000  ; PMAC-style flags, normal mode 
I125=$78000   ; Use Servo IC 0 Channel 1 flags for Motor 1  
I126=32000   ; Home offset of +2000 counts 
    ; (enough to take you out of the limit) 
I902=3   ; Capture on rising flag and rising index 
I903=2   ; Use +LIM1 as flag (negative end switch) 

M133->X:$B0,13,1  ; Desired Velocity Zero bit 
M145->Y:$C0,10,1  ; Home complete bit 
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;*********** PLC program to execute routine ********************* 
OPEN PLC 10 CLEAR 
I124=$20000   ; Disable +/-LIM as limits 
CMD"#1HM"   ; Home #1 into limit and offset out of it 
WHILE (M145=1)  ; Waits for Home Search to start 
ENDWHILE 
WHILE (M133=0)  ; Waits for Home motion to complete 
ENDWHILE 
I124=$0   ; Re-enable +/-LIM as limits 
DIS PLC10   ; Disables PLC once Home is found 
CLOSE    ; End of PLC 

Multi-Step Homing Procedures 
You may require a homing procedure that cannot be executed with a single Turbo PMAC homing move.  
In this case, you will use two (or possibly more) homing search moves, changing the move parameters in 
between.  Although this can be done with a sequence of on-line commands, it is probably easier to create 
a small motion program to execute the sequence. 

Which Direction to Home?  The most common of these situations is the case in which it is not known on 
which side of the home trigger it is at power-up.  In this case, move into one of the limit switches to make 
sure it is at one end of travel (this can be done by homing into the limit, much as in the above example).  
Then do a homing move the other direction into the real home trigger.  A sample motion program routine 
that does this is: 
CLOSE OPEN PROG 102 CLEAR 
I223=10   ; Home speed 10 cts/msec positive direction 
I224=$20000   ; Disable hardware limits 
I225=$78208   ; Servo IC 2 Channel 2 for flags 
I226=0   ; No home offset 
I7222=2   ; Capture on rising edge of a flag 
I7223=1   ; Use PLIM2 as flag (positive end limit) 
HOME2    ; Home into limit 
I223=-10   ; Home speed 10 cts/msec negative direction 
I224=$0   ; Re-enable hardware limits 
I7222=11   ; Capture on flag low and index channel high 
I7223=0   ; Use HOME2 (home flag) as trigger flag 
HOME2    ; Do actual homing move 
CLOSE 

A sample PLC Program routine that does this is: 
CLOSE  
M233->X:$130,13,1  ; #2 Desired-velocity-zero bit 
M245->Y:$140,10,1  ; #2 Home complete bit 
OPEN PLC 11 CLEAR 
I223=10   ; Home speed 10 cts/msec positive direction 
I224=$20000   ; Disable hardware limits 
I225=$78208   ; Servo IC 2 Channel 2 for flags 
I226=0   ; No home offset 
I7222=2   ; Capture on rising edge of a flag 
I7223=1   ; Use PLIM2 as flag (positive end limit) 
CMD"#2HM"   ; Home into limit 
WHILE (M245=1)  ; Waits for Home Search to start 
ENDWHILE 
WHILE (M233=0)  ; Waits for Home motion to complete 
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ENDWHILE 
I223=-10   ; Home speed 10 cts/msec negative direction 
I224=$0   ; Re-enable hardware limits 
I7222=11   ; Capture on flag low and index channel high 
I7223=0   ; Use HOME2 (home flag) as trigger flag 
CMD"#2HM"    ; Do actual homing move 
WHILE (M245=1)  ; Waits for Home Search to start 
ENDWHILE 
WHILE (M233=0)  ; Waits for Home motion to complete 
ENDWHILE 
DIS PLC11   ; Disables PLC once Home is found 
CLOSE    ; End of PLC 
   

Already Into Home?  A similar situation occurs when it is not known on power-up whether or not it is 
already into the home trigger.  Here, the easiest solution is to write a program that evaluates this 
condition; if it is in the trigger, it moves out before doing the real homing. 

;*************** Motion Program Set-up variables (to be saved) ********* 
CLOSE 
M320->X:$078210,20,1 ; Variable for Servo IC 2 Ch. 3 home input 
I325=$078210  ; Use Flags3 for Motor 3 

;************** Motion program to execute routine ********************* 
OPEN PROG 103 CLEAR 
IF (M320=1)   ; Already in trigger? 
  I323=10   ; Home speed 10 cts/msec positive direction 
  I326=1600   ; Home offset +100 counts (to make sure clear) 
  I7232=11   ; Capture on falling flag and rising index 
  I7233=0   ; Use Home3 as flag 
  HOME3   ; "Home" out of switch 
ENDIF 
I323=-10   ; Home speed 10 cts/msec negative direction 
I326=0   ; No home offset 
I7232=3   ; Capture on rising flag and rising index 
I7233=0   ; Use HMFL3 as flag 
HOME3    ; Do actual homing move 
CLOSE    ; End of program 

;***************PLC Set-up variables (to be saved) ******************** 
CLOSE 
M320->X:$078210,20,1 ; Variable for Servo IC 2 Ch. 3 home input 
I325=$078210  ; Use Flags3 for Motor 3 
M333->X:$01B0,13,1 ; Desired Velocity Zero bit 
M345->Y:$01C0,10,1 ; Home complete bit 

;**************** PLC program to execute routine ********************* 
OPEN PLC 12 CLEAR 
IF (M320=1)   ; Already in trigger? 
  I323=10   ; Home speed 10 cts/msec positive direction 
  I326=1600   ; Home offset +100 counts (to make sure clear) 
  I7232=11   ; Capture on falling flag and rising index 
  I7233=0   ; Use Home3 as flag 
  CMD"#3HM"   ; “Home” out of switch 
  WHILE (M345=1)  ; Waits for home search to start 
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  ENDWHILE 
  WHILE (M333=0)  ;Waits for home motion to complete 
  ENDWHILE 
ENDIF 
I323=-10   ; Home speed 10 cts/msec negative direction 
I326=0   ; No home offset 
I7232=3   ; Capture on rising flag and rising index 
I7233=0   ; Use Home3 as flag 
CMD"#3HM"   ; Do actual homing move 
WHILE (M345=1)  ; Waits for home search to start 
ENDWHILE 
WHILE (M333=0)  ; Waits for home motion to complete 
ENDWHILE 
DIS PLC12   ; Disables PLC once home is found 
CLOSE    ; End of program 

Storing the Home Position 
Turbo PMAC automatically stores the encoder position that was captured during the latest homing search 
move for the motor.  This value is kept in the Motor Encoder Home Capture register [Y:$CE (Motor 1), 
Y:$14E (Motor 2), etc., suggested M-variable Mxx73], which is set to zero on power-up/reset for motors 
without absolute power-on position.  If the position reference is obtained by reading an absolute sensor 
(Ixx10>0) such as from a resolver, this register holds the negative of the absolute position read.  In either 
case, it contains the difference between the encoder-counter zero position (power-on position) and the 
motor zero (home) position, scaled in counts.   

There are two main uses for this register.  First, it provides a reference for using the encoder position-
capture and position-compare registers.  These registers are referenced to the encoder zero position, which 
is the power-up position, not the home (motor zero) position.  This register holds the difference between 
the two positions.  This value should be subtracted from encoder position (usually from position capture) 
to get motor position, or added to motor position to get encoder position (usually for position compare). 

Example: To move an axis until a trigger is found, then convert the captured encoder position to a motor 
position, you can use the following M-variable definitions: 
M103->X:$078003,24,S ; Servo IC 0 Channel 1 position-capture register 
M117->X:$078000,17 ; Servo IC 0 Channel 1 position-capture flag 
M125->Y:$0000CE,24,S ; Motor 1 encoder position offset register 

Now you can use a motion program segment like the following: 
INC  ; Incremental moves 
TM10 TA10  ; Move segment time 10 msec 
WHILE (M117=0)  ; While no trigger to capture position 
  X0.2  ; Command next move segment 
ENDWHILE 
P103=M103-M125  ; Read captured position; subtract offset to 
  ; get motor position at trigger 

The second use for this register is to determine whether the encoder counter has lost any counts.  This can 
be done by performing a second homing search move after an operation, and comparing the contents of 
the register after the second homing search move to the contents after the first homing search move. 

Jog-Until-Trigger Moves 
The jog-until-trigger function permits a jog move to be interrupted by a trigger and terminated by a move 
relative to the position at the time of the trigger.  It is similar to a homing search move, except that the 
motor zero position is not altered, and there is a specific destination in the absence of a trigger. 



 Turbo PMAC User Manual 

232  Executing Individual Motor Moves 

The “jog-until-trigger” function for a motor is specified by adding a ^{constant} specifier to the end 
of a regular “definite” jog command for the motor, where this {constant} is the distance to be traveled 
relative to the trigger position before stopping, in encoder counts.  It cannot be used with the J+ and J- 
indefinite jog commands. 

This makes the jog command for a jog-until trigger something like J=10000^100 , J=*^-50 or 
J:50000^0.  The value before the ^ is the destination position or distance (depending on the type of jog 
command) to be traveled in the absence of a trigger.  If this first value is represented by a * symbol, 
PMAC looks in a pre-defined motor register (suggested M-variable Mxx72) for the position or distance.  
The second value is the distance to be traveled relative to the position at the time of the trigger.  This 
value is always expressed as a distance, regardless of the type of jog command.  Both values are 
expressed in encoder counts. 

The trigger condition for the motor is set up just as for homing search moves, explained above. 

Turbo PMAC will use the jog parameters Ixx19-Ixx22 in force at the time of the command for the pre-
trigger move, and the values of these parameters in force at the time of the trigger for the post-trigger 
move. 

The captured value of the sensor position at the trigger is stored in a dedicated register (Y:$D8 for Motor 
1, Y:$158 for Motor 2, etc.) if later access is needed.  The units are in counts; for incremental encoders, 
they are relative to the power-up/reset position. 

Turbo PMAC sets the motor home-search-in-progress status bit (bit 10 of the first motor status word 
returned on a ? command) true (1) at the beginning of a jog-until-trigger move.  The bit is set false (0) 
either when the trigger is found, or at the end of the move.   

Turbo PMAC also sets the motor trigger move status bit (bit 7 of the second motor status word returned 
on a ? command) true at the beginning of a jog-until-trigger move, and keeps it true at least until the end 
of the move.  If a trigger is found during the move, this bit is set false at the end of the post-trigger move; 
however, if the pre-trigger move finishes without finding a trigger, the bit is left true at the end of the 
move.  Therefore, this bit can be used at the end of the move to tell whether the trigger was found 
successfully or not.  The motor “desired-velocity-zero” status bit can be used to determine the end of the 
move. 

Motion Program Move-Until-Trigger 
The move-until-trigger construct can be used from within a motion program.  In this version it is a variant 
of the RAPID move mode.  These moves execute exactly like on-line jog-until-trigger moves, but they are 
described a little differently. 

A program move-until trigger is commanded with the {axis}{data}^{data} syntax.  Basic 
examples are X50^-2 and Y(P1)^(P2).  The first value is the destination of the axis if no trigger is 
found, expressed in the engineering units for the axis.  This value can be a position or a distance, 
depending on whether the axis is in absolute or incremental mode, respectively.  The second value is the 
distance from the trigger-captured position to the end of the post-trigger move, expressed in the 
engineering units for the axis.  The motion program must be in RAPID mode for the triggering to operate; 
otherwise just the pre-trigger move will be executed to the specified endpoint. 

The commanded acceleration for the move is specified by Ixx19, Ixx20, and Ixx21, as for other trigger 
moves.  The magnitude of the velocity for the move is specified by maximum velocity parameter Ixx16 if 
Ixx90 is at the default value of 1, or by jog speed parameter Ixx22 if Ixx90 is 0.  The trigger conditions 
and capture methods are specified as for other triggered moves, as described above.  Status bits are set as 
for on-line jog-until-trigger moves. 
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For more information on these moves, look under RAPID-mode moves in the Writing and Executing 
Motion Programs section and in the description of {axis}{data}^{data} motion-program 
statements in the Software Reference manual. 

Open-Loop Moves 
Open-loop moves, as their name implies, do not do closed-loop position control.  They open up the servo 
loop and just put commands of the specified magnitude on the outputs.  Typically, these are used for 
diagnostic purposes, but they can also be used in the actual applications. 

These moves are executed using the motor-specific O{constant} on-line command, where 
{constant} represents the magnitude of the output as a percentage of Ixx69, the maximum output 
parameter for the motor.  This command may not be part of a motion program, and it may not be given to 
a motor when that motor’s coordinate system is executing a motion program, even if it is not moving that 
motor. 

If Turbo PMAC does not commutate the motor, this command creates a constant signal on the single 
output for the motor.  If Turbo PMAC does commutate the motor, this command sets the magnitude of 
the signal that is input into the sinusoidal commutation algorithm for the motor. 

To do a variable O-command, define an M-variable to the filter result register (X:$AE for Motor 1, etc.), 
command an O0 to the motor to put it in open-loop mode, then assign a variable value to the M-variable.  
This technique will even work on PMAC-commutated motors. 

The PMAC Executive Program tuning section uses the open-loop moves to allow you to diagnose and 
tune amplifier response. 
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TURBO PMAC COMPUTATIONAL FEATURES 
Turbo PMAC has advanced computational features that permit off-loading of many operations from a 
host, or even stand-alone operation in ways that were not previously possible.  Many arithmetic, logical, 
and transcendental operations can be performed on variables and constants in user programs on board the 
card.   

Computational Priorities 
As a multitasking, real-time computer, Turbo PMAC has an elaborate prioritization scheme to ensure that 
vital tasks are accomplished when needed, and that all tasks are executed reasonably quickly.  The 
scheme was designed to hide its complexity as much as possible, but also to provide some flexibility in 
optimizing the controller for particular needs.  The tasks in order of priority are: 
1. Single Character I/O 
2. Commutation Update 
3. Servo Update 
4. Real-Time Interrupt Tasks 
5. VME Mailbox Processing 
6. Background Tasks 
Single Character I/O 
Bringing in a single character from, or sending out a single character to, the serial port or host port (from 
ISA, PCI, USB, or Ethernet) is the highest priority in Turbo PMAC.  This task takes only two instruction 
cycles per character, but having it at this high priority ensures that Turbo PMAC cannot be outrun by the 
host on a character-by-character basis.  This task is never a significant portion of Turbo PMAC’s total 
calculation time.  Note that this task does not include processing a full command; that happens at a lower 
priority (see below). 
Commutation Update 
The commutation (phasing) update is the second highest priority on Turbo PMAC.  Every phase interrupt 
(cycle of the phase clock), the MACRO ring (if present) is updated with new information, and if I5060 > 
0, a pair multiplexed ADCs (e.g. Option 12, Acc-36) is read and the data copied into de-multiplexed 
RAM registers.   
Every (I7 + 1) phase interrupts, Turbo PMAC performs the commutation calculations on each motor for 
which commutation is active (Ixx01 bit 0 = 1).  For each motor commutated by Turbo PMAC, this task 
takes 1 – 2 µsec per update cycle for an 80 MHz CPU.   
The phase clock frequency is determined by: 
• Jumpers E98 and E29 – E33 on a Turbo PMAC 
• I7m00 and I7m01 (for clock-source Servo IC m as set by I19) on a (non-Ultralite) Turbo PMAC2 
• I6800 and I6801 on a Turbo PMAC2 Ultralite 
The default update frequency is 9 kHz (110 µsec cycle).  At the default, the commutation of each motor 
takes approximately 1 – 2 percent of Turbo PMAC’s computational power. 
Servo Update 
The servo update is the third highest priority on Turbo PMAC.  Every servo interrupt (cycle of the servo 
clock), Turbo PMAC processes each of the entries of the encoder conversion table to prepare the raw 
feedback and master data for use by the servo algorithms.  Then it performs the servo update calculations 
for each active Motor xx (Ixx00 = 1).  This update consists of the interpolation calculations to compute 
the next instantaneous commanded position, and the servo-loop closure calculations that use this value, 
the actual position value, and the servo gain terms to compute the commanded output.  (The servo-loop 
closure algorithms for Motor xx can skip interrupt cycles if Ixx60 is set greater than 0.)  These servo 
calculations take about 4 µsec per update cycle for an 80 MHz CPU. 
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The servo clock frequency is determined by: 
• Jumpers E98, E29 – E33, and E3 – E6 on a Turbo PMAC 
• I7m00, I7m01, and I7m02 (for clock-source Servo IC m as set by I19) on a (non-Ultralite) Turbo PMAC2 
• I6800, I6801, and I6802 on a Turbo PMAC2 Ultralite 
The default update frequency is 2.25 kHz (440 µsec cycle).  At the default, the servo update of each 
motor takes approximately 1% of Turbo PMAC’s computational power.  See Closing the Servo Loop for 
information on optimizing this update rate. 
Real-Time Interrupt Tasks 
The real-time interrupt (RTI) tasks are the fourth highest priority on Turbo PMAC.  They occur 
immediate after the servo update tasks at a rate controlled by parameter I8 (every I8+1 servo update 
cycles).  There are two significant tasks occurring at this priority level: motion program move planning 
and the PLC 0 programs (interpreted and compiled). 
Motion Program Move Planning 
Motion program move planning consists of working through the lines of a motion program until the next 
move or dwell command is encountered, and computing the equations of motion for this next part of the 
move sequence.  Every time Turbo PMAC starts executing a new move, it sets an internal flag indicating 
that it is time to plan the next move in the program.  This planning occurs at the next RTI. 
PLC Program 0, Compiled PLC Program 0 
PLC 0 and PLCC 0 (compiled PLC 0) are special PLC programs that execute at a higher priority than the 
other PLC programs.  They are meant to be used for only a few tasks that must be done at a higher 
frequency than the other PLC tasks.  PLC 0 and PLCC 0 will execute every real-time interrupt as long as 
the tasks from the previous RTI have been completed.  PLC 0 and PLCC 0 are potentially the most 
dangerous tasks on Turbo PMAC as far as disturbing the scheduling of tasks is concerned.  If they are too 
long, they will starve the background tasks for time.  The first thing you will notice is that 
communications and background PLC tasks will become sluggish.  In the worst case, the watchdog timer 
will trip, shutting down the card, because the housekeeping tasks in background did not have the time to 
keep it updated. 
VME Mailbox Processing 
Reading or writing a block of up to 16 characters through the VME mailbox registers is the 5th highest 
priority in Turbo PMAC.  The rate at which this happens is controlled by the host.  This never takes a 
significant portion of Turbo PMAC’s computational power. 
Background Tasks 
In the time not taken by any of the higher-priority tasks, Turbo PMAC will be executing background tasks.  
There are three basic background tasks: command processing, interpreted and compiled PLC programs 1-
31, and housekeeping.  The frequency of these background tasks is controlled by the computational load on 
Turbo PMAC: the more high-priority tasks are executed, the slower the background tasks will cycle 
through; and the more background tasks there are the slower they will cycle through. 
Interpreted PLC Programs 1 – 31 
 Interpreted PLC programs 1 – 31 are executed in background.  Each background cycle, Turbo PMAC 
will execute one scan (to the end or to an ENDWHILE statement) of a single active interpreted background 
PLC program uninterrupted by any other background task (although it can be interrupted by higher 
priority tasks).  In between each scan of each interpreted background PLC program, Turbo PMAC will do 
its general housekeeping, and respond to a host command, if any. 
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Compiled PLC Programs 1 – 31 
Compiled PLC programs (PLCC programs) 1-31 are executed in background.  Each background cycle, 
Turbo PMAC will execute one scan (to the end or to an ENDWHILE statement) of all active compiled 
background PLC programs, starting from lowest numbered to highest, uninterrupted by any other 
background task (although it can be interrupted by higher priority tasks).  At power-on/reset, PLCC 
programs run after the first PLC program runs. 
Host Command Response 
The receipt of a control character from any port is a signal to Turbo PMAC that it must respond to a 
command.  The most common control character is the carriage return (<CR>), which tells Turbo PMAC 
to treat all the preceding alphanumeric characters as a command line.  Other control characters have their 
own meanings, independent of any alphanumeric characters received.  Here Turbo PMAC will take the 
appropriate action to the command, or if it is an illegal command, it will report an error to the host. 
General Housekeeping 
Each background cycle, Turbo PMAC performs its housekeeping duties to keep itself properly updated.  
The most important of these are the safety limit checks (following error, overtravel limit, fault, watchdog, 
etc.); general status updates are done here as well.  Although this happens at a low priority, a minimum 
frequency is ensured because the watchdog will trip, shutting down the card, if this frequency gets too 
low.  You can set this required frequency by changing variable I40 from its default value of 0.  If I40 is 
set to a value greater than 0, this value is the number of servo cycles within which every background 
cycle must complete, or the watchdog timer will trip.  (If I40 is set to 0, this number is 4096 servo cycles.) 
The following diagram shows a time-line example of Turbo PMAC’s multi-tasking, focusing on the 
servo, real-time interrupt, and background tasks. 

Comm - Communications Line Processing
    - Servo Interrupt
RTI - Real Time Interrupt Task
* - Start of RTI

CT #1 #2 #3 #4 PLC 0 PLC 1...

Servo RTI Background

CT #1 #2 #3 #4 PLC 1 (cont.) PLC 2...

Servo Background

CT #1 #2 #3 #4 PLC 2 (cont.) PLC 3...

Servo

CT #1 #2 #3 #4 PLC 0 Move Planning ...

Servo RTI

CT #1 #2 #3 #4 Move Planning (cont) PLC 3 (cont) ...

Servo RTI Background

CT #1 #2 #3 #4 PLC 3 (cont) PLC 1 ...

Servo Background

CT #1 #2 #3 #4 PLC 0 PLC 1 (cont) ...

Servo RTI

CT #1 #2 #3 #4
Servo Background

HK

HK Comm

HK

PLC 1 (cont) CommHK

*

*

*

CT - Conversion Table
# n - Motor n Servo Update
HK - Housekeeping

PMAC Multitasking Example

Background
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Priority Level Optimization 
Usually, Turbo PMAC will have enough speed and calculation power to perform all of the tasks asked of 
it.  Some applications will put a large demand on a certain priority level, and to make Turbo PMAC run 
more efficiently some priority level optimization should be done.   

When Turbo PMAC begins to run out of time, problems such as sluggish communications, slow 
PLC/PLCC scan rates, run-time errors, and even tripping the watchdog timer, can occur.  The specific 
solutions to the above symptoms are discussed in the sections of this manual dedicated to those subjects.  
The general solution to such problems is two-fold.   

First, high priority jobs could be slowed down or moved to a lower priority position.  Jobs such as the 
Encoder Conversion Table, PLC/PLCC0, and the Real Time Interrupt (RTI) should be evaluated.  Check 
to see if everything in these jobs is necessary or if some of it could be moved to a lower priority or slowed 
down.  For example; A 5-axis application might not need Encoder Conversion Table entries 6 to 9.  
Perhaps PLC0 could be done as PLCC1, or the RTI could be done every 4th or 5th servo cycle. 

Second, the jobs could be adjusted to a priority level that gives them less emphasis.  Large PLC programs 
can be split into a few shorter PLC programs.  This increases the frequency of housekeeping and 
communications by giving more breaks in PLC scans.  Motion program WHILE(condition)WAIT 
statements could be done as follows; 
WHILE(condition) 
 DWELL20 
ENDWHILE  

This will give more time to other tasks of equal or lower priority such as PLC programs and 
communications. 

Evaluating the Turbo PMAC’s Computational Load 
Turbo PMAC controllers offer facilities that permit you to calculate the computational loads you are 
putting on the processor.  There are several key timer registers to use in calculating these loads.  These 
registers are scaled so that one increment of the timer is two clock cycles of the DSP.  So if the DSP were 
running at a clock frequency of exactly 80 MHz – a clock period of 12.5 nsec – one increment of the 
timer would be 25 nsec. 

The DSP’s clock frequency is multiplied up from the crystal clock frequency of 19.66 MHz, using the 
saved value of I52, according to the formula: 

( )152I*
2
MHz66.19cyDSPfrequen +=  

In terms of period, the timer increment – 2 DSP cycles – can be calculated as: 

( )
152I

4.203secnmentTimerIncre
+

=  

Phase Interrupt Tasks 
There are two key timer registers for evaluating the computational load of the phase-interrupt tasks such 
as commutation, current-loop closure, and ADC de-multiplexing.  The first is a hardware timer in the 
DSP, at address X:$FFFF8C.  This register holds the number of timer increments between the last two 
phase interrupts, establishing the period of the phase interrupt.  This can be used to verify the phase 
period you think you have, and with other registers, computational duty cycles. 

The second register, located at X:$000037, holds the number of timer increments from the beginning to 
the end of the phase-interrupt tasks for the last interrupt.  When divided by the time between phase 
interrupts, this will give the duty cycle of the phase-interrupt tasks. 
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Servo Interrupt Tasks 
Another timer register can be used to evaluate the computation load of the servo-interrupt tasks such as 
the conversion table, interpolation, position/velocity-loop closure, and data gathering.  This register, 
located at Y:$000037, holds the number of timer increments elapsed from the beginning to the end of the 
servo-interrupt tasks for the last interrupt. 

If this time plus the phase-task time is less than the time between phase interrupts (X:$37 + Y:$37 < 
X:$FFFF8C), then this is the actual time the servo tasks took.  However, if the sum of these times is 
greater than one phase cycle (X:$37 + Y:$37 > X:$FFFF8C), then the servo tasks were interrupted (at 
least once) by phase tasks, and the time for the interrupting phase tasks must be subtracted out (see 
example below). 

When the net time for the servo tasks is divided by the product of the phase-interrupt period and the 
number of phase-interrupts per servo-interrupt, the result is the duty cycle of the servo-interrupt tasks.  
Note that certain servo tasks, such as data gathering, foreground motor data reporting, and even servo-
loop closure if Ixx60 > 0, do not have to be executed every servo cycle, so the duty cycle can vary. 

Real-Time Interrupt Tasks 
Two timer registers provide information on the loading of real-time interrupt (RTI) tasks such as PLC 0, 
PLCC0, and motion-program calculations.  The first register, at X:$00000B, holds the number of timer 
increments from the beginning to the end of the RTI tasks for the last interrupt.  The second register, at 
Y:$00000B, holds the largest number of timer increments from the beginning to the end of a set of RTI 
tasks since the last power-up/reset. 

If these times plus the phase and servo-task times are less than the time between phase interrupts (X:$37 
+ Y:$37 + X/Y:$0B < X:$FFFF8C), then these are the actual times the RTI tasks took.  However, if these 
times are greater than one phase cycle (X:$37 + Y:$37 + X/Y:$0B > X:$FFFF8C), then the RTI tasks 
were interrupted (at least once) by phase tasks, and the time for the interrupting phase tasks must be 
subtracted out.  Also, if these times are greater than one servo cycle, then the RTI tasks were also 
interrupted by servo tasks (see example below). 

Dividing the latest net time for the RTI tasks by the product of the phase interrupt period, the number of 
phase interrupts per servo interrupt, and the number of servo interrupts per RTI yields the duty cycle of 
the RTI tasks.  The duty cycle for real-time interrupt tasks can vary widely within an application, so it is 
advisable to compute a running average to compute general loading. 

Total Interrupt Tasks 
The total duty cycle for Turbo PMAC interrupt tasks can be calculated by summing the duty cycles for 
the three types of interrupt tasks.  In general, it is recommended that the duty cycle for phase and servo 
tasks does not exceed 50%, and the duty cycle for all foreground tasks does not exceed 75%.  These are 
not strict limits – it is possible to exceed them, but the timing of all operations should be carefully 
evaluated if these guidelines are exceeded. 

Sample Monitoring Program 
The following sample code can be used to monitor the total interrupt-task duty cycle: 
M70->X:$FFFF8C,0,24 ; Time between phase interrupts 
M71->X:$000037,0,24 ; Time for phase tasks 
M72->Y:$000037,0,24 ; Time for servo tasks 
M73->X:$00000B,0,24 ; Time for RTI tasks 
P70=4    ; 4 phase interrupts per servo interrupt 
P76=16   ; Length of filter for averaging duty cycle 

OPEN PLC 17 CLEAR 
P71=M71/M70   ; Phase task duty cycle 
P69=INT((M71+M72)/M70)  ; # of times phase interrupted servo 
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P72=(M72-P69*M71)/(M70*P70) ; Servo task duty cycle 
P68=INT((M71+M72+M73)/M70) ; # of times phase interrupted RTI 
P67=INT((M71+M72+M73)/(M70*P70)) ; # of times servo interrupted RTI 
P73=(M73-P68*M71-P67*(M72-P69*M71))/(M70*P70*(I8+1)) 
     ; RTI task duty cycle 
P74=P71+P72+P73   ; Latest total foreground duty cycle 
P75=(P75*(P76-1)+P74)/P76 ; Averaged total foreground duty cycle 
CLOSE 

Background Cycle Time 
There are two timer registers important to evaluate the time required to execute a background cycle.  
These registers are involved in the operation of the watchdog timer.  The register at address Y:$000025 is 
set to the value of I40 at the end of every background cycle.  (If I40 is 0, the register is set to 4095.)  Until 
the next background cycle is completed, this register is decremented every servo cycle.  The data 
gathering function is useful to establish how long background cycles take. 

The register at X:$000025 contains the lowest value reached by Y:$000025 since the last power-up/reset 
of the Turbo PMAC.  If this is close to 0, the Turbo PMAC has come close to tripping its watchdog timer, 
and background tasks such as PLC program execution, communications response, and safety checks have 
been slow. 

Numerical Values 
Turbo PMAC can store and process numerical values in many forms, with both fixed-point and floating-
point values.  The Motorola 56300 DSP that acts as Turbo PMAC’s CPU is a fixed-point processor with 
built-in 24-bit and 48-bit arithmetic capability (plus a 56-bit accumulator).  However, Turbo PMAC’s 
firmware implements a full set of floating-point routines.   

Internal Formats 
The internal servo, interpolation, and commutation routines all operate with fixed-point arithmetic, 24-bit 
and 48-bit, for maximum speed.  The user programs, motion and PLC, use 48-bit floating-point arithmetic 
for maximum range and generality.  Even when reading from and/or writing to fixed-point registers, the 
intermediate formats are all floating-point values.  This permits users to mix different variable types at 
will, letting Turbo PMAC handle the type matching automatically 

The only exception to this rule is the compiled PLC programs; in a statement containing only “L-
variables” and integer constants that can fit in a signed 24-bit range (+/-8M), the intermediate format is 
signed 24-bit integer.  Refer to the section on compiled PLCs in the Writing and Executing a PLC 
Program section of this manual for more details. 

The general floating-point format is 48 bits long, with a 36-bit mantissa and a 12-bit exponent.  This 
provides a range of +2+2047, or +3.233 x 10+616, which should provide sufficient range for any foreseeable 
uses of the card. 
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The internal format of 48-bit floating-point registers is shown in the following table: 

X-word: 
Bit: 23 22 21 20 19 18 17 16 15 14 13 12 
Part: Mant Mant Mant Mant Mant Mant Mant Mant Mant Mant Mant Mant 
Val: -20 +2-1 +2-2 +2-3 +2-4 +2-5 +2-6 +2-7 +2-8 +2-9 +2-10 +2-11 

Bit: 11 10 9 8 7 6 5 4 3 2 1 0 
Part: Mant Mant Mant Mant Mant Mant Mant Mant Mant Mant Mant Mant 
Val: +2-12 +2-13 +2-14 +2-15 +2-16 +2-17 +2-18 +2-19 +2-20 +2-21 +2-22 +2-23 

Y-word: 
Bit: 23 22 21 20 19 18 17 16 15 14 13 12 
Part: Mant Mant Mant Mant Mant Mant Mant Mant Mant Mant Mant Mant 
Val: +2-24 +2-25 +2-26 +2-27 +2-28 +2-29 +2-30 +2-31 +2-32 +2-33 +2-34 +2-35 

Bit: 11 10 9 8 7 6 5 4 3 2 1 0 
Part: Exp Exp Exp Exp Exp Exp Exp Exp Exp Exp Exp Exp 
Val: +211 +210 +29 +28 +271 +26 +25 +24 +23 +22 +21 +20 

 
Mant: Mantissa – The mantissa of a floating-point number in standard format.  The 

mantissa should have the range 0.5 <= Mant < 1.0, or –1.0 <= Mant < -0.5.  Mant 
= 0.0 when number is exactly 0. 

Exp: Exponent – The exponent of a floating-point number in modified format.  The 12-
bit value here (0 <= Exp <= 4095) should have a value of 2047 subtracted from it 
(n = Exp -2047; -2048 <= n <= +2047); then 2 is raised to the power n, and the 
resulting value is multiplied by the mantissa.  Exp = 0 when number is exactly 0. 

Receiving Values 
Constant values sent from the host as part of command lines are sent as ASCII text, either as decimal 
values or hexadecimal values.  Hexadecimal values must be preceded by a $ character; they must be 
unsigned, and they cannot include fractional values.  Decimal values can be positive or negative, and can 
include fractional values.  The Turbo PMAC value interpreter does not support exponential notation, and 
it is limited to passing through values in the range +2+35, or +3.43 x 10+10.  Values outside this range are 
truncated to the maximum or minimum values of the range. 

Examples: 
1234 
3 
03             (leading zeros OK) 
-27.656 
0.001 
.001           (leading zero not required) 
$ff00          (interpreted as hexadecimal) 

Reporting Values 
Turbo PMAC reports numerical values to the host computer as part of response lines in decimal ASCII 
text form (although address values can be reported in hexadecimal ASCII form if I9 = 2 or 3 – see below).  
The value reporter is limited to passing values in the range of +2

+47
, or +1.41 x 10

+14
.  Values outside of 

this range are truncated to the maximum or minimum values of the range. 



 Turbo PMAC User Manual 

242 Turbo PMAC Computational Features 

Addresses 
Turbo PMAC uses a Motorola DSP563xx as its processor.  The DSP563xx has dual 24-bit address spaces 
(of which 19 bits are used by the Turbo PMAC) for memory and I/O.  (Note that the I/O in Turbo PMAC 
is memory-mapped; it does not have a separate I/O space as your PC does.)  When specifying an address 
in Turbo PMAC, you must state which half of memory (X or Y) – or both halves (L) for a long 48-bit 
word – followed by an optional colon, followed by the numerical address itself.  The numerical address is 
a constant in the range of $000000 - $07FFFF.  Usually, the address values are specified as a hexadecimal 
value (with the $ prefix). 
Do not confuse the memory and I/O addresses of Turbo PMAC itself with those of the host computer. 
Examples of legal address specifications are: 
Y:$078A02  (word containing machine I/O) 
X:136   (Motor 1 commanded position – also X:$88) 
X$078003  (captured encoder 1 position) 

This form of address specification is used particularly in M- variable definitions and direct read (R) and 
write (W) commands.  There are I-variables that specify addresses, but usually these are pre-defined to the 
X or Y space, so all that is needed is the numerical value.  The data-gathering-address I- variables (I5001-
I5048) use an extra hex digit in front of the numerical value to specify the memory half (see I5001 
description).  

Variables 
Turbo PMAC has several types of variables.  In Turbo PMAC, a variable is specified by a single letter (I, 
P, Q, or M) followed by a number from 0 to 8191.  Each letter denotes a different type of variable, each 
type with its own properties.  The different types share the characteristics that when their name is cited in 
an expression, the current value of the variable is used (reading from them); and values can be assigned to 
them in an equation (writing to them). 
Custom variable names on Turbo PMAC may not be specified; however the Editor in the PMAC 
Executive Program has a substitution (macro) scheme that allows programs to be written using user-
defined variable names, but changes these names into Turbo PMAC-legal variable names during the 
download process.  This substitution scheme is strongly recommended for managing large applications. 
I-Variables 
I-Variables (initialization or setup variables) determine the personality of the card for a given application.  
They are at fixed locations in memory and have pre-defined meanings.  Most are integer values, and their 
range varies depending on the particular variable.  There are 1024 I-variables, from I0 to I8191, and they 
are organized as follows: 

I0 – I99  Global card setup 
I100 – I199 Motor 1 setup 
I200 – I299 Motor 2 setup 
… 
I3200 – I3299 Motor 32 setup 
I3300 – I4799 Supplemental Motor setup 
I4900 – I4999 Configuration status 
I5000 – I5099 Data gathering/ADC demux setup 
I5100 – I5199 Coordinate System 1 setup 
I5200 – I5299 Coordinate System 2 setup 
… 
I6600 – I6699 Coordinate System 16 setup 
I6800 – I6999 MACRO IC setup 
I7000 – I7999 Servo IC setup 
I8000 – I8191 Encoder conversion table setup 
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Value Assignment 
Values assigned to an I-variable may be either a constant or an expression.  The commands to do this are 
on-line (immediate) if no buffer is open when sent, or buffered program commands if a buffer is open.  
Examples: 
I120=45 
I120=I120+5 
I(P1*100+20)=10 

Limited Range 
For I-variables with limited range, an attempt to assign an out-of-range value does not cause an error.  
The value is automatically rolled over to within the range by modulo arithmetic (truncation).  For 
example, I3 has a range of 0 to 3 (4 possible values).  The command I3=5 would assign a value of (5 
modulo 4) = 1 to the variable. 

Non-Volatile Storage 
When a value is assigned to an I-variable, the value in an active memory register that is volatile (does not 
retain its value when power is removed) is being removed.  Copy all of these active values to non-volatile 
flash memory with the SAVE command.  On a power-up or reset, the last values saved into flash memory 
are copied back into active memory automatically for use. 

Default Values 
Default values for all I-variables are contained in the manufacturer-supplied firmware.  They can be used 
individually with the I{constant}=* command, or in a range with the 
I{constant}..{constant}=* command.  Upon board re-initialization by the $$$*** command 
or by a reset with the re-initialization jumper in the non-default setting, all default settings are copied 
from the firmware into active memory.  The last saved values are not lost; they are just not used. 
See the I-variable description section for the functions of individual variables. 
P-Variables 
P-variables are general-purpose user variables.  They are 48-bit floating-point variables at fixed locations 
in Turbo PMAC’s memory, but with no pre-defined use.  There are 8192 P-variables, from P0 to P8191.  
A given P-variable means the same thing from any context within the card; all coordinate systems have 
access to all P-variables (contrast Q-variables, which are coupled to a given coordinate system, below).  
This allows for useful information passing between different coordinate systems.  P-variables can be used 
in programs for any purpose desired: positions, distances, velocities, times, modes, angles, intermediate 
calculations, etc. 

Type of Memory Used 
P-variables can be located in either the main memory, or in the supplemental battery-backed parameter 
memory (if Option 16 is ordered).  If I46 is set to 0 (default) or 2, the P-variables are located in the main 
memory, which has fast access (1 wait state) but whose values are not retained without a SAVE command 
copying the values to flash memory.  On power-up/reset, the last saved values are copied from flash 
memory into the active variable registers in RAM. 

If I46 is set to 1 or 3, the P-variables are located in the Option 16 battery-backed RAM, which has slow 
access (9 wait states) but whose values are retained automatically by the battery when power is removed. 

Special-Use P-Variables 
Generally, Turbo PMAC firmware has no automatic use of P-variables.  However, it can make special use 
of variables P0 – P32 and P101 – P132, as described below. 
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If a command consisting simply of a constant value is sent to Turbo PMAC, Turbo PMAC assigns that 
value to variable P0 (unless a special table buffer such as a compensation table or stimulus table has been 
defined but not yet filled – in that case the constant value will be entered into the table.  For example, if 
the command 342<CR> is sent to Turbo PMAC, it will interpret it as P0=342<CR>.)   

This capability is intended to facilitate simple operator terminal interfaces.  It does mean, however, that it 
is not a good idea to use P0 for other purposes, because it is easy to change this variable’s value 
accidentally. 

If your application uses kinematic subroutines to convert between tool-tip (axis) positions and joint 
(motor) positions, variables P1 – P32 and P101 – P132 are used for the motor positions in these 
subroutines (Pn is Motor n position; if PVT moves are converted, P10n is Motor n velocity).  If you are 
using the kinematic subroutines, make sure not to use the P-variables employed in the subroutines for any 
other purpose. 

Q-Variables 
Q-variables, like P-variables, are general-purpose user variables – 48-bit floating-point variables at fixed 
locations in memory, with no pre-defined use.  However, the register using a given Q-variable (and hence 
the value contained in it) is dependent on which coordinate system is utilizing it.  This allows several 
coordinate systems to use the same program (for instance, containing the line X(Q1+25) Y(Q2), but to 
have different values in their own Q variables (which in this case, means different destination points). 

Allotting Q-Variables 
There is a total of 8192 Q-variables. If using only a single coordinate system (Coord.Sys. 1 – specified as 
&1), use all of these: Q0 to Q8191.  The Q-variables of Coordinate System 2 (&2) overlap these:  Q0 of 
&2 is the same thing as Q4096 of &1, and Q4095 of &2 is the same thing as Q8191 of &1.  (The Q buffer 
is actually rotary, so Q4096 of &2 is the same thing as Q0 of &1, and Q8191 of &2 is Q4095 of &1.)  
Thus, both coordinate systems have 4096 unique Q-variables: Q0 to Q4095.   

Note: 

There is no protection against overwriting another coordinate system’s Q- 
variables.  It is your responsibility to keep Q-numbers within the proper range.   

If using 3 or 4 coordinate systems, there are 2048 unique Q-variables for each coordinate system (Q0 – 
Q2047).  If using 5 to 8 coordinate systems, there are 1024 unique Q-variables for each coordinate system 
(Q0 – Q1023).  If using 9 to 16 coordinate systems, there are 512 unique Q-variables for each coordinate 
system (Q0 – Q511). 

The following table shows the addresses used to store Q0 for each coordinate system when the Q-
variables are stored in main memory.  It shows how they potentially overlap. 

CS # Q0 
Address 

CS # Q0 
Address 

CS # Q0 
Address 

CS # Q0 
Address 

1 $8000 5 $8400 9 $8200 13 $9200 
2 $9000 6 $8C00 10 $8600 14 $9600 
3 $8800 7 $9400 11 $8A00 15 $9A00 
4 $9800 8 $9C00 12 $8E00 16 $9E00 

Addressing a Q-Variable Set 
The type of command determines which set of Q-variables being used.  When accessing a Q-variable 
from an on-line (immediate) command from the host, the Q-variable for the currently host-addressed 
coordinate system (with the &n command) is being used. 
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When accessing a Q-variable from a motion program statement (including kinematic subroutines), the Q-
variable belonging to the coordinate system running the program is being used.  If a different coordinate 
system runs the same motion program, it will use different Q-variables. 

When accessing a Q-variable from a PLC program statement, the Q-variable for the coordinate system 
that has been addressed by that PLC program with the ADDRESS command is being used.  Each PLC 
program can address a particular coordinate system independent of other PLC programs and independent 
of the host addressing.  If no ADDRESS command is used in the PLC program, the program uses the Q-
variables for C.S. 1. 

Type of Memory Used 
Q-variables can be located in either the main memory or in the supplemental battery-backed parameter 
memory (if Option 16 is ordered).  If I46 is set to 0 (default) or 1, the Q-variables are located in the main 
memory, which has fast access (1 wait state) but whose values are not retained without a SAVE command 
copying the values to flash memory.  On power-up/reset, the last saved values are copied from flash 
memory into the active variable registers in RAM. 

If I46 is set to 2 or 3, the Q-variables are located in the Option 16 battery-backed RAM, which has slow 
access (9 wait states) but whose values are retained by the battery automatically when power is removed. 

Special-Use Q-Variables 
Several Q-variables have special uses to watch for.  The ATAN2 (two-argument arctangent) function 
automatically uses Q0 as its second argument (the cosine argument).  The READ command places the 
values it reads following letters A through Z in Q101 to Q126, respectively, and a mask word denoting 
which variables have been read in Q100.  The S (spindle) statement in a motion program places the value 
following it into Q127. 

If the application uses kinematic subroutines to convert between tool-tip (axis) positions and joint (motor) 
positions, variables Q1 – Q10 and possibly Q11 – Q19 for the coordinate system are used for the axis data 
in these subroutines (Q1 – Q9 are for axis positions; Q10 tells whether PVT moves are being converted; if 
PVT moves are converted, Q11 – Q19 are for axis velocities).  If using the kinematic subroutines, make 
sure not to use the Q-variables employed in the subroutines for any other purpose. 

M-Variables 
M-variables are provided to permit easy user access to Turbo PMAC’s memory and I/O space.  Generally, 
a definition only needs to be made once, with an on-line command.  The SAVE command must be used to 
retain the definition through a power-down or reset.  Define an M-variable by assigning it to a location 
and defining the size and format of the value in this location.  An M-variable can be a bit, a nibble (4 
bits), a byte (8 bits), 1-1/2 bytes (12 bits), a double-byte (16 bits), 2-1/2 bytes (20 bits), a 24-bit word, a 
48-bit fixed-point double word, a 48-bit floating-point double word, or special formats for dual-ported 
RAM and for the JTHW multiplexer port.   

There are 8192 M-variables (M0 to M8191), and as with other variable types, the number of the M-
variable may be specified with either a constant or an expression: M576 or M(P1+20). 

M-Variable Definitions 
The definition of an M-variable is done using the defines-arrow (->) composed of the minus sign and 
greater than symbol.  Generally, a definition needs to be made only once, with in an on-line command, 
because it is stored in battery-backed RAM or saved to flash memory.  The M-variable thus defined may 
be used repeatedly. 

An M-variable may take one of the following types, as specified by the address prefix in the definition: 
X: 1 to 24 bits fixed-point in X-memory 
Y: 1 to 24 bits fixed-point in Y-memory 
D: 48 bits fixed-point across both X- and Y-memory 
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L: 48 bits floating-point across both X- and Y-memory 
DP: 32 bits fixed-point (low 16 bits of X and Y) (for use in dual-ported RAM) 
F: 32 bits floating-point (low 16 bits of X and Y) (for use in dual-ported RAM) 
TWD: Multiplexed BCD decoding from Thumbwheel port 
TWB: Multiplexed binary decoding from Thumbwheel port 
TWS: Multiplexed serial I/O decoding from Thumbwheel port 
TWR: Multiplexed serial resolver decoding from Thumbwheel port 
*: No address definition; uses part of the definition word as general- 
 purpose variable 

If an X or Y type of M-variable is defined, you must also define the starting bit to use, the number of bits, 
and the format (decoding method). 
Typical M-variable definition statements are: 
M1->Y:$078C02,8,1 
M102->Y:$78003,8,16,S 
M103->X:$078003,0,24,S 
M161->D:$8B 
M5141->L:$2041 
M50->DP:$060401 
M51->F:$0607FF 
M100->TWD:4,0.8.3,U 

See the instructions for each type of M-variable definition in the On-Line Commands reference section of 
the manual.  This can be found in the Talking to Turbo PMAC section of this manual.  Many suggested 
M-variable definitions are given in the software reference manual as well. 

It is a good idea to prepare a single file with all of your M-variable definitions and to put at the top of this 
file the command M0..8191->*.  This will remove all existing definitions, and help to prevent 
mysterious problems caused by “stray” M-variable definitions. 

The M-variable definitions are stored as 48-bit codes at Turbo PMAC memory addresses $004000 (for 
M0) to $005FFF (for M8191).  The Y-register contains the address of the register pointed to by the 
definition; the X-register contains a code that determines what part of the register is used and how it is 
interpreted. 

If another M-variable points to the Y-register, it can be used to change the subject register.  The main use 
of this technique is to create arrays of registers, which can be used to walk through tables in memory. 

Limited Range 
Many M-variables have a more limited range than Turbo PMAC’s full computational range.  If a value 
outside of the range of an M-variable is placed to that M-variable, Turbo PMAC rolls over the value 
automatically to within that range and does not report any errors. 

For example, with a single bit M-variable, any odd number written to the variable ends up as 1, any even 
number ends up as 0.  If an attempt is made to place a non-integer value in an integer M-variable, Turbo 
PMAC automatically rounds to the nearest integer. 

Using M-Variables 
Once defined, an M-variable may be used in programs just as any other variable – through expressions.  
When the expression is evaluated, Turbo PMAC reads the defined memory location, calculates a value 
based on the defined size and format, and utilizes it in the expression. 

Care should be exercised in using M-variables in expressions.  If an M-variable is something that can be 
changed by a servo routine (such as instantaneous commanded position), which operates at a higher 
priority than the background expression evaluation, there is no guarantee that the value will not change in 
the middle of the evaluation.  For instance, if in the expression  
(M16-M17)*(M16+M17)  
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the M-variables are instantaneous servo variables, there is no guarantee that M16 or M17 will have the 
same value in both places in the expression or that the values for M16 and M17 will come from the same 
servo cycle.  The first problem can be overcome by setting P1=M16 and P2=M17 right above this, but 
there is no general solution to the second problem. 

Use for Indirect Addressing 
As pointers, M-variables can be used for a technique known as indirect addressing to access a range of 
registers without having to define a separate variable for each register.  This technique uses two M-
variables.  The first is assigned to a register in the address area of interest, with a format of the desired 
type; the second is assigned to the register that contains the address of the first definition. 

M-variable address definitions are in fixed locations in Turbo PMAC memory, starting at $004000 (for 
M0) and ending at $005FFF (for M8191).  The X-register at each of these addresses holds the code that 
determines the format of the M-variable; the Y-register holds the address of the register being pointed to.  
By changing the contents of this Y-register, you can change the address of the register that this M-
variable points to. 

This technique is best illustrated by an example.  Suppose that a 2048-word UBUFFER had been created 
in a Turbo PMAC with standard memory.  This UBUFFER would occupy addresses $010000 to 
$0107FF.  In this buffer, we wanted to create a 2048-entry floating-point sine table.  We would start off 
with two M-variable definitions: 
M64->L:$010000 ; Floating-point M-var def to start of UBUFFER 
M65->Y:$004040,0,12 ; M64 definition address, low 12 bits 

Now, by changing the value of M65, we change the address to which M64 points.  Note that by assigning 
M65 to only the low 12 bits (last 3 hex digits) of the M64 definition address, we can in this case just 
assign values to M65 representing offsets from the beginning of the register set.  To create the sine table, 
use the following code: 
M65=0 ; Point M64 to L:$010000 
WHILE (M65<2048) 
M64=SIN(360*M65/2048) ; Write sine value 
M65=M65+1 ; Index M64 to next register 
ENDHWILE 

Operators 
Turbo PMAC operators work like those in any computer language: they combine values to produce new 
values.  Detailed descriptions of the operators are given in the Software Reference manual; overviews are 
given here. 

Arithmetic Operators 
Turbo PMAC uses the four standard arithmetic operators: +, -, *, and /.  The standard algebraic 
precedence rules are used: multiply and divide are executed before add and subtract, operations of equal 
precedence are executed left to right, and operations inside parentheses are executed first. 

Modulo Operator 
Turbo PMAC also has the ‘%’ modulo operator, which produces the resulting remainder when the value 
in front of the operator is divided by the value after the operator.  Values may be integer or floating point.  
This operator is particularly useful for dealing with counters and timers that roll over. 

When the modulo operation is done by a positive value x, the results can range from 0 to x (not including 
x itself).  When the modulo operation is done by a negative value x, the results can range from -x to x (not 
including x itself).  This negative modulo operation is useful when a register can roll over in either 
direction. 
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Logical Operators 
Turbo PMAC has three logical operators that do bit-by-bit operations: & (bit-by-bit AND), | (bit-by-bit 
OR), and ^ (bit-by- bit EXCLUSIVE OR).  If floating-point numbers are used, the operation works on the 
fractional as well as the integer bits.  & has the same precedence as * and /; | and ^ have the same 
precedence as + and -.  Use of parentheses can override these default precedence levels.  

Note: 

These bit-by-bit logical operators are different from the simple Boolean operators 
AND and OR used in compound conditions (q.v.). 

Functions 
As in any programming language, Turbo PMAC mathematical functions perform mathematical operations 
on constants or expressions to yield new values.  The general format is: 
{function name} ({expression}) 

The available functions are: 
SIN: Trigonometric sine 
COS: Trigonometric cosine 
TAN: Trigonometric tangent 
ASIN: Trigonometric inverse sine (arcsine) 
ACOS: Trigonometric inverse cosine (arccosine) 
ATAN: Trigonometric inverse tangent (arctangent) 
ATAN2: Special two-argument, four-quadrant trigonometric inverse tangent 
LN: Natural logarithm (log base e) 
EXP: Exponentiation (ex) 
SQRT: Positive square root 
ABS: Absolute value 
INT: Truncation to integer (towards minus infinity) 

Global I-variable I15 controls whether the trigonometric functions use degrees (I15 = 0) or radians (I15 = 1). 
Detailed descriptions of each function, including domain and range, are given in the Software Reference 
Manual. 

Expressions 
A Turbo PMAC expression is a mathematical construct consisting of constants, variables, and functions, 
connected by operators.  Expressions can be used to assign a value to a variable, to determine a motion 
program parameter, or as part of a condition.  A constant can be an expression, so if the syntax calls for 
{expression}, a constant may be used as well as a more complicated expression.  No extra 
parentheses are required for non-constant expressions, unlike when {data} is specified (see below).   

Examples of expressions are: 
512 
P1 
P1-Q18 
1000*COS(Q25*3.14159/180) 
I100*ABS(M347)/ATAN(P(Q3+1)/6.28)+5 

The {DATA} Syntax 
For Turbo PMAC purposes, if command syntax requires {data}, utilize either a constant that is not 
surrounded by parentheses or an expression that is surrounded by parentheses.  (Since a constant can be 
an expression, it is legal to put a constant in parentheses, but this takes more storage and more calculation 
time.) 

For example, if the listed command syntax is T{data}, it is legal to use T100, T(P1+250*P2), or 
T(100) (which is legal but wasteful). 
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Variable Value Assignment Statement 
This type of statement calculates and assigns a value to a variable.  When a value assignment statement is 
sent to Turbo PMAC, if a program buffer is open, the statement is added to the buffer.  If not, it is 
executed immediately.  The standard assignment syntax is: 

{variable name}={expression} 
where {variable name} specifies which variable is to be used,  and {expression} represents the 
value to be assigned to the variable. 
I-Variable Default Value Assignment 
A statement with the syntax:   

{I-variable}=* 
will assign to the specified I-variable the manufacturer’s default value for that variable (not the user’s last 
saved value). 
Synchronous M-Variable Value Assignment 
In a motion program, when Turbo PMAC is blending or splining moves together, it must be calculating in 
the program ahead of the actual point of movement.  This is necessary in order to be able to blend moves 
together at all, and also to be able to do reasonable velocity and acceleration limiting.  Depending on the 
mode of movement, calculations while blending may occur one, two, or three moves ahead of the actual 
movement.   
Why Needed 
When assigning values to variables is part of the calculation, the variables will get their new values ahead 
of their place in the program when looking at actual move execution.  Generally, for P and Q-variables, 
this is not a problem, because they exist only to aid further motion calculations.  However, for M-
variables, particularly outputs, this can be a problem, because with a normal variable value assignment 
statement, the action will take place sooner than is expected, looking at the statement’s place in the 
program. 
For example, in the program segment 
X10  ; Move X-axis to 10 
M1=1  ; Turn on Output 1 
X20  ; Move X-axis to 20 
it might be expected that Output 1 would be turned on at the time the X-axis reached position 10.  But 
since Turbo PMAC is calculating ahead, at the beginning of the move to X10, it will have already 
calculated through the program to the next move, working through all program statements in between, 
including M1=1, which turns on the output.  Therefore, using this technique, the output will be turned on 
sooner than desired. 
How They Work 
Synchronous M-variable assignment statements were implemented as a solution to this problem.  When 
one of these statements is encountered in the program, it is not executed immediately; rather, the action is 
put on a stack for execution at the start of the actual execution of the next move in the program.  This 
makes the output action properly synchronous with the motion action. 
In the modified program segment 
X10  ; Move X-axis to 10 
M1==1  ; Turn on Output 1 synchronously 
X20  ; Move X-axis to 20 
the statement M1==1 (the double-equals indicates synchronous assignment) is encountered at the 
beginning of the move to X10, but the action is not actually performed until the start of blending into the 
next move (X20). 
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Note:  
With synchronous assignment, the actual assignment is performed where the 
blending to the new move begins, which is generally ahead of the programmed 
point.  In LINEAR and CIRCLE mode moves, this blending occurs V*TA/2 
distance ahead of the specified intermediate point, where V is the commanded 
velocity of the axis, and TA is the acceleration (blending) time. 

Also, note that the assignment is synchronous with the commanded position, not necessarily the actual 
position.  It is the responsibility of the servo loop to make the commanded and actual positions match 
closely. 
In applications in which Turbo PMAC is executing segmented moves (Isx13 > 0), the synchronous M-
variables are executed at the start of the first Isx13 spline segment after the start of blending into the 
programmed move. 
Turbo PMAC checks to see whether it is time to pull synchronous assignments out of the queue and 
execute them every real-time interrupt (every I8+1 servo cycles).  The smaller I8 is, and the smaller the 
servo cycle time is, the tighter the timing control of the synchronous outputs is. 

Note:  
Synchronous M-variables after the last move or DWELL in the program do not 
execute when the program ends or temporarily stops.  Use a DWELL as the last 
statement of the program to execute these statements. 

If synchronous assignments are left in the queue because the program ended or was stopped before it was 
time for their execution, they can be removed from the queue with the on-line MFLUSH command. 
Syntax.  There are four forms of synchronous M-variable assignment statements: 
M{constant}=={expression} ; Straight equals assignment 
M{constant}&={expression} ; AND-equals assignment 
M{constant}|={expression} ; OR-equals assignment 
M{constant}^={expression} ; XOR-equals assignment 

In all of these forms, the expression on the right side of the statement is evaluated when the line is 
encountered in the program, ahead of the execution of the move.  The value of the expression, the 
variable number, and the operator are placed on a stack for execution at the proper time. 

Execution 
When actual execution of the appropriate move starts, these items are pulled off the stack, and the actual 
action is performed.  In the case of the == syntax, the value is simply assigned to the variable at this time.  
In the case of the other forms (&=, |=, and ^=), the variable is read at this time, the bit-by-bit Boolean 
operation (AND, OR, XOR, respectively) is performed between the variable value and the expression 
value, and the result is written back to the variable. 

Special Boolean Feature 
These Boolean assignment operators are subtly different from what would seem to be equivalent == 
statements.  Consider the two statements acting on an 8-bit M-variable, which attempt to make all of the 
odd bits 1, while leaving the even bits where they are: 
M50==M50 & $AA 
M50&=$AA 

The difference between the two statements is apparent when M50 is read for the operation.  In the first 
case, it is read when the statement is first evaluated in the program.  In the second case, it is read when the 
operation is pulled off the stack, immediately before the variable is written to.  In this second technique 
there is no chance that the value of the M-variable can be changed by some other task in the mean time. 
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Synchronous Assignment of Other Variables 
 Only M-variables can be used in these synchronous assignments, but M-variables can be assigned to the 
registers of any other variables (I, P, or Q), so these synchronous assignments can be used effectively on 
other variable types as well.  Refer to the detailed memory map for addresses of other variables. 

Limitations 
There are a few limitations to these synchronous assignments that the user must be aware of: 

Valid Forms:  First, these statements may not be used with any of the thumbwheel-multiplexer-port M-
variable forms (TWB, TWD, TWR, or TWS).  The Boolean assignments (&=, |=, ^=) cannot be used 
with any double-width M-variable forms (D, L, or F). 

Queue Limits:  The pending synchronous outputs must be stored in a queue of finite size.  Without the 
special lookahead buffer enabled (see below), the queue is fixed at a size of 256 words for all coordinate 
systems combined, with two words required to store each assignment.  Global variable I68, which 
controls the number of active coordinate systems, determines how much of this queue is assigned to each 
coordinate system. 

The following table shows how many words of the queue are assigned to each active coordinate system 
for the different values of I68, and how many assignments can be made per move with and without cutter 
radius compensation active.  (Cutter radius compensation requires the motion program to work ahead an 
extra move, so reduces the number per move.)  Note that two words are required per assignment, and one 
additional word per move. 

I68 
Value 

Highest Numbered 
Coordinate System 

Activated 

Sync. M-Var. 
Stack per C.S. 

Max. Sync M-Var. 
Assignments per 

move, no cutter comp

Max. Sync M-Var. 
Assignments per 

move, cutter comp on
0 C.S. 1 256 words 63 42 
1 C.S. 2 128 words 31 20 

2 - 3 C.S. 3 - 4 64 words 15 10 
4 - 7 C.S. 5 - 8 32 words 7 4 

8 - 15 C.S. 9 - 16 16 words 3 2 

If you are using the special multi-block lookahead feature, the storage requirements for pending 
synchronous assignments can be significant.  For this reason, the special lookahead buffer permits you to 
explicitly reserve space for pending synchronous outputs as well as pending move segments.  If the 
following command were given to define a lookahead buffer: 
&1 DEFINE LOOKAHEAD 500,100 

then a lookahead buffer for Coordinate System 1 would be defined large enough to store 500 move 
segments (each of Isx13 programmed time) for each motor in the coordinate system, plus 100 
synchronous M-variable assignments. 

Comparators 
A comparator evaluates the relationship between two values (constants or expressions).  It is used to 
determine the truth of a condition in a motion or PLC program.  The valid comparators for Turbo PMAC are: 
     =    (equal to) 
     !=   (not equal to) 
     >    (greater than) 
     !>   (not greater than; less than or equal to) 
     <    (less than) 
     !<   (not less than; greater than or equal to) 
     ~    (approximately equal to -- within one) 
     !~   (not approximately equal to -- at least one apart) 

These are described in detail in the Software Reference manual under Mathematical Features. 
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Note: 
<= and >= are not valid Turbo PMAC comparators.  The comparators !> and !<, 
respectively, should be used in their place. 

Conditions 
A condition can be used to control program flow in motion or PLC programs.  It is evaluated as either 
true or false.  It can be used in an IF branching statement or WHILE looping statement.  Turbo PMAC 
supports both simple and compound conditions. 

Note: 
A condition in a command line – IF or WHILE – must be surrounded by 
parentheses. 

Simple Conditions 
A simple condition consists of three parts: 
     {expression} {comparator} {expression} 

If the relationship between the two expressions defined by the comparator is valid, then the condition is 
true; otherwise, the condition is false.  Examples of simple conditions in commands are: 
     WHILE (1<2)               (always true) 
     IF (P1>5000) 
     WHILE (SIN(P2-P1)!>P300/1000) 

Note that parentheses are required around the condition itself. 
Note: 

Unlike in some programming languages, a Turbo PMAC condition may not be 
simply a value, evaluated for zero or non-zero (e.g. IF (P1) is not valid).  It 
must explicitly be a condition with two expressions and a comparator. 

Compound Conditions 
A compound condition is a series of simple conditions connected by the logical operators AND and OR.  
The compound condition is evaluated from the values of the simple conditions by the rules of Boolean 
algebra.  In the Turbo PMAC, AND has execution precedence over OR (that is, ORs operate on blocks of 
ANDed simple conditions).  Turbo PMAC will stop evaluating compound AND conditions after one false 
simple condition has been found.  Examples of compound conditions in command lines are: 
     IF (P1>-20 AND P1<20) 
     WHILE (P80=0 OR I120>300 AND I120<400) 
     IF (Q16!<Q17 AND Q16!>Q18 OR M136<256 AND M137<256) 

Note: 
The simple conditions contained within a compound condition on a single line 
must not be separated by parentheses.  For example, IF((P1>-20) AND 
(P1<20)) is an illegal condition and will be rejected for illegal syntax. 

Single-Line Condition Actions 
In Turbo PMAC motion programs (but not in PLC programs) the action(s) to be executed on a true 
condition can be put on the same line as the condition itself.  In this case, no ENDIF or ENDWHILE is 
required to mark the end of the conditional action, and none may be used; the end of the line is 
automatically the marker for the end of the conditional action.  Examples of this form are: 
IF (P1<0) P1=0 
WHILE (M11=0) DWELL 10 



Turbo PMAC User Manual 

Turbo PMAC Computational Features 253 

In Turbo PMAC rotary program buffers single-line condition actions are the only types of conditional 
statements permitted.  Multiple-line conditions are not permitted because it cannot be guaranteed that the 
line that must be jumped to will be in the rotary buffer at that time. 

Multiple-Line Conditions 
In Turbo PMAC PLC programs (but not in motion programs) compound conditions over several program 
lines are allowed.  The first line of the condition must start with IF or WHILE; following lines of the 
condition must start with AND or OR.  Simple and compound conditions within a program line are always 
evaluated before the conditions on separate lines are combined.  Between the conditions on multiple lines, 
AND takes precedence over OR.  Turbo PMAC will stop evaluating a multi-line AND condition after one 
single-line condition has been found false.   

An example is: 
IF (M11=1 OR M12=1) 
AND (M13=1 OR M14=1) 
... 

Timers 
Each active coordinate system (those numbered from 1 to I68+1) has two timer variables running: Isx11 and 
Isx12.  These two 24-bit registers are general-purpose timers for user program use.  Turbo PMAC decrements 
them once per servo cycle.  Usually a value equal to the time to wait is written scaled in servo cycles.  Then the 
program waits for the register to become less than 0.  The registers will continue to count down until they 
reach –223 (-8,388,608).  They will not roll over back to positive values. 

Since these timers have units of servo cycles, and most users will prefer to work in milliseconds, a 
conversion must be done.  To convert from milliseconds to servo cycles, multiply by 2

23
 (8,388,608) and 

divide by the value of I10. 

The timer variables that belong to a coordinate system can be used by any task on Turbo PMAC, 
including motion programs running in other coordinate systems. 

Example: 
In a PLC program, to turn on an output for a fixed number of milliseconds: 
M1=1 ; Turn on Machine Output 1 
I5111=125*8388608/I10 ; Set timer to 125 msec, in servo cycles 
WHILE (I5111>0) ; Wait for counter to count down to zero 
ENDWHILE 
M1=0    ; Turn off Machine Output 1 

Computational Considerations 
When Turbo PMAC is doing calculations in a PLC program, motion program, or on-line, it uses its 48-bit 
floating-point format for the intermediate form of the calculation.  This gives Turbo PMAC the ability to 
convert between its different numerical formats automatically, and enables it to do bit-wise operations on 
its P and Q-variables even though they are floating-point values.   

The process of converting a number to 48-bit format is very fast and will not be noticeable in most Turbo 
PMAC applications.  However, skipping the conversion step can help increase Turbo PMAC’s speed and 
efficiency for computationally demanding applications.  In such applications, using P, Q, and L- (long-) 
format M-variables skip the conversion step (they are already in 48-bit floating-point format) and are 
computed faster than other variable types. 
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Intermediate Working Form:
48-Bit Floating Point
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SETTING UP A COORDINATE SYSTEM 
Once you have set up your motors, gotten them well tuned, and are doing controlled jogging and homing 
search moves, you will want to assemble one or more coordinate systems from the motors so that you can 
run motion programs. 

Turbo PMAC has several methods of coordinating multiple motions, whether they are all under Turbo 
PMAC’s direct control or not.  Depending on the user’s situation and needs, one of the coordination 
strategies below can be implemented. 

What is a Coordinate System? 
A coordinate system in Turbo PMAC is a grouping of one or more motors for the purpose of 
synchronizing movements.  A coordinate system (even with only one motor) can run a motion program; a 
motor by itself cannot.  Turbo PMAC can have up to 16 coordinate systems, addressed as &1 to &16, in a 
flexible fashion (e.g. 16 coordinate systems of 1 or 2 motors each, 1 coordinate system of 9 motors, 4 
coordinate systems of 8 motors each, etc.).   

In general, if you want certain motors to move in a coordinated fashion, put them in the same coordinate 
system.  If you want them to move independently of each other, put them in separate coordinate systems.  
Different coordinate systems can run separate programs at different times (including overlapping times), or 
even run the same program at different (or overlapping) times. 

A coordinate system must first be established by assigning motors to axes in that coordinate system.  For 
simple relationships between motors (actuators) and axes (tool coordinates), this is done with on-line 
commands called “axis-definition statements” (see below).  For more complex relationships, it is done by 
writing special kinematic subroutines that describe the relationship (covered in a following section).   

A coordinate system must have at least one motor assigned to an axis within that system, or it cannot run a 
motion program, even non-motion parts of it.  When a program is written for a coordinate system, if 
simultaneous motions are desired of multiple motors, their move commands are simply put on the same 
line, and the moves will be coordinated. 

What is an Axis? 
An axis is an element of a coordinate system.  It can be thought of as one of the coordinates of the tool, or 
of the mechanics relative to the tool.  An axis is often similar to a motor, but not the same thing.  An axis is 
referred to by letter.  There can be up to nine independent axes in a coordinate system, selected from X, Y, 
Z, A, B, C, U, V, and W (it is possible to assign multiple motors to an axis).  Normally, an axis is defined 
by assigning it to a motor with a scaling factor and an offset (X, Y, and Z may be defined as linear 
combinations of three motors, as may U, V, and W).  The variables associated with an axis defined in this 
manner are scaled floating-point values.   

Single-Motor Axes 
In the vast majority of cases, there will be a one-to-one correspondence between motors and axes.  That is, 
a single motor is assigned to a single axis in a coordinate system.  Even when this is the case, however, the 
matching motor and axis are not completely synonymous.  The axis is scaled into engineering units, and 
deals only with commanded positions.  Except for the PMATCH function, calculations go only from axis 
commanded positions to motor commanded positions, not the other way around. 
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Multiple-Motor Axes 
More than one motor may be assigned to the same axis in a coordinate system.  This is common in gantry 
systems, where motors on opposite ends of the cross-piece are always trying to do the same movement.  
By assigning multiple motors to the same axis, a single programmed axis move in a program causes 
identical commanded moves in multiple motors.  This is commonly done with two motors, but up to eight 
motors have been used in this manner with Turbo PMAC.  Remember that the motors still have 
independent servo loops, and that the actual motor positions will not necessarily be exactly the same. 

Coordinating parallel gantry motors in this fashion is in general superior to using a master/slave technique 
(which can be done on Turbo PMAC with the position following feature described in the Synchronizing 
Turbo PMAC to External Events section of this manual).  In the master/slave technique, the actual 
trajectory of the master as measured at the encoder, with all of the disturbances and quantization errors, 
becomes the commanded trajectory for the slave, whose actual trajectory will have even more errors.  The 
roughness in the slave motor’s commanded trajectory makes it difficult or impossible to use feedforward 
properly, which introduces a lag.  True, if the master gets a disturbance, the slave will see it and attempt to 
match it, but if the slave gets a disturbance, the master will not see it. 

Care must be taken in the startup and homing of gantry motors that have a tight mechanical linkage.  In 
general, the motors will power up not quite in ideal alignment with each other.  The usual procedure is to 
do a homing search move on one motor with the second motor slaved to it, followed by an offset back out 
far enough that the second motor knows which way it has to go to its home trigger.  Next the second motor 
is made the master and is told to do a homing search move with the first motor slaved to it.  This will leave 
the first motor slightly off from its home position; it can now be told to go there with just a J=0 command.  
The slaving is then turned off, and the motors are commanded identically through joint axis commands. 

Phantom Axes 
An axis in a coordinate system can have no motors attached to it (a phantom axis), in which case 
programmed moves for that axis cause no movement, although the fact that a move was programmed for 
that axis can affect the moves of other axes and motors.  For instance, if sinusoidal profiles are desired on a 
single axis, the easiest way to do this is to have a second, phantom axis and program circularly interpolated 
moves. 

Axis Definition 
A coordinate system is established by using axis definition statements.  An axis is defined by matching a 
motor (which is numbered) to one or more axes (which are specified by letter).   

Matching Motor to Axis 
The simplest axis definition statement is something like #1->X.  This simply assigns motor #1 to the X-
axis of the currently addressed coordinate system.  When an X-axis move is executed in this coordinate 
system, motor #1 will make the move.   

Scaling and Offset 
The axis definition statement also defines the scaling of the axis’ user units.  For instance,  
#1->10000X also matches motor #1 to the X axis, but this statement sets 10,000 encoder counts to one 
X-axis user unit (e.g. inches or centimeters).  This scaling feature is used almost universally.  Once the 
scaling has been defined in this statement, you can program the axis in engineering units without ever 
needing to deal with scaling again. 

The statement #1->10000X+20000 also sets the axis zero at 20,000-count (2-user-unit) distance from 
the motor zero (home position).  This offset is rarely used.  Further, an axis definition statement can match 
a motor to a linear combination of Cartesian axes (see below), which allows for rotation of a coordinate 
system, or orthogonality correction.   
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Axis Types 
An axis can have several attributes, as specified below.  Note that for most axis functions, it does not 
matter what type of axis is used, or what letter is given it.  However, for some features, only particular axis 
names may be used. 
Cartesian Axes 
A Cartesian axis is one that may be put into a grouping of two or three axes so that movement along an 
axis is a linear combination of motion on two or three motors.  X, Y, and Z form one set of Cartesian axes; 
U, V, and W form the other.  In addition, there are several commands (NORMAL, circular move) that can 
reference the X, Y, and Z-axes through the use of I, J, and K-vectors, respectively. 
To make a Cartesian axis a linear combination of several motors, do so with an extended form of the axis 
definition statement.  For instance, a 30o rotation of the axes can be received from the motors with the 
following axis definition statements: 
#1->8660.25X-5000Y 
#2->5000X+8660.25Y 

In this case, a request for a Y-axis (or an X-axis) move would cause both motors #1 and #2 to move. 
Only the X, Y, and Z Cartesian axes may be used for PMAC’s circular interpolation routines, cutter radius 
compensation routines, and matrix axis transformation routines.  If you want to do circular interpolation on 
other axes, you can do it through blended short moves and trigonometry in subroutines. 
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Rotary Axes 
A rotary axis is one that permits rollover, but cannot be assigned to combinations of motors.  A rotary axis 
must be named A, B, or C.  The rollover is technically a motor function, specified by Ixx27 for Motor xx, 
but it can only operate when the motor is assigned to a rotary axis.  Rollover permits the motor to take the 
shortest path around the rotary range, or the specified direction to the destination, when an absolute axis 
move is specified in a program. 
Vector Feedrate Axes 
A vector feedrate axis is an axis in a coordinate system that figures into the calculations of a feedrate-
specified move.  The time for a feedrate-specified move is calculated as the vector distance for the feedrate 
axes (calculated by Pythagorean theorem as the square root of the sum of the squares of the axis distances) 
divided by the feedrate itself.  If other axes are commanded to move in the same statement, they will be 
linearly interpolated over this same computed time. 
The default feedrate axes are the Cartesian axes X, Y, and Z.  This setting can be changed with the FRAX 
(feedrate axis) command.  Any axis involved in the arc of a CIRCLE-mode move is automatically a vector 
federate axis for that move, even if not explicitly declared as such. 
Conversion from Axis to Motor Position 
Technically, the conversion from axis (tool-tip) positions to motor (joint, or actuator) positions is known as 
the inverse-kinematic conversion.  Turbo PMAC automatically converts from the programmed axis 
positions (in user engineering units) to motor positions (in counts) every programmed move, or in the case 
of segmented moves, every segment of the move.   
In the case of axes defined with axis-definition statements, Turbo PMAC simply plugs the axis values into 
the equation of the definition statement, and computes the resulting motor position.  (The axis-definition 
statement is therefore an inverse-kinematic equation.)  In the case of axes defined using kinematic 
subroutines, Turbo PMAC executes the user-written inverse-kinematic subroutine to compute these (see 
the Coordinate-System Kinematic Calculation section in this manual). 
Conversion from Motor to Axis Positions 
Technically, the conversion from motor (joint, or actuator) positions to axis (tool-tip) positions is known as 
the forward-kinematic conversion.  There is only one type of calculation in which Turbo PMAC 
automatically performs these forward-kinematic calculations.  This is in the PMATCH (position-match) 
function, which converts from commanded motor positions to commanded axis positions.  This is needed 
in only a few cases. 
First, when a motion program is started with an R (run) or S (step) command, Turbo PMAC automatically 
executes a PMATCH command internally to compute the starting axis positions for the first move 
calculations.  Within a motion program, it normally assumes that the endpoint of the previous move is the 
starting point for the subsequent move, and so does not do these calculations each move.  However, when 
a program is started, it does these calculations because there is a good chance that motors may have been 
moved independently (e.g. jog moves, open-loop moves, stopping on an error condition); in other words, 
the axes does not know where the motors have gone and motor and axis positions may not match properly. 
Second, if the relationship between motor and axis positions is changed inside a motion program (e.g. 
changing position-following offset mode, directly writing to the position-bias or axis scaling registers), 
issue a PMATCH command before the next programmed move (using the CMD"PMATCH" structure).  
Otherwise, the next move will not execute properly. 
For axes defined with a simple definition statement, the PMATCH function inverts the equations contained 
in the axis-definition statements for the coordinate system, using motor commanded positions, and solves 
for axis commanded positions.  If more than one motor is assigned to the same axis (e.g. #1->10000X, 
#2->10000X), the commanded position of the lower-numbered motor is used in the PMATCH 
calculations.  For axes in a coordinate system with a user-written forward-kinematic subroutine (see 
below), this subroutine is executed automatically for the PMATCH function. 
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The PMATCH function assumes that the position referencing – either a homing search move or an absolute 
position-sensor read – has been done for each motor in the coordinate system.  Each motor has a home 
complete status bit that is set true if either has been done, and to check for this, do it at the application 
level. 
Some users will want to read instantaneous motor position registers (particularly motor actual position) – 
Turbo PMAC does not compute instantaneous axes positions automatically – and convert them to axis 
positions for position-reporting purposes.  These forward-kinematic calculations must be done at the 
application level, either in Turbo PMAC (usually in a PLC program) or in the host computer. 

Coordinate-System Kinematic Calculations 
Turbo PMAC provides structures that enable easy implementation and execution of complex kinematic 
calculations.  Kinematic calculations are required when there is a non-linear mathematical relationship 
between the tool-tip coordinates and the matching positions of the actuators (joints) of the mechanism, 
typical in non-Cartesian geometries.  They are used most commonly in robotic applications, but can be 
used with other types of actuators that are not considered robotic.  For example, in 4-axis or 5-axis 
machine tools with one or two rotary axes, it is desirable to program the cutter-tip path and let the 
controller compute the necessary motor positions. 
This capability permits the motion for the machine to be programmed in the natural coordinates of the 
tool-tip – usually Cartesian coordinates, whatever the underlying geometry of the machine.  The kinematic 
routines are embedded in the controller by the integrator, and operate invisibly to the people programming 
paths and the machine operators.  These routines can be unchanging for the machines, but with 
parameterization and/or logic, they can adapt to normal changes such as tool lengths and different end-
effectors. 
In Turbo PMAC terminology, the tool-tip coordinates are for axes, which are specified by letter, and have 
user-specified engineering units.  The joint coordinates are for motors, which are specified by numbers, 
and have the raw units of “counts”. 

Note: 

PMAC’s standard axis-definition statements handle linear mathematical 
relationships between joint motors and tool-tip axes.  This section pertains to the 
more difficult case of the non-linear relationships. 

The forward-kinematic calculations use the joint positions as input, and convert them to tool-tip 
coordinates.  These calculations are required at the beginning of a sequence of moves programmed in tool-
tip coordinates to establish the starting coordinates for the first programmed move.  The same type of 
calculations can also be used to report the actual position of the actuator in tool-tip coordinates, converting 
from the sensor positions on the joints.  (The Turbo PMAC forward-kinematic program buffer does not 
support this position-reporting functionality, but functionally identical calculations can be used in a PLC 
program for this purpose.) 
The inverse-kinematic calculations use the tool-tip positions as input, and convert them to joint 
coordinates.  These calculations are required for the end-point of every move that is programmed in tool-
tip coordinates, and if the path to the end-point is important, they must be done at periodic intervals during 
the move as well. 
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Note:  

Formal robotic analysis makes a distinction between joint position, and the actuator 
positions required for that joint position.  Usually, while the two positions are the 
same, there are cases, such as when two motors drive a joint differentially, where 
there is an important difference.  If your system has a distinction between joint and 
actuator positions, your kinematic calculations must include this distinction, to go 
all the way between actuator positions and tool-tip positions, with joint positions as 
an intermediate step.  This documentation will refer to only joint positions, although 
this could technically refer to actuator positions in some applications. 

Creating the Kinematic Program Buffers 
Turbo PMAC implements the execution of kinematic calculations through special forward-kinematic and 
inverse-kinematic program buffers.  Each coordinate system can have one of each of these program 
buffers, and the algorithms in them can be executed automatically at the required times, called as 
subroutines from the motion program. 

Creating the Forward-Kinematic Program 
The on-line OPEN FORWARD command opens the forward-kinematic buffer for the addressed coordinate 
system for entry.  The on-line CLEAR command erases any existing contents of that buffer.  Subsequently, 
any program command sent to Turbo PMAC that is legal for a PLC program (except ADDRESS, CMDx, 
and SENDx) will be entered into the open buffer.  The on-line CLOSE command stops entry into the 
buffer. 

Before any execution of the forward-kinematic program, Turbo PMAC will automatically place the present 
commanded motor positions for each Motor xx in the coordinate system into global variable Pxx.  These 
are floating-point values, with units of counts.  The program can then use these variables as the “inputs” to 
the calculations. 

After any execution of the forward-kinematic program, Turbo PMAC will take the values in Q1 – Q9 for 
the coordinate system in the user’s engineering units, and copy these into the 9 axis target position 
registers for the coordinate system.  There they are used as the starting positions for the first programmed 
move that follows.  The following table shows the axis whose position each variable affects, and the 
suggested M-variable number for each of these registers (listed for debugging purposes). 

Axis-
Position Q-

Variable 

Axis 
Letter 

Target 
Register 

Suggested 
M-Variable 

Axis-
Position Q-

Variable 

Axis 
Letter 

Target 
Register 

Suggested 
M-Variable 

Axis-
Position Q-

Variable 

Axis 
Letter 

Target 
Register 

Suggested 
M-Variable 

Q1 A Msx41 Q4 U Msx44 Q7 X Msx47 
Q2 B Msx42 Q5 V Msx45 Q8 Y Msx48 
Q3 C Msx43 Q6 W Msx46 Q9 Z Msx49 

The basic purpose of the forward-kinematic program, then, is to take the joint-position values found in P1 
– P32 for the motors used in the coordinate system, compute the matching tip-coordinate values, and place 
them in variables in the Q1 – Q9 range. 

It is a good idea to check in your forward-kinematics program to make sure that a position reference has 
been properly established for each motor, either through a homing search move or an absolute position 
read.  This can be done by evaluating the home complete status bit for each motor; the run-time error bit 
can be set if the referencing has not been done (see example). 
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Reserved Variables 
If kinematic calculations are used in a system, the global variables P1 – P32 and the coordinate-system 
variables Q1 – Q10 should not be used for any other purposes, because Turbo PMAC will write to these 
variables automatically in executing the kinematic routines.  (Q10 is used to distinguish between inverse-
kinematic calculations that involve velocity calculations and those that do not, as explained below.)  If 
inverse-kinematic calculations involving PVT-mode moves are used, additionally the global variables 
P101-P132 and the coordinate-system variables Q11 – Q19 should not be used for any other purposes, 
because Turbo PMAC will write to these variables automatically in executing the velocity portions of the 
inverse-kinematic routines. 
Example 

 
Take the example of a 2-axis shoulder-elbow robot, with an upper-arm length (L1) of 400mm, and a lower-
arm length (L2) of 300mm.  Both the shoulder joint (A) and the elbow joint (B) have resolutions of 1000 
counts per degree.  When both joints are at their zero-degree positions, the two links are both extended 
along the X-axis.  The forward-kinematic equations are: 

)BAcos(2L)Acos(1LX ++=  
)BAsin(2L)Asin(1LY ++=  

To implement these equations in a Turbo PMAC forward-kinematic program for Coordinate System 1 that 
converts the shoulder angle in Motor 1 and the elbow angle in Motor 2 to the X and Y tip coordinates in 
millimeters, the following setup and program could be used: 
; Setup for program 
I15=0     ; Trig calculations in degrees 
&1     ; Address CS 1 
M145->Y:$0000C0,10,1  ; Motor 1 home complete bit 
M245->Y:$000140,10,1  ; Motor 2 home complete bit 
M5182->Y:$00203F,22,1  ; CS 1 run-time error bit 
Q91=400    ; L1 
Q92=300    ; L2 
Q93=1000    ; Counts per degree for A and B 

; Forward-kinematic program buffer for repeated execution 
&1 OPEN FORWARD   ; Forward kinematics for CS 1 
CLEAR     ; Erase existing contents 
IF (M145=1 AND M245=1) ; Properly position referenced? 
  Q7=Q91*COS(P1/Q93)+Q92*COS((P1+P2)/Q93) ; X position 
  Q8=Q91*SIN(P1/Q93)+Q92*SIN((P1+P2)/Q93) ; Y position 
ELSE     ; Not valid; halt operation 
  M5182=1    ; Set run-time error bit 
ENDIF 
CLOSE 
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The forward-kinematic program must calculate the axis positions for all of the axes in the coordinate 
system, whether or not all of the motor positions are calculated in the inverse-kinematic program (see 
below).  For instance, if this arm had a vertical axis at the tip with a normal axis definition statement in 
C.S. 1 of #3->100Z (100 counts per millimeter – a linear relationship between motor and axis), the above 
program would still need to perform the forward-kinematic calculation for this motor/axis with a line such 
as Q9=P3/100. 

Note:  

If the forward-kinematic algorithm is not correct, and does not yield a true 
mathematical inverse of the inverse-kinematic algorithm, there will be a sudden and 
potentially dangerous jump at the beginning of the first move executed after the 
forward kinematic algorithm is executed.  Make sure early in development that the 
Ixx11 fatal following error limits are set as tight as possible to ensure that any large 
errors will cause a trip and not result in violent motion. 

Iterative Solutions 
Some systems, particularly parallel-link mechanisms such as Stewart platforms (hexapods), do not have 
reasonable closed-form solutions for the forward-kinematic equations, and require iterative numerical 
solutions.  Typically, these cases are handled by a looping WHILE … ENDWHILE construct in the 
forward-kinematic program.  Do not permit indefinite looping – if the solution does not converge in the 
expected number of cycles, the program should be stopped (see the inverse-kinematic equations, below, 
for examples of how to stop the program).   

In this case, it is best to leave the I11 program-calculation delay variable at its default value of 0, so the 
calculations can take as long as needed.  If I11 is greater than 0, and the forward-kinematic calculations 
plus the first move calculations do not finish within I11 msec, Turbo PMAC will stop the program with a 
run-time error.  In any case, if the forward-kinematic calculations take more than about 25 msec, it is 
possible to trip the watchdog timer. 

Position-Reporting Forward Kinematics 
Another use of forward-kinematic calculations is for the position reporting function, reading actual joint 
positions at any time, and converting them to tip positions for reporting.  The forward-kinematic program 
buffer on Turbo PMAC does not support this function.  (Using the program for both initial-position 
calculations and position reporting could lead to potential overlapping use and register conflicts.) 

If the application requires the Turbo PMAC to do forward-kinematic calculations for position reporting as 
well as for establishing initial tip position, the position-reporting calculations should be put into a PLC 
program.  The following PLC program could be used for the position-reporting function of the example 
“shoulder-elbow” robot: 
; M-variable definitions for actual position registers 
M162->D:$8B ; Motor 1 actual position 
M262->D:$10B ; Motor 2 actual position 

; Forward-kinematic PLC program buffer for position reporting 
OPEN PLC 10 ; Forward kinematics for CS 1 
CLEAR ; Erase existing contents 
P51=M162/(I108*32*Q93) ; Actual A position (deg) 
P52=M262/(I208*32*Q93) ; Actual B position (deg) 
Q27=Q91*COS(P51)+Q92*COS(P51+P52) ; Actual X position 
Q28=Q91*SIN(P51)+Q92*SIN(P51+P52) ; Actual Y position 
CLOSE 
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Creating the Inverse-Kinematic Program 
The on-line OPEN INVERSE command opens the inverse-kinematic buffer for the addressed coordinate 
system for entry.  The on-line CLEAR command erases any existing contents of that buffer.  Subsequently, 
any math or logic program command sent to Turbo PMAC that is legal for a PLC program (this does not 
include ADDRESS, DISPLAY, CMDx, or SENDx) will be entered into the open buffer.  The on-line CLOSE 
command stops entry into the buffer. 

Before any execution of the inverse-kinematic program, Turbo PMAC will place the present axis target 
positions for each axis in the coordinate system into variables in the range Q1 – Q9 for the coordinate 
system.  These are floating-point values, in engineering units.  The program can then use these variables as 
the “inputs” to the calculations.  The following table shows the variable for each axis: 

Axis-
Position Q-

Variable 

Axis 
Letter 

Axis-
Position Q-

Variable 

Axis 
Letter 

Axis-
Position Q-

Variable 

Axis 
Letter 

Q1 A Q4 U Q7 X 
Q2 B Q5 V Q8 Y 
Q3 C Q6 W Q9 Z 

After any execution of the inverse-kinematic program, Turbo PMAC will read the values in those variables 
Pxx (P1 – P32) that correspond to Motors xx in the coordinate system with axis-definition statements of 
#xx->I.  These are floating-point values, and Turbo PMAC expects to find them in the raw units of 
“counts.”  Turbo PMAC will automatically copy these values into the target position registers for these 
motors (suggested M-variable Mxx63), where they are used for the fine interpolation of these motors.   

There can be other motors in the coordinate system that are not defined as inverse-kinematic axes; these 
motors get their position values directly from the axis-definition statement and are not affected by the 
inverse-kinematic program. 

The basic purpose of the inverse-kinematic program, then, is to take the tip-position values found in Q1 – 
Q9 for the axes used in the coordinate system, compute the matching joint-coordinate values, and place 
them in variables in the P1 – P32 range. 

Example 
Continuing with our example of the two-axis shoulder-elbow robot, and for simplicity’s sake limiting 
ourselves to positive values of B (the right-armed case), we can write our inverse-kinematic equations as 
follows: 
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To implement these equations in a Turbo PMAC inverse-kinematic program for Coordinate System 1 that 
converts the X and Y tip coordinates in millimeters to the shoulder angle in Motor 1 and the elbow angle in 
Motor 2, the following program could be used.  System constants Q91, Q92, and Q93 are the same as for 
the above forward kinematic program. 
; Setup for program 
&1 
#1->I     ; Motor 1 assigned to inverse kinematic axis in CS 1 
#2->I     ; Motor 2 assigned to inverse kinematic axis in CS 1 
M5182->Y:$00203F,22,1  ; CS 1 run-time error bit 

; Pre-compute additional system constants 
Q94=Q91*Q91+Q92*Q92  ; L1^2 + L2^2 
Q95=2*Q91*Q92   ; 2*L1*L2 
Q96=Q91*Q91-Q92*Q92  ; L1^2 – L2^2 

; Inverse-kinematic algorithm to be executed repeatedly 
&1 OPEN INVERSE   ; Inverse kinematics for CS 1 
CLEAR     ; Erase existing contents 
Q20=Q7*Q7+Q8*Q8   ; X^2+Y^2 
Q21=(Q20-Q94)/Q95   ; cos(B) 
IF (ABS(Q21)<0.9998)  ; Valid solution w/ 1 deg margin? 
  Q22=ACOS(Q21)   ; B (deg) 
  Q0=Q7    ; X into cos argument for ATAN2 
  Q23=ATAN2(Q8)   ; A+C = ATAN2(Y,X) 
  Q24=ACOS((Q20+Q96)/(2*Q91*SQRT(Q20))) ; C (deg) 
  Q25=Q23-Q24   ; A (deg) 
  P1=Q25*Q93   ; Motor 1 = 1000A 
  P2=Q22*Q93   ; Motor 2 = 1000B 
ELSE     ; Not valid, halt operation 
  M5182=1    ; Set run-time error bit 
ENDIF 
CLOSE 

Notes on the example: 

• By choosing the positive arc-cosine solutions, we are automatically selecting the right-armed case.  In 
a more general solution, we would have to choose whether the positive or negative is used, based on 
some criterion. 

• Increased computational efficiency could be obtained by combining more operations into single 
assignment statements.  Calculations were split out here for clarity’s sake. 

• This example does not use the substitution macros permitted by the Executive program to substitute 
meaningful names for variables.  Use of these substitution macros in complex applications is strongly 
encouraged. 

• This example stops the program for cases in which no inverse kinematic solution is possible.  It does 
this by setting the “run-time error” status bit for the coordinate system, which causes Turbo PMAC to 
halt motion program execution and issue the Abort command.  Other strategies may be used to cope 
with this problem. 

If this robot had a vertical axis at the tip, the relationship between motor and axis could be defined with a 
normal linear axis-definition statement (e.g. #3->100Z for 100 counts per millimeter), and the motor 
position would be calculated without the special inverse-kinematic program.  Alternately, the motor could 
be defined as an inverse-kinematic axis (#3->I) and the motor position could be calculated in the inverse-
kinematic program (e.g. Q3=Q49*100 to set Motor 3 position from the Z-axis with 100 counts per unit). 
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Rotary Axis Rollover 
If a rotary inverse-kinematic axis in the system has the capability to “roll over,” the inverse-kinematic 
program must handle the rollover calculations explicitly.  The automatic rollover capability of the A, B, 
and C axes with Ixx27 is not available for inverse-kinematic axes.  The key to handling rollover properly is 
to take the difference between the new and the old values and make sure that this difference is in the +180o 
range.  This can be done in Turbo PMAC with the ‘%’ modulo (remainder) operator.  This difference is 
then added to the old value.  Mathematically, the equations are: 

( ) ( )180%oldtempnew −−−= θθθ∆  

θ∆θθ += oldnew  

When the modulo operation is done in Turbo PMAC with a negative operand ‘-n’ (such as –180), the 
result is always in the +n range.  

For example, if the A-axis in the above example had the capability of rolling over, the line Q25=Q23-
Q24 could be replaced with:  
Q25=P1/Q93+(Q23-Q24-P1/Q93)%-180 ; Handle rollover cases 

The value (P1/Q93) is θold, from the previous cycle of the inverse kinematics or initially from the forward 
kinematics; and value (Q23-Q24) is θnew-temp, both in degrees. 

Velocity Calculation Flag 
In every move mode other than PVT mode, Turbo PMAC sets the variable Q10 for the coordinate system 
to 0 automatically as a flag to the inverse-kinematic program not to compute velocity values.  If planning 
to use both PVT mode and other modes, evaluate Q10 explicitly in the inverse-kinematic program (see 
below). 

Iterative Solutions 
Some robot geometries do not have closed-form inverse-kinematic solutions, and require iterative 
numerical solutions.  Typically these cases are handled by a looping WHILE … ENDWHILE construct in 
the inverse-kinematic program.  Multiple executions of the WHILE loop inside the inverse-kinematic 
program do not disable blending as they would inside the main motion program (due to the double jump-
back rule), but excessive iterations can cause the calculations not to be done within the required time.   
This will cause a run-time error, aborting the program automatically. 

Inverse-Kinematic Program for PVT Mode 
The Turbo PMAC can also support the conversion of velocities from tip space to joint space in the inverse-
kinematic program to enable the use of PVT mode with kinematic calculations.  With PVT-mode moves, 
the position calculations are done just as for any other move mode.  An additional set of velocity-
conversion calculations must also be done. 

When executing PVT-mode moves with kinematics active (Isx50 = 1), Turbo PMAC will automatically 
place the commanded axis velocity values from the PVT statements into variables Q11 – Q19 for the 
coordinate system before each execution of the inverse-kinematic program.  These are signed floating-
point values in the engineering velocity units defined by the engineering length/angle units and the 
coordinate system’s Isx90 time units (e.g. mm/min or deg/sec).  The following table shows the variable 
used for each axis: 

Axis-Velocity 
Q-Variable 

Axis 
Letter 

Axis-Velocity 
Q-Variable 

Axis 
Letter 

Axis-Velocity Q-
Variable 

Axis Letter 

Q11 A Q14 U Q17 X 
Q12 B Q15 V Q18 Y 
Q13 C Q16 W Q19 Z 
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Turbo PMAC will also set Q10 to 1 in this mode as a flag to the inverse-kinematic program that it should 
use these axis (tip) velocity values to compute motor (joint) velocity values.   

In this mode, after any execution of the inverse-kinematic program, Turbo PMAC will read the values in 
those variables P1xx (P101 – P132) for each Motor xx in the coordinate system defined as inverse-
kinematic axes (#xx->I).  These are floating-point values, and Turbo PMAC expects to find them in 
units of counts per Isx90 milliseconds.  Turbo PMAC will use them as motor (joint) velocity values along 
with the position values in Pxx to create a PVT move for the motor.   

For PVT moves, then, the inverse-kinematic program not only must take the axis (tip) position values in 
Q1 – Q9 and convert them to motor (joint) position values in P1 – P32; but also it must take the axis (tip) 
velocity values in Q11 – Q19 and convert them to motor (joint) velocity values in P101 – P132.  
Technically, the velocity conversion consists of the solution of the “inverse Jacobian matrix” for the 
mechanism. 

Example 
Continuing with the “shoulder-elbow” robot of the above examples, the equations for joint velocities as a 
function of tip velocities are:  
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The angles A and B have been computed in the position portion of the inverse-kinematic program.  Note 
that the velocities become infinite as the angle B approaches 0 degrees or 180 degrees.  Since in our 
example we are limiting ourselves to positive values for B, we will trap any solution with a value of B less 
than 1o or greater than 179o (sin B < 0.0175) as an error. 
&1 
OPEN INVERSE 
CLEAR 
{Position calculations from above} 
IF (Q10=1) ; PVT mode? 
  Q26=SIN(Q25) ; sin(B) 
  IF (Q26>0.0175) ; Not near singularity? 
    Q27=Q91*Q92*Q26 ; L1*L2*sinB 
    Q28=COS(Q25+Q22) ; cos(A+B) 
    Q29=SIN(Q25+Q22) ; sin(A+B) 
    Q30=(Q92*Q28*Q17+Q92*Q29*Q18)/Q27 ; dA/dt 
    Q31=(-Q7*Q17-Q8*Q18)/Q27 ; dB/dt 
    P101=Q30*Q93 ; #1 speed in cts/(Isx90 msec) 
    P102=Q31*Q93 ; #2 speed in cts/(Isx90 msec) 
  ELSE ; Near singularity 
    M5182=1 ; Set run-time error bit 
  ENDIF 
ENDIF 
CLOSE 

Note that in this case the check to see if B is near 0o or 180o is redundant because we have already done 
this check in the position portion of the inverse-kinematic algorithm.  This check is shown here to illustrate 
the principle of the method.  In this example, a run-time error is created if too near a singularity; other 
strategies are possible. 
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Coordinate System Transformations with Kinematics 
A coordinate system established with kinematic algorithms can still use the on-line {axis}= and 
buffered PSET translations of the axis programming origins, just as for a coordinate system with standard 
axis definition statements.  When one of these commands is executed, Turbo PMAC executes the inverse 
kinematic algorithm to calculate a new position bias register (suggested M-variable Mxx64) for each 
affected motor in the coordinate system.  This is done invisibly to the user; the effect is to offset the 
programming origin for the axis.  Axis transformations for the X, Y, and Z axes may also be used with the 
kinematic algorithms. 

Executing the Kinematic Programs 
Once the forward-kinematic and inverse-kinematic program buffers have been created for a coordinate 
system, Turbo PMAC will execute them automatically at the proper times once the kinematic calculations 
have been enabled by setting coordinate system I-variable Isx50 to 1. No modification to a motion 
program is required for access to the kinematic programs at the proper time. 

The forward-kinematic program is executed automatically each time an R (run) or S (step) command is 
given to the coordinate system if Isx50 is 1.  This is done to ensure that the starting tip (axis) position is 
correct for the calculation of the initial move, even if joint (motor) moves, such as jogs, have been done 
since the last programmed move.  The forward-kinematic program is also executed automatically each 
time a PMATCH command is given to the coordinate system if Isx50 is 1. 

(With Isx50 = 0 and normal axis definition statements, Turbo PMAC executes this same function by 
mathematically inverting the equations of the axis-definition statements to derive the starting axis positions 
from present commanded motor positions.  The axis-definition statements are technically inverse-
kinematic equations, so their mathematical inverse forms the forward-kinematic equations.  Because the 
standard axis-definition statements are limited to mathematically linear equations, in general their inverse 
can be derived automatically.) 

 

 
The inverse-kinematic program is executed automatically each time Turbo PMAC computes new axis 
positions during the execution of a motion program.  This occurs at the end-point of each programmed 
move block for non-segmented moves, such as those in RAPID mode.  It occurs at the end of each 
intermediate segment – every Isx13 milliseconds – for segmented moves (LINEAR and CIRCLE-mode 
moves with Isx13 > 0).   

(With normal axis definition statements, Turbo PMAC executes this same function by using the equations 
of the axis definition statements to derive motor positions from axis positions.) 
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When the inverse-kinematic program is executed only at programmed end-points, as in RAPID mode, all 
interpolation occurs in joint space.  In this case, the path of the tip from point to point is not well defined if 
the programmed end-points are far apart, and in general it will not be a straight line. 

When the inverse-kinematic program is executed at each intermediate segment boundary, the coarse 
interpolation (segmentation) is done in tip space, so the path is well defined.  After the conversion of the 
segment coordinates to joint positions, the fine interpolation between segment boundaries is done in joint 
space as a cubic spline, but with the segments close together (typically 5 to 20 msec each) any deviations 
from the ideal tip path are negligible. 

If the special lookahead buffer for the coordinate system is active (LINEAR or CIRCLE-mode moves with 
the lookahead buffer defined for the coordinate system, Isx13 > 0, and Isx20 > 0), the internal spline 
segments computed for the joints (motors) are entered into the lookahead buffer automatically.  Here they 
are continually checked against position, velocity, and acceleration limits for each motor.  This permits 
Turbo PMAC to check and correct automatically for the motion anomalies that occur near singularities, so 
you do not need to do so. 

Coordinate System Time-Base 
Each coordinate system has its own time base that helps control the speed of interpolated moves in that 
coordinate system.  Turbo PMAC’s interpolation routines increment an “elapsed-time” register every servo 
cycle.  While the true time for the servo cycle is set in hardware for the entire system (by jumpers E98, 
E29-E33, and E3-E6 on a Turbo PMAC1, by hardware-control variables I7m00, I7m01, and I7m02 for a 
Turbo PMAC2 without MACRO, or by I6800, I6801, and I6802 for a Turbo PMAC2 with MACRO) and 
does not change for a given application, the value of time added to the “elapsed-time” register for a 
coordinate system each servo cycle is just a number in a memory register.  It does not have to match the 
true physical time for the cycle. 

The units for the time base register are such that 223 (8,388,608) equals 1 millisecond.  The default value 
for the time-base register is equal to the value of I10.  The factory default value for I10 of 3,713,707 
represents the default physical servo cycle time of 442 microseconds. 

If the value of the time base register is changed from I10, interpolated moves will move at a different 
speed from that programmed.  Many people call this capability feedrate override.  Note that the physical 
time does not change, so servo loop dynamics remain unchanged. 
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Each coordinate system has a variable Isx93 that contains the address of the register that the coordinate 
system uses for its time base.  With the default value of Isx93, the coordinate system gets its time base 
information from a register that is set by % commands from the host computer.  A %100 command puts a 
value equal to I10 in this register; a %50 command puts a value equal to I10/2 in this register. 

Note:  

A motor that is not assigned to any coordinate system uses Coordinate System 1’s 
time base value for executing its jogging and homing moves.  To use another base 
value, assign the motor to a different coordinate system, even if there is no need to 
write a motion program to run this motor. 

Regardless of the source of the time base information, a % query command cause PMAC to report back the 
value of the present time base expressed as a percentage of I10. 

Time base information can come from other sources.  The most common alternative to command-sourced 
time base is external frequency-sourced time base, in which the time base value is proportional to the 
frequency of a master encoder.  This provides a powerful position-synchronized slaving mechanism that is 
commonly called electronic cam. 

See instructions for using an external time base, in the Synchronizing Turbo PMAC to External Events 
section of this manual. 
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WRITING AND EXECUTING MOTION PROGRAMS 
Motion programs are Turbo PMAC’s chief mechanism for describing the desired motion with the 
associated math, logic, and I/O operations.  They provide a simple, yet powerful and flexible means for 
describing the motion and operations synchronous to that motion. 

Turbo PMAC can hold up to 224 motion programs at one time.  Any coordinate system can run any of 
these programs at any time, even if another coordinate system is already executing the same program.  
Turbo PMAC can run as many motion programs simultaneously as there are coordinate systems defined 
on the card (up to 16).  A motion program can call any other motion program as a subprogram, with or 
without arguments.   

Turbo PMAC’s motion program language is perhaps best described as a cross between a high-level 
computer language like BASIC or Pascal, and G-Code (RS-274) machine tool language.  In fact, it can 
accept straight “G-Code” programs directly, provided it has been set up properly.  It has the 
computational and logical constructs of a computer language, and move specification constructs very 
much like machine tool languages.  Numerical values in the program can be specified as constants or 
expressions. 

Sequenced Motion Program Execution 
A powerful feature of Turbo PMAC motion programs is their automatic sequencing of calculations in 
synchronization with the programmed moves.  Unlike many motion-programming languages, it is not 
necessary to include in your program explicit structures to wait for the end of a programmed move.  
Instead, the Turbo PMAC’s operating system automatically monitors the progress of the programmed 
move execution and triggers pending calculations (motion, I/O, and/or logic) at the end of a programmed 
move.  This greatly simplifies the writing of motion-program sequences. 

A key implication of this scheme is that calculations in motion programs occur only at the boundaries of 
programmed moves.  If you have calculations that you want to occur at other times, these calculations 
should be executed in Turbo PMAC PLC programs instead.  See the Writing and Executing PLC 
Programs section of this manual for details. 

Flow Control 
In a motion program, Turbo PMAC has WHILE loops and IF...ELSE branches that control program 
flow.  These constructs can be nested indefinitely.  In addition, there are GOTO statements, with either 
constant or variable arguments (the variable GOTO can perform the same function as a Case statement).  
GOSUB statements (constant or variable destination) allow subroutines to be executed within a program.  
CALL statements permit other programs to be entered as subprograms.  Entry to the subprogram does not 
have to be at the beginning – the statement CALL 20.15000 causes entry into Program 20 at line 
N15000.  GOSUBs and CALLs can be nested only 15 deep. 

G-Codes 
To handle machine-tool-style G-codes, which provide direct access to part programs created by 
CAD/CAM programs, Turbo PMAC treats a Gnn statement as CALL 1000.nn000.  The following 
values on the line (e.g. X1000) can be treated as parameters to be passed, as for a canned cycle, or the 
subprogram can execute without arguments, return, and execute the rest of the line (as for a modal G-
code).  The machine tool designer writes Program 1000 to implement the G-codes as he wishes, allowing 
customization and enhancements.  Delta Tau provides a sample file implementing all of the standard G-
codes.  M, S, T, and D codes are similarly implemented. 

 



 Turbo PMAC User Manual 

272 Writing and Executing Motion Programs 

Modal Commands 
Many of the statements in Turbo PMAC motion programs are modal in nature.  These include move 
modes, which specify what type of trajectory a move command will generate; this category includes 
LINEAR, RAPID, CIRCLE, PVT, and SPLINE.  Moves can be specified either incrementally (distance) 
or absolutely (location) – individually selectable by axis – with the INC and ABS commands.  Move 
times (TA, TS, and TM) and/or speeds (F), are implemented in modal commands.  Modal commands can 
precede the move commands they are to affect, or they can be on the same line as the first of these move 
commands.  

Move Commands 
The move commands themselves consist of a one-letter axis-specifier followed by one or two values 
(constant or expression).  All axes specified on the same line will move simultaneously in a coordinated 
fashion on execution of the line; consecutive lines execute sequentially (with or without stops in between, 
as determined by the mode).  Depending on the modes in effect, the specified values can mean, 
destination, distance, and/or velocity (see Trajectory Features section). 

Motion Program Trajectories 
Among Turbo PMAC’s outstanding characteristics are the power and flexibility of its trajectory 
generation algorithms.  These algorithms allow a great variety of difficult maneuvers to be performed, 
and permit you to make your own tradeoffs between ease of use and degree of control.  It is important to 
remember that these trajectories are a series of commanded positions only.  It is up to the servo loops for 
each axis to try to make the actual positions match the commanded positions.  All the times, speeds, 
distances, and profiles discussed in this section are commanded ones, unless otherwise noted. 

Linear Blended Moves 
The easiest class of moves to make is the linear blended move category.  In this type of move, an axis 
moves toward the target position at a designated speed, accelerating to and decelerating from this speed in 
a controlled fashion.  If more than one move is specified in succession with no pause in between, the first 
move will blend into the second with the same type of controlled acceleration as is done to and from a 
stop.   

Linear blended move mode is the default mode for motion programs.  If in another move mode, the 
program can be put into this mode with the LINEAR statement.  The program can be taken out of 
LINEAR mode with another move mode statement (e.g. CIRCLE1, CIRCLE2, RAPID, PVT, SPLINE). 
It is good programming practice to declare the LINEAR mode in each program, and not rely on the 
default.  The LINEAR statement is equivalent to the RS-274 G-Code G01. 

Position or Distance Specification 
The destination point of a linear-mode move is specified in the move command itself (e.g. X10Y20).  The 
commanded destination for each axis can be specified as a position relative to the programming origin (if 
the axis is in ABS absolute mode) or with a distance from the last commanded position (if the axis is in 
INC incremental mode).  The program specifies one of these; Turbo PMAC automatically calculates the 
other. 

Feedrate or Move-Time Specification 
You can specify either the target velocity (feedrate) for the move, with an F command, or the move time 
with the TM command.  If F is specified, the move time is calculated, and if TM is specified, the feedrate is 
calculated.  The relationship between the two values is reciprocal for a given move distance.  Move-time 
and feedrate values are modal; they affect all subsequent linear (and circle) mode moves until another F 
or TM value is specified in the program. 
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The units of the TM time are milliseconds; the units of the F velocity are the user length (or angle) units of 
the feedrate axes divided by the time units as defined by coordinate system variable Isx90 in milliseconds.  
If Isx90 is at the default value of 1000, the F units are length units per second; if Isx90 is set to 60,000, 
the F units are length units per minute. 
If no F or TM value is specified after power-up/reset, the value of Isx89 is used for the moves as a feedrate 
value.  Any F value specified in a program is compared to maximum feedrate parameter Isx98; if greater 
than this parameter, Isx98 is used instead. 

Note:   
Feedrate is a magnitude and should therefore always be a positive number.  A 
negative feedrate will cause the motion to be opposite of what is defined as 
positive in the Coordinate System definition. 

Vector Feedrate Axes 
If a multi-axis move is specified by feedrate (and not time), theres is the further flexibility of specifying 
which axes control the vector feedrate using the FRAX command (on-line or buffered) and velocity is 
apportioned among these axes so that their vector combination (root of sum of squares) is the specified 
velocity.  Turbo PMAC calculates the move time as the vector distance of the feedrate axes divided by the 
programmed feedrate.  Therefore, each axis’ velocity does not have to be computed individually for each 
different angle of movement.  If a simultaneous move is requested of a non-feedrate axis, that move is 
completed in the same time as that computed for the feedrate axes.  The default feedrate axes for a 
coordinate system are the X, Y, and Z-axes. 
If there are other axes (non-feedrate axes) commanded on the same line, Turbo PMAC compares the 
move time computed for the vector feedrate axes to the move time derived by taking the greatest distance 
of a non-feedrate axis divided by the coordinate system’s alternate feedrate parameter Isx86.  Whichever 
of these move times is the longest is used for all axes. 

Example Vector Feedrate Calculations (Isx86=40) 
INC Vect Dist = SQRT(32 + 42) = 5 
FRAX(X,Y) Move Time = 5/10 = 0.5 
X3 Y4 F10 Vx = 3/0.5 = 6 
 Vy = 4/0.5 = 8 
INC Vect Dist = SQRT(32 + 42) = 5 
FRAX(X,Y) Vect Move Time = 5/10 = 0.5 
X3 Y4 Z12 F10 Non-Vect Dist = 12 
 Non-Vect Move Time = 12/40 = 0.3 
 Vx = 3/0.5 = 6 
 Vy = 4/0.5 = 8 
 Vz = 12/0.5 = 24 
INC Vect Dist = SQRT(32+42+122)=13 
FRAX(X,Y,Z) Move Time = 13/10 = 1.3 
X3 Y4 Z12 F10 Vx = 3/1.3 = 2.31 
 Vy = 4/1.3 = 3.08 
 Vz = 12/1.3 = 9.23 
INC Vect Dist = 0, Non-Vect Dist = 10 
FRAX(X,Y,Z) Move Time = 10/40 = 0.25 
C10 F10 Vc = 40 

Motor Velocity Limits 
Turbo PMAC provides a velocity limit parameter Ixx16 for each Motor xx that can be used to 
automatically limit the commanded velocity in linear-mode moves even if the motion program requests a 
higher rate.  The details of how this limiting function operates are dependent on the mode of operation.   
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This velocity limiting is active either if segmentation mode is not active (Isx13 = 0), in which case 
circular interpolation and cutter-radius compensation are not permitted, or if segmentation mode is active 
(Isx13 > 0) and the special lookahead buffer is active (Isx20 > 0, defined lookahead buffer). 
If the velocity limits are active, Turbo PMAC compares the motor velocity magnitudes requested by the 
motion program to the Ixx16 limit for each motor.  If the request for any motor exceeds the limit, the 
move time is extended so that motor will not exceed its limit; this automatically slows the other motors in 
the coordinate system in proportion so that the relationship between motors (path in space) is maintained. 
Acceleration Parameters 
The acceleration to and from velocity can be constant, providing trapezoidal velocity profiles; it can be 
linearly varying, yielding S-curve velocity profiles; or it can be a combination of the two.  Specify the 
time for the full acceleration (TA – default parameter is coordinate system I-variable Isx87) and the time 
in each half of the S (TS – default parameter Isx88).  If the specified TA time is less than twice the 
specified TS time, the TA time used will be twice TS (users who want pure S-curve acceleration can just 
set TA to 0).  Turbo PMAC can use only integer values for TA and TS.  If a non-integer value is 
specified, PMAC will round it to the nearest integer before using it in trajectory calculations. 
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Acceleration Limits 
Turbo PMAC provides an acceleration limit parameter Ixx17 for each Motor xx that can be used to 
automatically limit the commanded rate of acceleration in linear-mode moves even if the motion program 
requests a higher rate.  The details of how this limiting function operates are dependent on the mode of 
operation. 
• Segmentation mode not active (Isx13 = 0), special lookahead buffer not active (Isx20 = 0).  This is the 

simplest mode of operation.  Circular interpolation is not permitted in this mode.  Ixx17 acceleration 
limits are active in this mode, but if the acceleration would have to be extended over more than a full 
programmed move in order to observe the limit, the limit will be violated. 

• Segmentation mode active (Isx13 > 0), special lookahead buffer not active (Isx20 = 0).  This mode 
permits circular interpolation and cutter-radius compensation, and to have circle-mode and linear-
mode moves to blend together, but the Ixx17 acceleration limits are not active in this mode. 

• Segmentation mode active (Isx13 > 0), special lookahead buffer active (Isx20 > 0, defined lookahead 
buffer).  This is the most sophisticated mode of operation.  This mode permits circular interpolation 
and cutter-radius compensation, to have circle-mode and linear-mode moves blend together, to have 
the Ixx17 acceleration limits active for both linear and circle-mode moves, and to be able to extend 
the acceleration over multiple programmed moves if necessary. 
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This section covers the acceleration limiting algorithms of Mode 1 only.  The acceleration limiting 
function of the special lookahead buffer (Mode 3) is discussed in a manual section devoted to that 
function, below. 

If the acceleration calculated from the motion exceeds the maximum programmed acceleration (set by 
Ixx17 in counts/msec

2
) for any motor involved in the move, the acceleration for all motors in the move is 

decreased in proportion so that no motor exceeds this limit.  The path through space is not changed, nor is 
the shape of the velocity profile for any motor.  If you want to specify acceleration rate directly, set TA 
and TS to very small so as always to violate the limit, in which case the acceleration is controlled by the 
motors’ I-variables Ixx17.   

Note:  

Unless the coordinate system is in segmentation mode (Isx13 > 0), do not set both 
the TA and TS (Isx87 and Isx88) times to zero, even if you are planning to rely on 
the acceleration.  This would cause a divide-by-zero error, yielding possible erratic 
performance. 

When Too Effective 
When blending linear moves together, the Ixx17 limit is enforced even for the intermediate decelerations 
to a stop that are removed to blend into the next move.  As Turbo PMAC calculates each move in the 
blended sequence, it has to assume that it could be the last move in the sequence, and it will try to make 
sure that the deceleration to a stop at the programmed position obeys this limit.  This can result in a 
deceleration time longer than the programmed move time (specified either directly with TM, or indirectly 
by distance over F feedrate), which will cause the move to execute at lower than the programmed speed.  
This can be especially limiting when moves are broken into very small pieces to be blended together.  The 
Ixx17 limit must be set higher than the top speed divided by the smallest segment time in order not to 
limit the speed.  This can make it too high for effective acceleration control. 

When Not Effective Enough 
Without the special lookahead buffer enabled, Turbo PMAC looks two moves ahead of actual move 
execution to perform its acceleration limit, and can recalculate these two moves to keep the accelerations 
under the Ixx17 limit.  However, there are cases in which more than two moves, some much more than 
two, would have to be recalculated in order to keep the accelerations under the limit.  In these cases, 
Turbo PMAC will limit the accelerations as much as it can, but because the earlier moves have already 
been executed, they cannot be undone, and therefore the acceleration limit will be exceeded. 

If you desire robust acceleration control in cases where the acceleration limiting may require modifying 
the speed of several moves, the special lookahead buffer should be used.  See the Turbo PMAC 
Lookahead Function section in this manual for details. 

Minimum Move Time 
If a feedrate-specified move segment is so short in distance that it cannot reach its target velocity, it will 
spend its entire time in acceleration (yielding a triangular rather than trapezoidal profile).  The minimum 
time for such a move is thus the specified acceleration time (the larger of TA or 2*TS).  For a single move 
remember to add on the extra acceleration time to decelerate to a stop.   

In a time-specified move segment, if TM is less than the acceleration time, the segment will be done in 
acceleration time, not TM time. 

In other words, the acceleration time is the minimum time for an individual blended move or blended 
move segment.  This is in part a protection against move times getting so short that Turbo PMAC cannot 
calculate them in real time.  If you are working with very short move segments and your move sequence 
is going more slowly than you want, this acceleration-time limit may well be causing the problem. 
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Maximum Move Time 
The maximum time for one programmed move is 223-1 (8,388,607) msec, approximately 2 hours and 20 
minutes.  This is the maximum value that Turbo PMAC will accept with a TM command.  It is also the 
maximum value Turbo PMAC will compute for a feedrate-specified move when it divides the vector 
distance for the move by the feedrate.  If the vector distance for the move divided by the feedrate yields a 
time greater than 8,388,607 msec, Turbo PMAC will use 8,388,607 msec as the move time, and the speed 
will be higher than what was programmed.   

The Blending Function 
If more than one move is specified in succession without any intervening dwell commands, each motor 
blends smoothly from its velocity for the first move to the velocity for the second move according to the 
acceleration and S-curve values in force at the time.  This change in speed (which can be a zero change) 
starts at the point where the first move would start to decelerate to a stop at its specified end position, not 
at the first move’s endpoint itself.  (However, if Isx92 is set to one, “blended” moves in that coordinate 
system always come to a stop before the next move.) 

The acceleration parameters TA and TS can change between each move.  To have the final deceleration to 
a stop use a different TA or TS from the previous blending acceleration time in a sequence, declare the 
new TA or TS after the final move command in the sequence, but before the DWELL or other feature that 
stops the continuous sequence. 
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Circular Blended Moves 
Note:  

In order for Turbo PMAC to do circular moves, coordinate-system parameter Isx13 
must be greater than zero.  See below for details. 

Turbo PMAC allows circular interpolation on the X, Y, and Z-axes in a coordinate system.  As with linear 
blended moves, TA and TS control the acceleration to and from a stop, and between moves.  Circular 
blended moves can be either feedrate-specified (F) or time-specified (TM), just as with linear moves.  It is 
possible to change back and forth between linear and circular moves without stopping. 
Specifying the Interpolation Plane 
The first thing that should be done in preparing for a circular move is to specify the orientation of the 
plane that will contain the circle.  This is done by specifying the normal vector to that plane with the 
NORMAL command.  The arguments of this command are the component magnitudes of the vector: I (X-
axis direction), J (Y-axis direction), and K (Z-axis direction).  A typical command might be NORMAL 
I0.866 J0.5 K0.0.  The length of the normal vector specified here is not important; only the ratio 
between the component magnitudes (which determines the direction) is.   
Standard Planes 
To specify the circles in the XY plane, command NORMAL K-1 (equivalent to G17 in machine-tool 
code).  Similarly, for circles in the ZX plane, command NORMAL J-1 (G18 equivalent); for circles in the 
YZ plane, command NORMAL I-1 (G19 equivalent).   
Clockwise Direction Sense 
The directional sense of the normal vector is right handed.  The standard clockwise sense is obtained by 
using normal vectors that point in the negative direction along their axes. 
Circle Modes 
To put the program in circular mode, use the program command CIRCLE1 for clockwise arcs (G02 
equivalent) or CIRCLE2 for counterclockwise arcs (G03 equivalent).  Any other move mode command – 
LINEAR, RAPID, PVT, or SPLINEn – will take the program out of circular move mode.  LINEAR will 
restore you to linear blended moves.  Once in circular mode, a circular move is specified with a move 
command specifying the move endpoint and either the vector to the arc center or the distance (radius) to 
the center.  The endpoint may be specified either as a position or as a distance from the starting point, 
depending on whether the axes are in absolute (ABS) or incremental (INC) mode (individually 
specifiable).   
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Center Vector 
If the vector method of locating the arc center is used, the vector is specified by its I, J, and K-
components (I specifies the component parallel to the X axis, J to the Y axis, and K to the Z-axis). This 
vector can be specified as a distance from the starting point (i.e. incrementally), or from the XYZ origin 
(i.e. absolutely).  The choice is made by specifying ‘R’ in an ABS or INC statement (e.g. ABS(R) or 
INC(R)).  This affects I, J, and K-specifiers together.  (ABS and INC without arguments affect all axes, 
but leave the vectors unchanged).  The default is for incremental vector specification.   

Note:  

The standard machine-tool usage is for incremental vector specification even when 
move endpoint specification is absolute. 

A typical circular move command with a vector specification is: 
X1000 Y2000 I500 J-500 

Example: 
Starting from the point X0 Y0, make a quarter circle clockwise in the XY plane to X20 Y20, then a linear 
move to X40 Y20, then a three-quarters circle clockwise to X20 Y0.  With the default modes of absolute 
move and incremental vector specification, the program would be: 
NORMAL K-1  ; XY plane 
F10 
CIRCLE1  ; Clockwise circle 
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X20 Y20 I20 J0  ; Arc move; I=20-0=20; J=0-0=0 
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Radius Size Specification 
If the radius method of locating the arc center is used, the radius is the number after the letter R in the 
move command.  This value always represents the distance from the move starting point.  With radius 
specification, it is also necessary to specify whether the arc to the move endpoint is the long route (>= 
180 degrees) or the short route (<= 180 degrees).  Turbo PMAC’s convention is to take the short arc path 
if the R value is positive and the long arc path if R is negative.  R values are not modal – a value must be 
specified on each move command line.  It is not possible to do a full circle in a single move command 
with a radius specification; the circle must be broken into at least two parts. 
A typical circular move command with a radius specification is: 
X1000 Y2000 R750 

Example: 
To do the same moves as in the above example, except with radius center specification, the program 
would be: 
NORMAL K-1  ; XY plane 
F10 
CIRCLE1 
X20 Y20 R20  ; Arc move < 180 deg   
X40 Y20  ; Automatically linear 
X20 Y0 R-20  ; Arc move > 180 deg   

Note: 
Do not use the R radius specification if using the axis transformation matrices for 
scaling purposes with the AROT or IROT statements.  The radius value will not 
scale with the axes. 
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No Center Specification 
If there is neither a vector specification nor a radius specification on a given move command line, the 
move will be linearly interpolated between start and end points, even if the program is in circular move 
mode.  However, cutter compensation will not work properly if this is done.  LINEAR move mode must 
be explicitly declared if cutter compensation is on. 

Vector Feedrate Axes 
Any axes used in the circular interpolation are automatically feedrate axes for circular moves, even if they 
were not so specified in an FRAX command.  Other axes may or may not be feedrate axes. Any non-
feedrate axes commanded to move in the same move command will be linearly interpolated so as to finish 
in the same time.  This permits easy helical interpolation.  See the Feedrate Axes section in this manual. 

Circle-Radius Errors 
If the endpoint is not the same distance from the center as the starting point, the change in radius is taken 
up smoothly over the course of the move.  Technically, Turbo PMAC generates an exponential spiral 
curve with a constant vector feedrate and a constant change in radius with respect to time (constant 
dR/dθ). 

When using an IJK center vector, this spiral curve can be created over any angle between the start point, 
the “center” and the end point.  When using the R radius-magnitude specification, a spiral can be created 
only if the distance between the start point and the end point is more than twice the radius magnitude.  In 
this case, the start point, the center, and the end point will all be collinear (like a semi-circle).  For moves 
specified this way, this technique is really used just to permit the execution of semi-circles with some 
tolerance for round-off errors.   

Each coordinate system has an I-variable (Isx96) that determines the limit in distance difference for which 
this compensation will be done.  Above this limit, a run-time error will be generated and the program will 
stop.  This limit allows distinguishing between round-off errors and major mistakes. Regardless of this 
limit, if the distance from starting point to center or from ending point to center is zero, an error will be 
generated and the program will stop.  If the specified vector does not lie in the plane of interpolation, the 
projection of that vector into the plane is used. 

Move Segmentation Mode 
Turbo PMAC computes circular trajectories through a rapid and continuous cubic spline technique called 
“segmentation mode.”  The spline segments are of a time specified by coordinate system variable Isx13 
(in units of milliseconds).  Typically a value of 5 to 10 milliseconds will be used, depending on the 
number of axes being controlled by the card.  When Isx13 is greater than zero, all blended moves – linear 
and circular – are computed through this ongoing cubic spline technique.  The exact move calculations 
are performed every Isx13 milliseconds, and fine interpolation between these intermediate points is done 
at the servo update rate using an efficient cubic B-spline interpolation (identical to Turbo PMAC’s 
SPLINE1 mode).  

If Isx13 is zero, linear moves are not computed using this spline technique and circular moves are not 
permitted (if a circular move is requested, it will be done as a linear move).  The difference in the actual 
performance of linear-mode moves between Isx13=0 mode and Isx13>0 mode is virtually imperceptible, 
unless the feature sizes of the moves are in the same range as the Isx13 time. 

Segmentation mode (Isx13 > 0) also is required to use cutter-radius compensation (even if circle moves 
are not explicitly programmed), kinematic calculations, and the special lookahead buffer. 
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Rapid-Mode Moves 
Rapid-mode moves provide for minimum-time point-to-point moves, subject to pre-defined motor 
constraints.  These moves are essentially jog moves for each motor assigned to an axis specified in the 
move.  The acceleration for each motor is controlled by the Ixx20 and Ixx21 acceleration times; however, 
if the rate of acceleration determined by the motor’s move speed and these variables exceeds the Ixx19 
acceleration limit, the times will be extended so that the rate will not exceed Ixx19.  Many users will set 
Ixx20 and Ixx21 to very small values (e.g. 1 and 0; do not set both to 0) so that the Ixx19 rate controls all 
of these acceleration profiles. 

The speed of the move is controlled either by the maximum-speed parameter Ixx16 (default) or the jog-
speed parameter Ixx22, depending on the setting of motor variable Ixx90.  A short move may not reach 
the programmed speed, just accelerating and decelerating through the move. 

A motion program is put into this mode using the RAPID statement.  It is taken out of this mode by 
another move mode command (e.g. LINEAR, CIRCLEn, PVT, SPLINEn).  RAPID is equivalent to the 
RS-274 G-Code G00. 

Move Time 
On a multi-axis rapid mode move, only the motor calculated to take the longest time at its specified Ixx16 
or Ixx22 speed will actually be commanded to move at that speed.  The commanded speeds for other 
motors are lessened so that they have the same ratio of distance to speed, yielding the same move time for 
all motors (before acceleration and deceleration are added).  This makes the move path in a Cartesian 
system approximately linear.  However, if the acceleration times are not the same for all motors, as will 
happen if the Ixx19 acceleration limits are hit, the commanded move path will not be perfectly linear. 

Maximum Move Time Limit 
The maximum move time for a RAPID-mode move is 8,388,607 msec, approximately 2 hours and 20 
minutes.  If the distance and speed for any motor request a move time greater than this time, Turbo 
PMAC will use this maximum time instead, and the speed will be higher than what was programmed. 

Minimum Move Time Limit 
The minimum move time for a RAPID-mode move is the longest acceleration time (Ixx20 or 2*Ixx21, 
whichever is greater) for any motor in the coordinate system, including motors not explicitly commanded 
on the program line.  Users who may command very short RAPID moves and want them to conclude very 
quickly should set Ixx20 and Ixx21 very small for all motors, and use the Ixx19 acceleration limit to 
control the acceleration profile. 

Move Path 
Because the move times (before accel/decel) for all motors are made the same, the move path in a 
Cartesian system will be at least approximately linear.  However, the acceleration times (not rates) for all 
motors must be the same for a truly linear path in a Cartesian system.  To obtain this fully linear path, 
Ixx20 and Ixx21 must be the same for all motors in the coordinate system, and Ixx19 for all motors must 
be set high enough not to be used for the move. 

If kinematic subroutines are used to program a non-Cartesian system in Cartesian coordinates, RAPID-
mode moves will not in general have a linear path in the system.  The kinematic calculations for RAPID-
mode moves are done only at the programmed end points for RAPID-mode moves, not at many points 
along the way. 
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No Blending 
A rapid-mode move is never blended with another move at the programmed end-point; all motors will be 
commanded to at least a momentary stop before the next move is commanded to start.  However, unlike 
in other modes, rapid-mode moves may be broken into at arbitrary points along the trajectory to change to 
a different destination.  This can be implemented with the move-until-trigger and altered-destination 
functions described below. 

Motion Program Move-Until-Trigger 
The move-until-trigger function permits a programmed rapid-mode move to be interrupted by a trigger 
and terminated by a move relative to the position at the time of the trigger.  It is similar to a homing 
search move, except that the motor zero position is not altered, and there is a specific destination in the 
absence of a trigger. 

The move-until-trigger is a variant of the RAPID move mode on Turbo PMAC.  Speeds and accelerations 
are governed by the same variables as for regular rapid moves.  The move-until-trigger function for an 
axis, and therefore for any motors defined to that axis, is specified by adding a ^{data} specifier to the 
move command for the axis, where {data} is the distance to be traveled relative to the trigger before 
stopping. 

This makes the axis command for a move-until trigger {axis}{data}^{data}, something like 
X50^-5.  The first value is the destination position or distance (depending on whether the axis is in 
absolute or incremental mode) to be traveled in the absence of a trigger.  The second value is the distance 
to be traveled relative to the position at the time of the trigger.  This value is always expressed as a 
relative distance, regardless of whether the axis is in absolute or incremental mode.  Both values are 
expressed in the axis user units. 

Other axes can be specified on the same line without a caret and second value.  These axes will do a 
simultaneous normal RAPID move.  However, if an axis matrix transformation is active for the X, Y, and 
Z-axes in this coordinate system (TSELECT has been used to select a matrix), if there is a move-until-
trigger on any of the X, Y, and Z-axes, the other axes in the XYZ triplet will also execute a move until 
trigger.  If no post-trigger move is specified for the axis, the post-trigger distance is assumed to be zero.  
If no move at all is specified for the axis, a zero-distance pre-trigger move is assumed. 

The trigger condition for each motor is set up just as for homing-search moves: 
• Ixx97 bit 1 specifies whether input flags are used to create the trigger, or the warning-following-error 

limit status bit is the trigger (the magnitude of the following error exceeds Ixx12): 0=flags, 1=error 
status.  Triggering on following error is often known as “torque-limited triggering.” 

• If input flags are to create the trigger, Ixx25 specifies the flag register. 
• If input flags are to create the trigger, Encoder/Flag I-variables I7mn2 and I7mn3 for this channel 

specify which edges of which signals will cause the trigger. 
• Ixx97 bit 0 specifies whether the hardware-captured counter value is used as the trigger position – 

suitable for incremental encoder signals, real or simulated – or the software-read position is used 
instead – suitable for other types of feedback (0=hardware, 1=software).  The software-read position 
must be used if the warning-following-error status is used for the trigger. 

Note that each motor has an independent triggering function and move relative to the trigger, even if the 
motors are assigned to the same axis.  If a common trigger signal is desired for multiple motors, the same 
trigger signal must be wired into the flag inputs for all of those motors. 

Turbo PMAC will blend each motor smoothly from the pre-trigger move to the post-trigger move 
according to the jog/home acceleration parameters Ixx19, Ixx20, and Ixx21. 
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All motors must come to a stop, either at the originally specified position, or at the post-trigger position, 
before Turbo PMAC will calculate any further in the motion program.  This means that there is no 
blending of the post-trigger move into any subsequent moves. 

The captured value of the sensor position at the trigger is stored in a dedicated register if later access is 
needed.  The units are in counts; for incremental encoders, they are relative to the power-up/reset 
position. 

Turbo PMAC sets the motor home-search-in-progress status bit (bit 10 of the first motor status word 
returned on a ? command) true (1) at the beginning of a programmed move-until-trigger move.  The bit is 
set false (0) either when the trigger is found, or at the end of the move.   

Turbo PMAC also sets the motor trigger move status bit (bit 7 of the second motor status word returned 
on a ? command) true at the beginning of a programmed move-until-trigger move, and keeps it true at 
least until the end of the move.  If a trigger is found during the move, this bit is set false at the end of the 
post-trigger move; however, if the pre-trigger move finishes without finding a trigger, the bit is left true at 
the end of the move.  Therefore, this bit can be used at the end of the move to tell whether the trigger was 
found or not. 

Altered-Destination Moves 
Turbo PMAC gives you the capability for altering the destination of certain moves in the middle of the 
execution of those moves by issuing an on-line command.  This allows you to start a move with a 
tentative destination and then change the destination during the move, with a smooth transition to the 
altered destination.  If no move is currently executing, this feature also gives the capability of 
commanding a simple programmed move without using a program buffer. 

This technique works with RAPID-mode moves only.  The only motion mode whose destination can be 
altered on the fly is RAPID mode, and the only motion mode that can be used to approach the new 
destination is RAPID mode. 

Altered-Destination Command 
This feature is implemented by the on-line coordinate-system-specific command 
!{axis}{constant}[{axis}{constant}…] or its variant 
!{axis}Q{constant}[{axis}Q{constant}…] .  The exclamation point identifies this 
command as the on-line altered-destination command.  The axis letters and their associated values specify 
the new destination. 

In the first case (e.g. !X3.0Y2.7), the constant value associated with each axis letter directly specifies 
the new destination of the axis.  Typically, this first case is used when the command is issued from a host 
computer. 

In the second case (e.g. !XQ21YQ22), the constant value associated with each axis letter after the ‘Q’ 
character specifies the number of the Q-variable for the coordinate system whose value represents the 
new destination for the axis.  For example, if Q21=3.0 and Q22=2.7, then !XQ21YQ22 is equivalent to 
!X3.0Y2.7.  Usually, this second case is used when the command is issued from a Turbo PMAC PLC 
program. 

The values specified in this command are always positions of the new destinations (relative to “program 
zero”), not distances from previous commanded positions.  That is, this command is always effectively in 
absolute mode, regardless of whether the axes are in absolute or incremental mode.  If the axes are in 
incremental mode, they will stay in incremental mode for subsequent buffered program commands.   

If there is no commanded move in progress when this command is issued, Turbo PMAC will execute a 
RAPID-mode point-to-point move to the specified coordinates.  This makes it equivalent to a jog-to-
position command in action, although the destination is specified in user units, not counts. 
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If a RAPID-mode move is in progress when the command is issued, Turbo PMAC will extend the current 
trajectory of each motor for Ixx92 milliseconds.  At that point, it will break into the trajectory of each 
motor, compute a smooth blending for each motor to the RAPID-mode trajectory toward the new 
destination, and execute the modified trajectory.  Because the altered-destination move is itself a RAPID-
mode move, its destination can be modified with a subsequent altered-destination command. 

If a move of some other mode is in progress when this command is issued, Turbo PMAC will reject the 
command with an error. 

Use of Altered Destination 
The altered-destination command is most often used to modify the destination of a RAPID-mode move 
executing from the coordinate system’s rotary motion-program buffer as the last move in that buffer.  In 
typical use, the RAPID move will be started with an approximate idea of the final destination, while some 
sensor, such as a vision system, determines the exact location.  The altered-destination command is then 
sent to the coordinate system with the exact coordinates of the final destination. 

If the altered-destination command is not received before the end of the move, there will be a momentary 
pause before the move to the final end position is started, but all axes end up in the same location as if the 
command were received before the end of the move.  Note, however, that in this case, certain status bits 
such as desired-velocity-zero, and in-position may get set at the end of the initial move, and so cannot be 
counted on by themselves to show that the modified end-point has been reached. 

The altered-destination command can also be used to modify a RAPID-mode move that is not at the end 
of the rotary buffer, or one that is in a “fixed” motion-program buffer.  In this case, there are a couple of 
things to watch.  First, if axes are in incremental mode, the subsequent moves in the program are modified 
by the altered destination.  Second, if the altered-destination command is received after the RAPID-mode 
move is finished; it may be rejected with an error, depending on what the program is executing 
subsequently. 

Spline-Mode Moves 
Turbo PMAC can perform two types of cubic splines (cubic in terms of the position-vs.-time equations) 
to blend together a series of points on an axis.  Its SPLINE1 mode is a uniform non-rational cubic B-
spline and its SPLINE2 mode is a non-uniform non-rational cubic B-spline.  It can, of course, do either 
spline for all of the axes simultaneously.  Splining is particularly suited to odd (non-Cartesian) 
geometries, such as radial tables and rotary-axis robots, where there are odd axis profile shapes even for 
regular tip movements.   

How They Work 
In SPLINE1 mode, a long move is split into equal-time segments, each of TM or TA time (depending on 
the setting of global variable I42).  Each axis is given a destination position in the motion program for 
each segment with a normal move command line like X1000Y2000.  Looking at the move command 
before this and the move command after this, Turbo PMAC creates a cubic position-vs-time curve for 
each axis so that there is no sudden change of either velocity or acceleration at the segment boundaries.  
The commanded position at the segment boundary may be “relaxed” slightly to meet the velocity and 
acceleration constraints (see figures below). 

The spline move time as used in the actual spline calculations is a 24-bit fixed-point value with 12 bits of 
integer and twelve bits of fraction.  This provides a range of up to 4096 milliseconds (just over 4 seconds) 
with a resolution of about ¼-microsecond.  If I42 is set to the default value of 0, this time is specified in a 
TM command, which supports the fractional resolution.  If I42 is set to 1, this time is specified in a TA 
command, which does not support the fractional resolution.  This mode is mainly for compatibility with 
older non-Turbo PMAC applications. 
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Turbo PMAC computes intermediate “way-points” WPi for each axis for each point along the spline by 
taking a weighted average of the specified point Pi and the specified points on either side.  For the 
uniform spline, this is done according to the equation: 

6
1iPiP41iP

iWP +++−=  

Turbo PMAC also computes the velocity Vi for each axis at each way-point along the spline.  In the 
uniform spline, it does this by taking the velocity halfway between the average velocities of the segments 
on either side of the way point: 
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Similar calculations are done for the non-uniform spline. 
Having computed exact positions and velocities at segment boundaries, Turbo PMAC calculates the 
unique cubic position equation (parabolic velocity profile) that meets these constraints, and uses this 
equation for interpolation. 

Added Pieces 
At the beginning and end of a series of splined moves, Turbo PMAC automatically adds a zero-distance 
segment of the same segment time for each axis, and performs the spline between this segment and the 
adjacent one.  This results in S-curve acceleration to and from a stop.  

Quantifying the Position Adjustment 
The difference between the splined commanded position and the pre-splined (program-line) commanded 
position for an axis at the end of segment i in the uniform spline can be calculated according to the simple 
equation: 

6
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where Disti is the programmed distance for segment i of the spline (whether in absolute or incremental 
mode), and Disti+1 is the programmed distance for segment i+1. 

5-Point Spline Correction 
In contouring applications, it is often desired to pass through the series of points as closely as possible.  In 
these applications, the error introduced by the standard spline algorithm may be too large to tolerate.  
However, in the uniform spline, a simple pre-compensation can reduce the splining errors dramatically.  
For each point Pi in the spline, replace with a point P’i with the following formula before sending to 
Turbo PMAC: 

6
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Non-Uniform Spline 
Turbo PMAC’s SPLINE2 mode is similar to the SPLINE1 mode, except that the requirement that the 
TA spline segment time remain constant is removed.  The removal of this constraint makes the SPLINE2 
mode a non-uniform non-rational cubic B-spline, whereas the SPLINE1 mode is a uniform non-rational 
cubic B-spline.  The “non-rational” specification indicates that there are no independent weightings 
(ratios) of the different points in the spline. 

The added segment at the beginning of a spline has the same time as the first programmed segment; the 
added segment at the end of a spline has the same time as the last programmed segment. 

The combined time of any three consecutive segments in a SPLINE2 continuous spline must be less than 
8,388,608 msec, or about 2 hours and 20 minutes. 
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PVT-Mode Moves 
For the user who desires more direct control over the trajectory profile, Turbo PMAC offers Position-
Velocity-Time (PVT) mode moves.  In these moves, you specify the axis states directly at the transitions 
between moves (unlike in blended moves).  This requires more calculation by the host, but allows tighter 
control of the profile shape.  For each piece of a move, you specify the end position or distance, the end 
velocity, and the piece time. 

Mode Statement 
Turbo PMAC is put in this mode with the program statement PVT{data}, where {data} is a floating-
point constant, variable, or expression, representing the piece time in milliseconds.  If I42 is set to the 
default value of 0, Turbo PMAC converts this value to a 24-bit value with 12 bits of integer and 12 bits of 
fraction.  This provides a range of up to 4096 milliseconds (just over 4 seconds) with a resolution of about 
¼-microsecond.  If I42 is set to 1, Turbo PMAC converts this to a 12-bit integer value with no fractional 
component (rounding to the nearest integer).  This mode is mainly for compatibility with older non-Turbo 
PMAC applications. 

The move time may be changed between moves, either with another PVT{data} statement, or with a 
TM{data} statement if I42 = 0, or a TA{data} statement if I42 = 1.  The program is taken out of this 
mode with another move mode statement (e.g. LINEAR, RAPID, CIRCLE, SPLINE). 

Move Statements 
A PVT mode move is specified for each axis to be moved with a statement of the form 
{axis}{data}:{data}, where {axis} is a letter specifying the axis, the first {data} is a value 
specifying the end position or the piece distance (depending on whether the axis is in absolute or 
incremental mode), and the second {data} is a value representing the ending velocity. 

The units for position or distance are the user length or angle units for the axis, as set in the Axis 
Definition statement.  The units for velocity are defined as length units divided by time units, where the 
length units are the same as those for position or distance, and the time units are defined by variable Isx90 
for the coordinate system (feedrate time units).  The velocity specified for an axis is a signed quantity. 

Turbo PMAC Calculations 
From the specified parameters for the move piece, and the beginning position and velocity (from the end 
of the previous piece), Turbo PMAC computes the only third-order position trajectory path to meet the 
constraints.  This results in linearly changing acceleration, a parabolic velocity profile, and a cubic 
position profile for the piece. 

Problems in Stepping 
Since you can specify (directly or indirectly) a non-zero end velocity for the move, it is not a good idea to 
step through a program of transition-point moves, and great care must be exercised in downloading these 
moves in real time.  With the use of the BLOCKSTART and BLOCKSTOP statements surrounding a series 
of PVT moves, the last of which has a zero end velocity, it is possible to use a Step command to execute 
only part of a program.   

Use of PVT to Create Arbitrary Profiles 
The PVT mode is the most useful for creating arbitrary trajectory profiles.  It provides a "building block" 
approach to putting together parabolic velocity segments to create whatever overall profile is desired.  
The diagram PVT Segment Shapes, below, shows common velocity segment profiles.  PVT mode can 
create any profile that any other move mode can. 
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Use of PVT in Contouring 
PVT mode provides excellent contouring capability, because it takes the interpolated commanded path 
exactly through the programmed points.  It creates a path known as a Hermite Spline.  LINEAR and 
SPLINE modes are 2nd and 3rd-order B-splines, respectively, which pass to the inside of programmed 
points. 
Compared to Turbo PMAC’s SPLINE mode, PVT produces a more accurate profile.  Its worst-case error 
can be estimated as: 

384
4R

3R384

4T4VE θ
==  

where V is the vector velocity, T is the segment time, R is the local radius of curvature, and θ is the 
subtended angle. 
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Cutter Radius Compensation 
Turbo PMAC provides the capability for performing cutter (tool) radius compensation on the moves it 
performs.  This compensation can be performed among the X, Y, and Z axes, which should be physically 
perpendicular to each other.  The compensation automatically offsets the described path of motion 
perpendicular to the path by a programmed amount, compensating for the size of the tool.  This allows 
you to program the path along the edge of the tool, letting Turbo PMAC calculate the tool-center path 
based on a radius magnitude that can be specified independently of the program. 
Turbo PMAC supports both two-dimensional (2D) and three-dimensional (3D) cutter radius 
compensation.  In the older and more common 2D compensation, described immediately below, first 
specify the plane of compensation, then the direction of compensation relative to the path and the radius 
magnitude.  In the newer 3D compensation, specify the surface-normal vector and the tool-orientation 
vector, as well as major and minor radii for the tool. 
Cutter radius compensation is valid only in LINEAR and CIRCLE move modes.  The moves must be 
specified by F (feedrate), not TM (move time).  Turbo PMAC must be in move segmentation mode (Isx13 
> 0) to do this compensation (Isx13 > 0 is required for CIRCLE mode anyway.) 

Note:  
In CIRCLE mode, a move specification without any center specification results in 
a linear move.  This move is executed correctly without cutter radius compensation 
active, but if the compensation is active, it will not be applied properly in this case.  
A linear move must be executed in LINEAR mode for proper cutter-radius 
compensation. 

Defining the Plane of Compensation 
Several parameters must be specified for the compensation.  First, the plane in which the compensation is 
to be performed must be set using the buffered motion-program NORMAL command.  Any plane in XYZ-
space may be specified.  This is done by specifying a vector normal to that plane, with I, J, and K-
components parallel to the X, Y, and Z-axes, respectively.   
For example, NORMAL K-1, by describing a vector parallel to the Z-axis in the negative direction, 
specifies the XY-plane with the normal right/left sense of the compensation (NORMAL K1 would also use 
the XY-plane, but invert the right/left sense).   
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This same command also specifies the plane for circular interpolation.  NORMAL K-1 is the default.  The 
compensation plane should not be changed while compensation is active. 
Other common settings are NORMAL J-1, which specifies the ZX-plane for compensation, and NORMAL 
I-1, which specifies the YZ-plane.  These three settings of the normal vector correspond to RS-274 G-
codes G17, G18, and G19, respectively.  If implementing G-codes in Turbo PMAC program 1000, 
incorporate them in PROG 1000: 
N17000 NORMAL K-1 RETURN 
N18000 NORMAL J-1 RETURN 
N19000 NORMAL I-1 RETURN 

Defining the Magnitude of Compensation 
The magnitude of the compensation – the cutter radius – must be set using the buffered motion program 
command CCR{data} (Cutter Compensation Radius).  This command can take either a constant 
argument (e.g. CCR0.125) or an expression in parentheses (e.g. CCR(P10+0.0625)).  The units of 
the argument are the user units of the X, Y, and Z-axes.  In RS-274 style programs, these commands are 
often incorporated into “tool data” D-codes using Turbo PMAC motion program 1003. 
Negative and zero values for cutter radius are possible.  Note that the behavior in changing between a 
positive and negative magnitude is different from changing the direction of compensation.  See the 
Changes in Compensation section of this manual.  Also, the behavior in changing between a non-zero 
magnitude and a zero magnitude is different from turning the compensation on and off.  See the 
appropriate sections below. 
Turning On Compensation 
The compensation is turned on by buffered motion program command CC1 (offset left) or CC2 (offset 
right).  These are equivalent to the RS-274 G-Codes G41 and G42, respectively.  If implementing G-
Code subroutines in Turbo PMAC motion program 1000, incorporate them in PROG 1000: 
N41000 CC1 RETURN 
N42000 CC2 RETURN 

Turning Off Compensation 
The compensation is turned off by buffered motion program command CC0, which is equivalent to the 
RS-274 G- Code G40.  If implementing G-Code subroutines in Turbo PMAC motion program 1000, 
incorporate them in PROG 1000: 
N40000 CC0 RETURN 

How Turbo PMAC Introduces Compensation 
Turbo PMAC gradually introduces compensation over the next LINEAR or CIRCLE-mode move 
following the CC1 or CC2 command that turns on compensation.  This lead-in move ends at a point one 
cutter radius away from the intersection of the lead-in move and the first fully compensated move with 
the line from the programmed point to this compensated endpoint being perpendicular to the path of the 
first fully compensated move at the intersection. 

Note:  
Few controllers can make their lead-in move a CIRCLE-mode move.  This 
capability permits establishing contact with the cutting surface very gently, 
important for fine finishing cuts. 

Inside Corner Introduction 
If the lead-in move and the first fully compensated move form an inside corner, the lead-in move goes 
directly to this point.  When the lead-in move is a LINEAR-mode move, the compensated tool path will 
be at a diagonal to the programmed move path.  When the lead-in move is a CIRCLE-mode move, the 
compensated tool path will be a spiral. 



 Turbo PMAC User Manual 

296 Writing and Executing Motion Programs 

Line

Line

Line

Line

Programmed
Path

Tool Center
Path Line

Line

Programmed
Path

Tool Center
Path

Arc

Arc

Line to Line Line to Arc

Arc to ArcArc to Line

Line

Line

Programmed
Path

Tool Center
Path

Spiral

Arc

Spiral

Arc

Introducing Compensation – Inside Corner

Programmed
Path

Tool Center
Path

Arc

Arc

rr

r r

CC2 CC2

CC2 CC2

 
Outside Corner Introduction 
If the lead-in move and the first fully compensated move form an outside corner, the lead-in move first 
moves to a point one cutter radius away from the intersection of the lead-in move and the first fully 
compensated move, with the line from the programmed point to this compensated endpoint being 
perpendicular to the path of the lead-in move at the intersection.  When the lead-in move is a LINEAR-
mode move, this compensated tool path will be at a diagonal to the programmed move path.   

When the lead-in move is a CIRCLE-mode move, this compensated tool path will be a spiral.  Then a 
circular arc move with radius equal to the cutter radius is added, ending at a point one cutter radius away 
from the intersection of the lead-in move and the first fully compensated move, with the line from the 
programmed point to this compensated endpoint being perpendicular to the path of the first fully 
compensated move at the intersection. 
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Note that the behavior for lead-in moves is different from changing the compensation radius from zero to 
a non-zero value while compensation is active.  An arc move is always added at the corner, regardless of 
the setting of Isx99.  This ensures that the lead-in move never cuts into the first fully compensated move. 

Treatment of Compensated Inside Corners 
Inside corners are still subject to the blending due to the TA and TS times in force (default values set by 
coordinate system I-variables Isx87 and Isx88, respectively).  The longer the acceleration time the larger 
the rounding of the corner.  (The corner rounding starts and ends a distance F*TA/2 from the 
compensated, but unblended corner.)  The greater the portion of the blending is S-curve, the squarer the 
corner will be.   

When coming to a full stop (e.g. Step, Quit, or DWELL at the corner) at an inside corner, Turbo PMAC 
will stop at the compensated, but unblended, corner point. 
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Treatment of Outside Corners 
For outside corners, Turbo PMAC will either blend the incoming and outgoing moves directly together, 
or it will add an arc move to cover the additional distance around the corner.  Which option it chooses is 
dependent on the relative angle of the two moves and the value of I-variable Isx99. 

The relative angle between the two moves is expressed as the change in directed angle of the motion 
vector in the plane of compensation.  If the two moves are in exactly the same direction, the change in 
directed angle is 0o; if there is a right angle corner, the change is +/-90o; if there is a complete reversal, the 
change in directed angle is 180o. 

Isx99 specifies the boundary angle between directly blended outside corners and added-arc outside 
corners.  It is expressed as the cosine of the change in the directed angle of motion (cos0o=1.0, 
cos90o=0.0, cos180o=-1.0) at the boundary of the programmed moves.  The change in directed angle is 
equal to 180o minus the “included angle” at the corner. 
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Sharp Outside Corner 
If the cosine of the change in directed angle is less than Isx99, which means the corner is sharper than the 
specified angle, then an arc move will be added around the outside of the corner.   
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However, if the cosine of the change in directed angle is greater than Isx99, which means that the corner 
is flatter than the specified angle, the moves will be directly blended together without an added arc. 
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The added arc prevents the compensated corner from extending too far out on the outside of a sharp 
corner.  However, as an added move, it has the minimum time of the acceleration time, which can cause a 
slowdown on a very shallow angle.  While the default value for Isx99 of 0.9998 (cos1o) causes an arc to 
be added on any change in angle greater than 1o, many users will set Isx99 to 0.707 (cos45o) or 0.0 
(cos90o) so arcs are only added on sharp corners. 
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When coming to a full stop (e.g. Step, Quit, /, or DWELL) at an outside corner with an added arc, Turbo 
PMAC will include the added arc move before stopping.  When coming to a full stop at an outside corner 
without an added arc, Turbo PMAC will stop at the compensated, but unblended, corner point. 

Treatment of Full Reversal 
If the change in directed angle at the boundary between two successive compensated moves is 180o + 1o 

(the included angle is less than 1o), this is considered a “full reversal” and special rules apply.  If both the 
incoming and outgoing moves are lines, the corner is always considered an outside corner, and an arc 
move of approximately 180o is added.  If one or both of the moves is an arc, Turbo PMAC will check for 
possible inside intersection of the compensated moves.  If such an intersection is found, the corner will be 
treated as an inside corner.  Otherwise, it will be treated as an outside corner with an added 180o arc 
move. 
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Note on Full Circles 
If a full-circle move is executed while in cutter compensation, and one or both of the ends produces a 
shallow outside corner that is directly blended (no added arc – see Treatment of Outside Corners, above), 
the compensated arc move will be extended beyond 360o, and Turbo PMAC may produce just a very 
short arc, 360o shorter than what is desired (making it appear that the circle has been “skipped.” 

Although typically this is the result of sloppy programming – an outside corner with a full circle causes 
an overcut into the circle – many machine designers may want to permit slight cases of this.  Coordinate 
system parameter Isx97 defines the shortest arc angle that may be executed; the longest arc angle is 360o 
plus this angle. 

The default value of Isx97 sets a minimum arc angle of one-millionth of a semi-circle, enough to account 
for numerical round-off, but sometimes not enough for compensated full circles.  To handle these cases, 
Isx97 should be set to a somewhat larger value. 
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Speed of Compensated Moves 
Tool center speed for the compensated path remains the same as that programmed by the F parameter.  
On an arc move, this means that the tool edge speed (the part of the tool in contact with the part) will be 
different from that programmed by the fraction Rtool/Rarc. 

Changes in Compensation 
Turbo PMAC permits changes both to the radius of compensation and the direction of compensation 
while the compensation is active.  It is important to understand exactly how Turbo PMAC changes the 
compensated path in these cases. 
Radius Magnitude Changes 
Changes in the magnitude of compensation (new CCR values) made while compensation is active are 
introduced linearly over the next move.  When this change is introduced over the course of a LINEAR-mode 
move, the compensated tool path will be at a diagonal to the programmed move path.  When this change is 
introduced over the course of a CIRCLE-mode move, the compensated tool path will be a spiral. 
Compensation Direction Changes 
Changes in the direction of compensation (between CC1 and CC2) made during compensation are 
generally introduced at the boundary between the two moves.   
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However, if there is no intersection between the two compensated move paths, the change is introduced 
linearly over the next move. 
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How Turbo PMAC Removes Compensation 
Turbo PMAC gradually removes compensation over the next LINEAR or CIRCLE-mode move following 
the CC0 command that turns off compensation.  This lead-out move starts at a point one cutter radius 
away from the intersection of the lead-in move and the first fully compensated move with the line from 
the programmed point to this compensated endpoint being perpendicular to the path of the first fully 
compensated move at the intersection.  Note that few controllers can make their lead-out move a 
CIRCLE-mode move.  This capability permits releasing contact with the cutting surface very gently, 
important for fine finishing cuts. 
Inside Corner 
If the last fully compensated move and the lead-out move form an inside corner, the lead-out move starts 
directly from this point to the programmed endpoint.  When the lead-out move is a LINEAR-mode move, 
the compensated tool path will be at a diagonal to the programmed move path.  When the lead-in move is 
a CIRCLE-mode move, the compensated tool path will be a spiral. 
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Outside Corner 
If the last fully compensated move and the lead-out move form an outside corner, the last fully 
compensated move ends at a point one cutter radius away from the intersection of the last fully 
compensated move and the lead-out move, with the line from the programmed point to this compensated 
point being perpendicular to the path of the fully compensated move at the intersection.   
Turbo PMAC then adds a circular arc move with radius equal to the cutter radius, ending at a point one 
cutter radius away from the same, with the line from the programmed point to this compensated endpoint 
being perpendicular to the path of the lead-out move at the intersection. 
Finally, Turbo PMAC gradually removes compensation over the lead-out move itself, ending at the 
programmed endpoint of the lead-out move.  When the lead-out move is a LINEAR-mode move, this 
compensated tool path will be at a diagonal to the programmed move path.  When the lead-in move is a 
CIRCLE-mode move, this compensated tool path will be a spiral. 
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Note that this behavior is different from changing the magnitude of the compensation radius to zero while 
leaving compensation active.  An arc move is always added at the corner, regardless of the setting of 
Isx99.  This ensures that the lead-out move will never cut into the last fully compensated move. 
Failures in Cutter Compensation 
It is possible to give Turbo PMAC a program sequence in which the cutter compensation algorithm will 
fail, not producing desired results.  There are three types of reasons the compensation can fail: 
1. Inability to calculate through corner 
2. Inside corner smaller than radius 
3. Inside arc radius smaller than cutter radius 
Inability to Calculate through Corner 
First, if Turbo PMAC cannot see ahead far enough in the program to find the next move with a 
component in the plane of compensation before the present move is calculated, then it will not be able to 
compute the intersection point between the two moves.  This can happen for several reasons: 
• There is a move with no component in the plane of compensation (i.e. perpendicular to the plane of 

compensation, as in a Z-axis-only move during XY compensation) before the next move in the plane 
of compensation, and no CCBUFFER compensation block buffer declared (see below). 

• There are more moves with no component in the plane of compensation before the next move in the 
plane of compensation than the CCBUFFER compensation block buffer can hold (see below). 

• There are more than 10 DWELLs before the next move in the plane of compensation. 
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• Program logic causes a break in blending moves (e.g. looping twice through a WHILE loop). 

Line

Line

Line

Line

Programmed
Path

Tool Center
Path

Failure to See Through
Inside Corner

r

Overcut

Tool
Center Point

at Failure

r
r

Line

Line

Line

Line

Programmed
Path

Tool Center
Path

r

r
Arc

Tool
Center Point

at Failure
(No Overcut)

Failure to See Through
Outside Corner

Line

Line
Programmed

Path

Tool Center
Path

r

Stopping
Point

Arc Radius Smaller Than
Cutter Radius

Arc

Failures in Cutter Compensation

(Not
Executed)

Line

r

Line

Tool Center
Path

Line

Programmed
Path

Inside Corner Smaller Than
Cutter Radius

Overcut

Line

LineArc
r r

 
If Turbo PMAC cannot find the next move in time, it will end the current move as if the intersection with 
the next move would form an outside corner.  If the next move, when found, does create an outside 
corner, or continues straight on, compensation will be correct.  On an outside corner, an arc move is 
always added at the corner, regardless of the setting of Isx99.  However, if the next move creates an inside 
corner, the path will have overcut into the corner.  In this case, Turbo PMAC then moves to the correct 
intersection position and continues with the next move, leaving the overcutting localized to the corner. 

Inside Corner Smaller Than Radius 
Second, if the compensated path produces an inside corner with one of the moves shorter than the cutter 
radius, the cutter compensation will not work properly.  This situation results in a compensated move that 
is in the opposite direction from that of the uncompensated move, and there will be overcutting at the 
corner. 

Inside Arc Radius Smaller Than Cutter Radius 
Third, if the program requests an arc move with compensation to the inside, and the programmed arc 
radius is smaller than the cutter radius, then no proper path can be calculated.  In this case, Turbo PMAC 
ends the program at the end of the previous move with a run-time error, setting the internal run-time error 
code in register Y:$002x14 to 7. 

Block Buffering for Cutter Compensation 
If the application requires the execution of moves perpendicular to the plane of compensation while cutter 
compensation is active, it will require that a special buffer be defined to hold these moves while Turbo 
PMAC scans ahead to find the next move in the plane of compensation so it can compute the proper 
intersection between the incoming move to this point in the plane and the outgoing move. 

This buffer is created with the on-line coordinate-system-specific command DEFINE 
CCBUF{constant}, where {constant} is a positive integer representing the number of moves 
perpendicular to the compensation plane that can be stored in the buffer.  This number should be at least 
as large as the largest number of consecutive perpendicular moves between any two moves in the plane. 
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With this buffer defined for the coordinate system, if Turbo PMAC encounters one or more moves 
perpendicular to the plane of compensation while compensation is active, these moves will be stored in 
the CCBUF temporarily while the next move in the plane is found, so the intersections can be computed 
correctly.  However, if there is not enough room in the buffer to store all of the perpendicular moves 
found, Turbo PMAC will assume an outside-corner intersection; if the next move in the plane actually 
forms an inside corner, overcut will have occurred. 

When programmed moves are actually stored in the CCBUF, commands that change the current position 
value – HOME, HOMEZ, and PSET – are not permitted.  Turbo PMAC will report an ERR019 if I6 is set to 
1 or 3. 

The CCBUF, which stores motion program blocks for the purpose of computing proper cutter 
compensation intersection points, should not be confused with the LOOKAHEAD buffer, which stores 
small motion “segments” generated from these programmed blocks for the purpose of guaranteeing 
observance of position, velocity, and acceleration limits.  Both of these buffers may be defined and active 
for a coordinate system at the same time. 

The CCBUF is a temporary buffer.  Its contents are never retained through a power-down or card reset; 
the buffer itself is only retained through a power-down or reset if it was defined, and I14 was set to 1, at 
the time of the last SAVE command. 

Single-Stepping While in Compensation 
It is possible to execute moves in “single-step” mode while cutter compensation is active, but the user 
should be aware of several special considerations for this mode of operation.  Because of the need for the 
program to see ahead far enough to find the next move in the plane of compensation before the current 
move can be executed, the execution of an S single-step command may not produce the intuitively 
expected results.  The single-step command on a move in compensation causes the preliminary 
calculations for that move to be done, not for the move actually to be executed.  This has the following 
ramifications: 

• A single-step command on the lead-in move for compensation will produce no motion, because the 
next move has not yet been found.   

• Single-step commands on compensated moves in the plane of compensation will cause the previous 
move to execute.   

• Single-step commands on compensated moves perpendicular to the plane of compensation will 
produce no motion, as these will just be held in the CCBUFFER.  A single-step command on the next 
move in the plane of compensation will cause the previous move in the plane, plus all buffered moves 
perpendicular to the plane to execute. 

• A single-step command on the lead-out move will cause both the last fully compensated move and the 
lead-out move to execute. 

Unlike many controllers, Turbo PMAC can execute non-motion program blocks with single-step 
commands with cutter compensation active.  However, you should be aware that the execution of these 
blocks may appear out of sequence, because the motion from the previous programmed move block will 
not yet have been executed. 

Synchronous M-variable assignments in this mode are still buffered and not executed until the actual start 
of motion execution of the next programmed move. 
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Three-Dimensional Cutter Radius Compensation 
Turbo PMAC provides the capability for performing three-dimensional (3D) cutter (tool) radius 
compensation on the moves it performs.  This compensation can be performed among the X, Y, and Z 
axes which should be physically perpendicular to each other (even if the motors assigned to the axes are 
not).  Unlike the more common two-dimensional (2D) compensation, you can specify independently the 
offset vector normal to the cutting surface, and the tool orientation vector.   
The 3D compensation algorithm automatically uses this data to offset the described path of motion, 
compensating for the size and shape of the tool.  This permits you to program the path along the surface 
of the part, letting Turbo PMAC calculate the path of the center of the end of the tool. 
3D compensation is valid only in LINEAR and CIRCLE move modes, and is really intended only for 
LINEAR moves. 
A note on terminology: Much of the documentation on the older two-dimensional cutter-radius 
compensation refers to just “cutter-radius compensation”, since there was no 3D compensation at the 
time.  Documentation specific to 3D compensation will always specify “3D” compensation. 
Defining the Magnitude of 3D Compensation 
The magnitude of 3D compensation is determined by two user-declared radius values.  The first of these 
is the radius of the rounded end of the cutter, set by the buffered motion program command CCR{data} 
(Cutter Compensation Radius).  This command can take either a constant argument (e.g. CCR2.35) or an 
expression in parentheses (e.g. CCR(Q20-0.001)).  The units of the argument are the user units of the 
X, Y, and Z-axes.  In operation, the compensation first offsets the path by the cutter’s end radius along the 
surface-normal vector (see below). 
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3D Compensation: Cutting Tool Cross Sections

 
The second value is the tool radius itself, the radius of the shaft of the tool.  This is set by the buffered 
motion program command TR{data} (Tool Radius).  This command can take either a constant 
argument (e.g. TR7.50) or an expression in parentheses (e.g. TR(7.50-Q99)).  The units of the 
argument are the user units of the X, Y, and Z-axes.  In operation, the compensation next offsets the path 
by an amount equal to the tool radius minus the cutter’s end radius, perpendicular to the “tool-orientation” 
vector (see below). 
A flat-end cutter will have a cutter-end radius of zero.  A ball-end cutter (hemispherical tip) will have a 
cutter-end radius equal to the tool (shaft) radius.  Other cutters will have a cutter-end radius in between 
zero and the tool radius. 
Turning on 3D Compensation 
3D cutter compensation is turned on by the buffered motion program command CC3.  Since the offset 
vector is specified explicitly, there is no left or right compensation here.  When 3D compensation is 
turned on, the surface-normal vector is set to the null (zero-magnitude) vector automatically, and the tool-
orientation vector is also set to the null vector automatically.   
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Until a surface-normal vector is declared explicitly with 3D compensation active, no actual compensation 
will occur.  A tool-orientation vector must also be declared for compensation to work on anything other 
than a ball-nose cutter. 
Turning Off 3D Compensation 
3D cutter compensation is turned off by the buffered motion program command CC0, just as for 2D 
compensation.  Compensation will be removed over the next LINEAR or CIRCLE mode move after 
compensation has been turned off. 
Declaring the Surface-Normal Vector 
The direction of the surface-normal vector is determined by the NX{data}, NY{data}, and 
NZ{data} components declared in a motion program line.  The absolute magnitude of these components 
does not matter, but the relative magnitudes define the direction.  The direction must be from the surface 
into the tool. 
Generally, all three components should be declared together.  If only one or two components are declared 
on a program line, the remaining component(s) are left at their old value(s), which could lead to 
unpredictable results.  If it is desired that a component value be changed to zero, it should be declared 
explicitly as zero. 
Note that the coordinates of the surface-normal vector must be expressed in the machine coordinates.  If 
the part is on a rotating table, these coordinates will not in general be the same as the original part 
coordinates from the part design – the vector must be rotated into machine coordinates before sending to 
Turbo PMAC. 
The surface-normal vector affects the compensation for the move on the same line of the motion program, 
and all subsequent moves until another surface-normal vector is declared.  In usual practice, a surface-
normal vector is declared for each move, affecting that move alone. 
Declaring the Tool-Orientation Vector 
If the orientation of the cutting tool can change during the compensation, as in five-axis machining, the 
orientation for purposes of compensation is declared by means of a tool-orientation vector.  (If the 
orientation is constant, as in three-axis machining, the orientation is usually declared by the normal vector 
to the plane of compensation, although the tool-orientation vector may be used.) 
The direction of the tool-orientation vector is determined by the TX{data}, TY{data}, and 
TZ{data} components declared in a motion program line.  The absolute magnitude of these components 
does not matter, but the relative magnitudes define the direction.  The direction sense of the tool-
orientation vector is not important; it can be from base to tip, or from tip to base 
Generally, all three components should be declared together.  If only one or two components are declared 
on a program line, the remaining components are left at their old values, which could lead to 
unpredictable results.  If it is desired that a component value be changed to zero, it should be declared 
explicitly as zero. 
Note that the coordinates of the surface-normal vector must be expressed in the machine coordinates.  If 
the part is on a rotating table, these coordinates in general will not be the same as the original part 
coordinates from the part design. 
The tool-orientation vector affects the compensation for the move on the same line of the motion 
program, and all subsequent moves until another tool-orientation vector is declared.  In usual practice, a 
tool-orientation vector is declared for each move, affecting that move alone. 
Note that the tool-orientation vector declared here does not command motion; it merely tells the 
compensation algorithm the angular orientation that has been commanded of the tool.  Typically the 
motion for the tool angle has been commanded with A, B, and/or C-axis commands, often processed 
through an inverse-kinematic subroutine on Turbo PMAC.   
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How 3D Compensation is Performed 
In operation, Turbo PMAC starts from the uncompensated X, Y, and Z-axis positions for each end-point 
programmed while 3D compensation is active.  Then two offsets are applied to the X, Y, and Z-axis 
positions.  The first offset is taken along the surface-normal vector, of a magnitude equal to the tip radius.  
The second offset is then taken toward the center of the tool, in the plane containing both the surface-
normal vector and the tool-orientation vector, perpendicular to the tool-orientation vector, of a magnitude 
equal to the cutter radius minus the tip radius. 

Once the modified end-point is calculated, the move to that end-point is calculated just as it would be 
without compensation.  If the program is in LINEAR mode, it will be linearly interpolated.  If the 
program is in CIRCLE mode (not advised), arc interpolation will be applied. 

Because the offset to the end-point is directly specified for each move, there are no intersection points for 
Turbo PMAC to compute using the equations for the next move.  This means there are no special 
lookahead or single-step execution considerations, as there are in 2D compensation. 

All moves in 3D compensation are directly blended together.  There are no special considerations for 
outside corners, as there are in 2D compensation.  Also, there are no special considerations for the lead-in 
and lead-out moves.  The lead-in move is an interpolated move from the last uncompensated position to 
the first compensated position.  The lead-out move is an interpolated move from the last compensated 
position to the first uncompensated position. 
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Turbo PMAC Lookahead Function 
Turbo PMAC can perform highly sophisticated lookahead calculations on programmed trajectories to 
ensure that the trajectories do not violate specified maximum quantities for the axes involved in the 
moves.  This permits writing the motion program simply to describe the commanded path.  Vector 
feedrate becomes a constraint instead of a command; programmed acceleration times are used only to 
define corner sizes and minimum move block times.  Turbo PMAC will control the speed along the path 
automatically (but without changing the path) to ensure that axis limits are not violated. 

Lookahead calculations are appropriate for any execution of a programmed path in which throughput has 
been limited by the need to keep execution slow throughout the path because of the inability to anticipate 
the few sections where slow execution is required.  The lookahead function’s ability to anticipate these 
problem areas permits much faster execution through most of the path, dramatically increasing 
throughput. 
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Because of the nature of the lookahead calculations – trajectory calculations are done well in advance of 
the actual move execution, and moves are kept within machine limits by the automatic adjustment of 
move speeds and times – they are not appropriate for some applications.  Any application requiring quick 
reaction to external conditions should not use lookahead.  Also, also any application requiring precise 
synchronization to external motion, such as those using PMAC’s external time base feature, should not 
use lookahead. 

When the lookahead function is enabled, Turbo PMAC will scan ahead in the programmed trajectories, 
looking for potential violations of its position, velocity, and acceleration limits.  If it sees a violation, it 
will then work backward through the pre-computed buffered trajectories, slowing down the parts of these 
trajectories necessary to keep the moves within limits.  These calculations are completed before these 
sections of the trajectory are actually executed. 

Turbo PMAC can perform these lookahead calculations on LINEAR and CIRCLE mode moves.  The 
coordinate system must be put in segmentation mode (Isx13 > 0) to enable lookahead calculations, even if 
only LINEAR mode moves are used.  (The coordinate system must be in segmentation mode anyway to 
execute CIRCLE mode moves or cutter radius compensation.)  In segmentation mode, Turbo PMAC 
automatically splits the moves into small segments, which are executed as a series of smooth splines to re-
create the programmed moves. 

Turbo PMAC stores data on these segments in a specially defined lookahead buffer for the coordinate 
system.  Each segment takes Isx13 milliseconds when it is put into the buffer, but this time can be 
extended if it or some other segment in the buffer violates a velocity or acceleration limit. 

This technique permits Turbo PMAC to create deceleration slopes in the middle of programmed moves, at 
the boundaries of programmed move, or over multiple programmed moves, whichever is required to 
create the fastest possible move that does not violate constraints.  All of this is done automatically and 
invisibly inside the Turbo PMAC; the part programmer and operator do not need to understand the 
workings of the algorithm. 

The following diagram shows the principle of how the lookahead function can create acceleration and 
deceleration profiles automatically over multiple programmed moves.  In this case, the programmed 
moves are too short to permit the full acceleration to and from programmed speed in a single programmed 
move.  Without any change to the motion program, the lookahead function will create a profile that does 
not violate acceleration constraints. 
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The next diagram shows how the lookahead function can create a deceleration into a tight corner 
automatically, permitting the corner to be taken slowly to keep it within acceleration constraints, and then 
to accelerate back up to the programmed speed coming out of the corner.  This permits the user to 
command high speeds, and to have Turbo PMAC slow down the path only where needed.  Note that the 
post-lookahead profile in this diagram is not time-extended as it would really be; this was done to show 
the correspondence of points on the profiles. 
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If Turbo PMAC’s inverse kinematic calculations are used, the conversion from tip coordinates to joint 
coordinates takes place before lookahead calculations, segment by segment for LINEAR and CIRCLE 
mode moves.  Therefore, Turbo PMAC can execute the lookahead calculations in joint space, motor by 
motor, even if the system has been programmed in tip coordinates. 

Once the lookahead function has been set up, the lookahead function operates transparently to the 
programmer and the operator.  No changes need to be made to a motion program to use the lookahead 
function, although the programmer may choose to make some changes to take advantage of the increased 
performance capabilities that lookahead provides. 

Quick Instructions: Setting Up Lookahead 
The following list quickly explains the steps required for setting up and using the lookahead function on 
the Turbo PMAC.  Greater detail and context are given in the subsequent section. 

1. Assign all desired motors to the coordinate system with axis definition statements. 
2. Set Ixx13 and Ixx14 positive and negative position limits, plus Ixx41 desired position-limit band, in 

counts for each motor in coordinate system.  Set bit 15 of Ixx24 to 1 to enable desired position limits. 
3. Set Ixx16 maximum velocity in counts/msec for each motor in coordinate system. 
4. Set Ixx17 maximum acceleration in counts/msec2 for each motor in coordinate system. 
5. Set Isx13 segmentation time in msec for the coordinate system to minimum programmed move block 

time or 10 msec, whichever is less. 
6. Compute maximum stopping time for each motor as Ixx16/Ixx17. 
7. Select motor with longest stopping time. 
8. Compute number of segments needed to look ahead as this stopping time divided by (2 * Isx13). 
9. Multiply the segments needed by 4/3 (round up if necessary) and set the Isx20 lookahead length 

parameter to this value. 
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10. If the application involves high block rates, set the Isx87 default acceleration time to the minimum 
block time in msec; the Isx88 default S-curve time to 0. 

11. If the application does not involve high block rates, set the Isx87 default acceleration time and the 
Isx88 default S-curve time parameters to values that give the desired blending corner size and shape 
at the programmed speeds. 

12. Store these parameters to non-volatile memory with the SAVE command if you want them to be an 
automatic part of the machine state. 

13. After each power-up/reset, send the card a DEFINE LOOKAHEAD {# of segments},{# of 
outputs} command for the coordinate system, where {# of segments} is equal to Isx20 plus 
any segments for which backup capability is desired, and {# of outputs} is at least equal to the 
number of synchronous M-variable assignments that may need to be buffered over the lookahead 
length. 

14. Load your motion program into the Turbo PMAC.  Nothing special needs to be done to the motion 
program.  The motion program defines the path to be followed; the lookahead algorithm may reduce 
the speed along the path, but it will not change the path. 

15. Run the motion program, and let the lookahead algorithm do its work. 
Detailed Instructions: Setting up to use Lookahead 
A few steps are required to calculate and set up the lookahead function.  Typically, the calculations have 
to be done only once in the initial configuration of the machine.  Once configured, the lookahead function 
operates automatically and invisibly. 

Defining the Coordinate System 
The lookahead function checks the programmed moves against all motors in the coordinate system.  
Therefore, the first step is to define the coordinate system by assigning motors to axes in the coordinate 
system with axis definition statements.  This action is covered in the Setting up the Coordinate System 
section of this manual. 

Lookahead Constraints 
Turbo PMAC’s lookahead algorithm forces the coordinate system to observe four constraints for each 
motor.  These constraints are defined in I-variables for each motor representing maximum position 
extents, velocities, and accelerations.  These I-variables must be set up properly in order for the lookahead 
algorithm to work properly. 

Position Limits 
Variables Ixx13 and Ixx14 for each Motor xx define the maximum positive and negative position values, 
respectively, that are permitted for the motor (software overtravel limits).  These variables are defined in 
counts, and are referenced to the motor zero, or home, position (often called machine zero).  Even if the 
origin of the axis for programming purposes has been offset (often called program zero), the physical 
position of these position limits does not change; they maintain their reference to the machine zero point.  
Turbo PMAC checks the actual position for each motor as the trajectory is being executed against these 
limits; if a limit is exceeded, the program is aborted and the motors are decelerated at the rate set by 
Ixx15. 

Variable Ixx41 for each Motor xx defines the distance between the actual position limits explained above, 
and the desired position limit that can be checked at move calculation time, even in lookahead.  That is, if 
the calculated desired move position is greater than (Ixx13 – Ixx41), or less than (Ixx14 + Ixx41), this 
will constitute a desired position limit violation.  Desired position limits are checked only if bit 15 of 
Ixx24 is set to 1. 
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In this mode, if the lookahead algorithm, while scanning ahead in the programmed trajectory, determines 
that any motor in the coordinate system would exceed one of its desired position limits, it will suspend the 
program and force a stop right at that limit.  It will then work backwards through the buffered trajectory 
segments to bring the motors to a stop along the path at that point in the minimum time that does not 
violate any motor’s Ixx17 acceleration constraint.   

However, if bit 14 of Ixx24 is also set to 1, the program does not stop at the limit.  Instead, it will 
continue, with the offending motor saturating at the limit value. 

When stopped on a desired position limit within lookahead, the program is only suspended, not aborted.  
The action is equivalent to issuing a \ quick-stop command.  It is possible to “retrace” the path coming 
into the limit, or even to resume forward execution after changing the limit value.  An “abort” command 
must be issued before another program can be started.   

Note, however, that if an actual position limit is also tripped during the deceleration to a stop at the 
desired position limit, the program is aborted, so retracing and resuming are not possible.  For this reason, 
if the possibility of retracing and resuming is important, Ixx41 should be set to a large enough value so 
that the actual position limit is never tripped during a desired position limit stop. 

This technique permits these software position limits to be placed just within the hard stops of the 
machine.  Without the desired position limits, the software position limits cannot be detected until the 
actual trajectory actually passes the limit.  This requires that these limits be placed far enough within the 
hard stops so that the motors have enough distance to stop after they pass the limits. (When a motor hits a 
software position limit without lookahead, the deceleration of motors is controlled by Ixx15, not Ixx17, 
and deceleration is not necessarily along the programmed path.) 

Velocity Limits 
Variable Ixx16 for each Motor xx defines the magnitude of the maximum velocity permitted for the 
motor.  These variables are defined in the raw PMAC units of counts per millisecond, so a quick 
conversion must be calculated from the user units (e.g. millimeters per minute). 

If the algorithm, while looking ahead in the programmed trajectory, determines that any motor in the 
coordinate system is being asked to violate its velocity limit, it will slow down the trajectory at that point 
just enough so that no limit is violated.  It will then work backwards through the buffered trajectory 
segments to create a controlled deceleration along the path to this limited speed in the minimum time that 
does not violate any motor’s Ixx17 acceleration constraint. 

Note:  

During the initial move-block calculations, before move data is sent to the 
lookahead function, a couple of factors can result in commanded velocities lower 
than what is programmed.  First, if the vector feedrate commanded in the motion 
program with the F command exceeds the maximum feedrate parameter Isx98, 
then Isx98 is used instead.  Second, if the move-block time, either specified 
directly with the TM command, or calculated as vector-distance divided by vector-
feedrate, is less than the programmed acceleration time (the larger of TA or 2 * 
TS), the programmed acceleration time is used instead. This results in a speed less 
than what was programmed.  The lookahead function can further slow these 
moves, but it cannot speed them up. 

Acceleration Limits 
Variable Ixx17 for each Motor xx defines the magnitude of the maximum acceleration permitted for the 
motor.  These variables are defined in the raw PMAC units of counts per (millisecond-squared), so a 
quick conversion must be calculated from the user units (e.g. in/sec2, or g’s). 
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If the algorithm, while looking ahead in the programmed trajectory, determines that any motor in the 
coordinate system is being asked to violate its acceleration limit, it will slow down the trajectory at that 
point just enough so that no limit is violated.  It will then work backwards through the buffered trajectory 
segments to create a controlled deceleration along the path to this limited speed in the minimum time that 
does not violate any motor’s Ixx17 acceleration constraint. 

Calculating the Segmentation Time 
Turbo PMAC’s lookahead function operates on intermediate motion segments calculated from the 
programmed trajectory.  An intermediate point for each motor is computed once per segment from the 
programmed path, and then a fine interpolation using a cubic spline to join these segments is executed at 
the servo update rate.  Therefore, the user settable segmentation time is an important parameter for 
optimization of the lookahead function. 
Variable Isx13 for each Coordinate System x defines the time for each intermediate segment in the 
programmed trajectory, in milliseconds, before it is possibly extended by the lookahead function.  Isx13 
is an integer value; if a non-integer value is sent, Turbo PMAC will round to the next integer.  If Isx13 is 
set to 0, the coordinate system is not in segmentation mode; no intermediate segments are calculated, and 
the lookahead function cannot be enabled. 
Several issues must be addressed in setting the Isx13 segmentation time.  These include its relationship to 
the maximum block rate, the small interpolation errors it introduces, and its effect on the calculation load 
of the Turbo PMAC.  Each of these is addressed in turn, below. 
Block Rate Relationship 
In most applications, the Isx13 segmentation time will be set so that it is less than or equal to the 
minimum block (programmed move) time.  Put another way, usually the segmentation rate defined by 
Isx13 is set greater than or equal to the maximum block rate.  For example, if a maximum block rate of 
500 blocks per second is desired, the minimum block time is 2 milliseconds, and Isx13 is set to a value no 
greater than 2. 
This relationship holds because blocks of a smaller time than the segmentation time are skipped over as 
Turbo PMAC looks for the next segment point.  While this does not cause any errors, there is no real 
point in putting these programmed points in the motion program if the controller is going to skip over 
them.  However, some people inherit old motion programs with points closer together than is actually 
required; these users may have reason to set their segmentation time larger than their minimum block 
time. 
Note that the programmed acceleration time sets a limit on the maximum block rate.  The move time for a 
programmed block, even before lookahead, is not permitted to be less than the programmed acceleration 
time.  The programmed acceleration time is the larger of the TA time (TA = Isx87 by default) and twice 
the TS time (TS = Isx88 by default).  In high-block-rate lookahead applications, the TA time typically is 
set equal to the minimum desired block time, and the TS time typically is set to (because it squares up 
corners). 
Interpolation Errors 
The cubic-spline interpolation technique that Turbo PMAC uses to connect the intermediate segment 
points is very accurate, but it does create small errors.  These errors can be calculated as: 

R6
2T2VError =  

where V is the vector velocity along the path, T is the segmentation time (watch the units!), and R is the 
local radius of curvature of the path.  For example, if the speed is 100 mm/sec (~4 in/sec), the 
segmentation time is 0.01 sec (Isx13 = 10 msec), and the minimum radius at this speed is 50 mm (~2 in), 
then the worst-case interpolation error can be calculated as: 
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If the programmed path itself introduces path error, such as the chordal error of linear interpolation, this 
must be added to the error budget as well.  In addition, if the servo-loop execution adds servo errors, these 
must also be included. 
Calculation Implications 
While smaller Isx13 segmentation times permit higher real maximum block rates and permit more 
accurate interpolation, they increase the Turbo PMAC computational requirements, particularly when 
lookahead is active.  The following table shows the result of benchmarking tests on the Turbo PMAC that 
shows the minimum segmentation times that can be used for a given number of axes executing lookahead 
calculations. 

Number of 
Axes 

Maximum Block Rate 
(blocks/sec) 

Minimum Segmentation 
Time (msec) 

2 2000 1 @ 200% 
3 1000 1 
4 500 2 
5 500 2 
6 500 2 
8 333 3 

12 250 4 
16 200 5 

Notes: 
1. Tests performed on 80 MHz Turbo PMAC 
2. Tests performed at default 2.25 kHz servo update rate 
3. Tests performed with no PMAC motor commutation or current-loop closure 
4. Higher block rates can be done, but segmentation will smooth out features 

Note that subject to these constraints, the length of the lookahead is subject only to memory limitations in 
the Turbo PMAC. 
In general, the Isx13 segmentation time is set to the largest value that meets user requirements in each of 
the above three concerns.  However, it is seldom set larger than 10 msec. 
Calculating the Required Lookahead Length 
In order for the coordinate system to reach maximum performance, it must be looking ahead for the time 
and distance required for each motor to come to a full stop from maximum speed.  Because the lookahead 
buffer stores motion segments, this lookahead length must be expressed in segments. 
To calculate this value, first compute the worst-case time required to stop for each motor in the coordinate 
system.  This value can be obtained by dividing the maximum motor velocity by the maximum motor 
acceleration.  In terms of Turbo PMAC parameters: 

17Ixx
16Ixxsec)m(StopTime =  

Now take the motor with the longest stop time, and divide this time by 2 (because the segments will come 
in at maximum speed, which takes half the time of ramping down to zero speed).  Next, convert this value 
to a number of segments by dividing by the coordinate system segmentation time: 

13Isx*17Ixx*2
16Ixx

)seg/ssecm(13Isx*2
sec)m(StopTime)segs(engthLookaheadL ==  

This is the number of segments in the lookahead buffer that always must be computed properly ahead of 
time.  Because the Turbo PMAC does not fully recalculate the lookahead buffer every segment, it must 
actually look further ahead than this number of required segments 
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Lookahead Length Parameter 
Variable Isx20 for the coordinate system tells the algorithm how many segments ahead in the program to 
look.  This value is a function of the number of segments that must always be correct in the lookahead 
buffer (SegmentsNeeded).  The formula is: 

ededSegmentsNe*
3
420Isx =  

Setting Isx20 to a value larger than needed does not increase the computational load (although it does 
increase the time of heaviest computational load while the buffer is filling).  However, it does require 
more memory storage, and it does increase the delay in having the program react to any external 
conditions. 
Setting Isx20 to a value smaller than needed does not cause the limits to be violated.  However, it may 
cause Turbo PMAC to limit speeds more severely than the Ixx16 limits require in order to ensure that 
acceleration limits are not violated.  Also, a saw-tooth velocity profile may be observed. 
Defining the Lookahead Buffer 
In order to use the lookahead function in a Turbo PMAC coordinate system, a lookahead buffer must be 
defined for that coordinate system, reserving memory for the buffer.  This is done with the on-line 
coordinate-system-specific DEFINE LOOKAHEAD command.  Because lookahead buffers are not 
retained through a power down or reset, this command must be issued after every power-up or board 
reset. 
There are two values associated with the DEFINE LOOKAHEAD command.  The first determines the 
number of motion segments for each motor in the coordinate system that can be stored in the lookahead 
buffer.  At a minimum, this must be set equal to Isx20. 
If this value is set greater than Isx20, the lookahead buffer stores historical data.  This data can be used to 
reverse through the already executed trajectory.  If reversal is desired, the buffer should be sized to store 
enough back segments to cover the desired backup distance.  There is no penalty for reserving more 
memory for these synchronous M-variable assignments than is needed, other than the loss of this memory 
for other uses. 
The room reserved for the segment data in the lookahead buffer is dependent on the number of motors 
assigned to the coordinate system at the time of the DEFINE LOOKAHEAD command.  If the number of 
motors assigned to the coordinate system changes, the organization of the lookahead buffer will be 
wrong, and the program will abort with a run-time error on the next move after the coordinate system is 
changed. 
If the coordinate system must be changed during an application that uses lookahead, the lookahead buffer 
must first be deleted, then defined again after the change.  The following motion program code shows 
how this could be done: 
DWELL 10     ; Stop lookahead execution 
CMD "&1 DELETE LOOKAHEAD"  ; Delete buffer 
CMD "&1 #4->100C"    ; Assign new motor to C. S. 1 
CMD "&1 DEFINE LOOKAHEAD 1000,100" ; Redefine buffer 
DWELL 10     ; Make sure commands execute 
The second value associated with the DEFINE LOOKAHEAD command determines the number of 
synchronous M-variable assignments (e.g. M1==1) for the coordinate system that can be stored in the 
lookahead buffer.  Synchronous M-variable assignments in the motion program delay the actual 
assignment of the value to the M-variable until the start of actual execution of the next move in the 
motion program.  Therefore, these actions must be held in a buffer pending execution. 
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This size of the buffer for these assignments must be at least as great as the largest number of assignments 
expected during the time for lookahead.  There is no penalty for reserving more memory for these 
synchronous M-variable assignments than is needed, other than the loss of this memory for other uses. 

Note: 
The buffer reserved in this manner for synchronous M-variables under lookahead 
is distinct from the fixed-size buffer used for synchronous M-variables without 
lookahead. 

For example, the command &1 DEFINE LOOKAHEAD 500,50 creates a lookahead buffer for 
Coordinate System 1 that can store 500 segments for each motor assigned to the coordinate system at that 
time, plus 50 synchronous M-variable assignments. 
Running a Program with Lookahead 
The lookahead function is active when a motion program is run in a coordinate system, provided the 
following conditions are true: 

1. The coordinate system is in segmentation mode (Isx13 > 0). 
2. The coordinate system is told to look ahead (Isx20 > 0). 
3. A lookahead buffer has been defined for the coordinate system since the last board power-up/reset, or 

if the lookahead buffer structure has been saved with I14 = 1. 
4. The motion program is executing LINEAR or CIRCLE-mode moves. 

The lookahead function is active under these conditions even when Turbo PMAC is performing inverse-
kinematic calculations every segment to convert tip positions to joint positions.  This permits the user to 
write a motion program in convenient tip coordinates, yet still observe all joint-motor limits automatically.  
This is particularly important if the tip path passes near a singularity, requesting very high joint velocities 
and accelerations. 

Other move modes – RAPID, SPLINE, and PVT – can be executed with the lookahead buffer defined, but 
the lookahead function is not active when these moves are being executed. 

Note: 

Absolutely no change is required to the motion program to utilize the lookahead 
function. 

It is important to realize the implications of the lookahead function on several aspects of the motion 
program.  Each of these areas is covered below. 

Vector Feedrate 
Without lookahead, the vector feedrate value (Fxxx) is a command for each programmed move block in 
the motion program.  That is, each move is calculated so that it is traversed at the programmed vector 
feedrate (speed).  With lookahead active, the feedrate value is only a constraint.  The move will never be 
executed at a higher speed, but it may be executed at slower speeds during some or all of the move as 
necessary to meet the motor constraints. 

If the move is programmed by move time instead of feedrate, the programmed move time becomes a 
(minimum) constraint; the move will never be executed in less time, but it may be executed in greater 
time. 

Acceleration Time 
The programmed acceleration times – Isx87 and Isx88 by default, or TA and TS in the motion program, 
are the times before lookahead.  The lookahead function will control the actual acceleration times that are 
executed, but the programmed acceleration times are still important for two reasons. 
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First, the programmed acceleration time, which is the larger of TA or 2*TS, is the minimum move-block 
time.  If PMAC initially computes a smaller move time, typically as (vector-distance divided by vector-
feedrate), it will increase the time to be equal to the acceleration time, slowing the move.  This check 
occurs even before lookahead (which can only slow the move further), and it is an important protection 
against computational overload.  The acceleration time must be set low enough not to limit valid moves. 

Note:  

The acceleration time may be set to 0; in this case, Turbo PMAC sets a minimum 
move time of 0.5 milliseconds. 

Second, as longer moves are blended together, the programmed acceleration time and feedrate control the 
corner size for the blending.  The blended corner begins a distance of F*Ta/2 before the programmed 
corner point, where F is the programmed feedrate, and Ta is either the specified acceleration time (TA) or 
two times the specified S-curve time (2*TS), which ever is greater.  The blended corner ends an equal 
distance past the programmed corner point. 

If the lookahead algorithm determines that the blended corner violates the acceleration limit on one or 
more motors, it will slow the speed of the path in the corner.  This will make the time for the blended 
corner bigger than what was specified in the program.  The lookahead will also create a controlled 
deceleration ramp going into the blended corner, and a controlled acceleration ramp coming out of the 
corner.  In this manner, the size of the rounding at a corner can be kept small without violating 
acceleration constraints, and without limiting speeds far away from the corners. 

In general, the acceleration time should be set as large as it can be without either making the minimum 
move time too large, or the corners too large.  In high block-rate applications, the TA time is generally set 
to the minimum block time, and the TS time is set to 0.  In low block-rate applications, the TA and TS 
times generally are set to achieve the desired corner size and shape. 

Trajectory Filter 
In high block-rate applications, rough motion can result from “quantization errors” in the programmed 
path.  This can produce machine vibration, audible noise, and high surface roughness on cut parts.  These 
errors can stem from the limited numerical resolution of the programmed points, from measuring errors if 
the programmed points were scanned, or both. 

This behavior can be compensated with a simple filtering of the interpolated motor trajectory, using 
variable Ixx40 for each Motor xx.  If Ixx40 is set to a value greater than zero, the desired trajectory is 
passed through a simple first-order digital low-pass filter for smoothing purposes.  (If Ixx40 is set to 0.0, 
this filtering is disabled.)  The higher the value of Ixx40, the greater the time constant of the filter. 

The equation for the time constant Tf of the filter as a function of the servo update time Ts and Ixx40 is: 

40Ixx1
sT*40Ixx

fT
−

=  

Generally, time constants of a few milliseconds are selected when the filter is used.  Note that only the 
desired trajectory is filtered, so servo-loop stability is not affected.  However, the filtering does introduce 
a very slight path error (only noticeable for very large time constants) that can be quantified according to 
the following equation: 

R2

2
fT2V

Error =  

where V is the velocity, Tf is the filter time constant, and R is the local radius of curvature of the path.  For 
example, with a velocity of 5000 mm/min (~200 in/min), a filter time constant of 2 msec, and a local 
radius of 100 mm (~4 in), the path error would be: 
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Feedrate Override 
All lookahead calculations are performed assuming a feedrate override value of 100%.  If the feedrate 
override value, from whatever source, changes from 100%, the velocity and acceleration calculations will 
be incorrect.  True velocity values vary linearly with the override value; true acceleration values vary with 
the square of the override value.   

For example, at 200% override, velocity values are twice the programmed values (and could exceed the 
limit values by a factor of 2), and acceleration values are four times the programmed values (and could 
exceed the limit values by a factor of 4). 

Because the feedrate override can be changed at any time with immediate effects, the lookahead function 
cannot anticipate what the override will be when the move will actually be executed.  Therefore, it cannot 
plan for any changes in the override, so it assumes operation at 100%. 

The basic idea of lookahead is to remove the override function from the instantaneous judgment of the 
operator, and instead use the mathematical calculations of the controller, which effectively act as an 
override, to ensure proper and optimal execution of the path.  

Computational Capabilities 
The lookahead calculations can put significant real-time calculation loads on the Turbo PMAC processor.  
If the processor fails to keep up with these real-time requirements, program execution will fail with a 
“run-time” error, and motion will be aborted.  There is also a slight possibility of a watchdog timer trip if 
the processor is never released from the foreground lookahead calculations for background tasks. 

It is important that the application be evaluated to ensure that the lookahead calculations can be 
performed properly under the worst-case conditions.  The period when the most intensive calculations are 
being performed is at the beginning of a move sequence, when Turbo PMAC is filling the buffer 
dynamically to get ahead the specified distance. 

A good worst-case test is to run a motion program with programmed moves at the maximum move-block 
rate right at the beginning of a blended sequence.  Make sure that the Turbo PMAC can get through this 
combination of high block-rate execution and dynamic filling of the lookahead buffer.  To establish a 
margin of safety, increase the override value above 100% to see what extra capability exists.  A 20% 
margin (proper execution at 120%) is strongly recommended. 

Stopping While In Lookahead 
If you wish to stop axis motion while in lookahead mode, he must carefully consider how the stopping is 
to be done.  It is important to realize what point in the chain of execution is being halted with the stopping 
command.  Different stopping commands have different effects, and different uses. 

Quick Stop 
The \ quick-stop command causes Turbo PMAC to immediately calculate and execute the quickest stop 
within the lookahead buffer that does not exceed Ixx17 acceleration limits for motors in the coordinate 
system.  Motion continues along the programmed path to a controlled stop, which is not necessarily at a 
programmed point (and probably will not be).  This command is the effective equivalent of a feedhold 
within lookahead (even though the internal mechanism is quite different), and it should be the command 
issued when an operator presses a Hold button during lookahead.  Outside of lookahead, this command 
causes an actual feed hold, as if the H command had been given. 
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The \ command is the best command to use to stop interactively within lookahead operation with the 
intention of resuming operation.  Any synchronous M-variable assignments set to happen within the 
deceleration will execute. 
Motors may be jogged away from this stop point, if desired.  Also, motion can be reversed along the path 
with the < command (see Reversal, below). 
Normal programmed motion can be resumed with the > resume-forward, R run, or S single-step 
command, provided all motors are commanded to be at the same position at which they originally stopped 
with the / command.  If any motors have been jogged away from this point, they must first be returned 
with the J= command.  Acceleration limits are observed during the ramp up from a stop here.  The > 
resume command puts the coordinate system in either continuous run mode, or single-step mode, 
whichever mode it was in before the quick-stop. 
End-Block Stop 
The / end block command will stop motion at the end point of the move currently being added to the 
lookahead buffer, even if the next move has already been calculated.  Motion segments up to the end of 
this move are still added to the lookahead buffer, and all segments and synchronous M-variable 
assignments in the lookahead buffer are completed. 
Motion will come to a controlled stop at the end of the latest move block being added to the lookahead 
buffer without violating constraints.  However, there can be a significant delay – over (Isx20*Isx13) msec 
if the lookahead buffer is full – from the time the / command is given and the time the axes stop.   
Motors may be jogged away from this stop point, if desired.  Motion can be resumed with the R or S 
command, provided all motors are commanded to be at the same position at which they originally stopped 
with the / command.  If any motors have been jogged away from this stopped point, they must first be 
returned with the J= command. 
Quit/Step 
The Q quit command simply tells the motion program not to calculate any further motion program blocks.  
(The S single-step command will do the same thing if given while the program is running.)  Motion 
segments up to the end of the latest calculated motion program move block are still added to the 
lookahead buffer, and all segments and synchronous M-variable assignments in the lookahead buffer are 
completed.   
Motion will come to a controlled stop at the end of the latest calculated move block without violating 
constraints.  However, there can be a significant delay – over (Isx20*Isx13) msec if the lookahead buffer 
is full – from the time the Q or S command is given and the time the axes stop.   
Motors may be jogged away from this stop point, if desired.  Motion can be resumed with the R or S 
command.  Motors do not have to be at the same position at which they were originally stopped with the 
Q or S command.  However, if it is desired to return them to this position, the J= command should be 
used. 
Feed Hold 
The H feed hold command brings the feedrate override value to zero, starting immediately, and ramping 
down at a rate controlled by coordinate system variable Isx95.  Motion continues along the programmed 
path to a controlled stop, which is not necessarily at a programmed point (and probably will not be).  
Acceleration limits are not necessarily observed during the ramp down to a stop.  Any synchronous M-
variable assignments set to happen within the deceleration will execute. 
Motors may be jogged away from this stop point, if desired.  Programmed motion can be resumed with 
the R or S command, provided all motors are commanded to be at the same position at which they 
originally stopped with the H command.  If any motors have been jogged away from this stopped point, 
they must first be returned with the J= command.  Acceleration limits are not necessarily observed during 
the ramp up from a stop here. 
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Abort 
The A abort command breaks into the executing trajectory immediately, and brings all motors in the 
coordinate system to a controlled stop, each at its own deceleration rate as set by Ixx15 for the motor.  
The stop is not necessarily at a programmed point (and probably will not be), and it is not necessarily 
even along the programmed path (and probably will not be).   

Segments and synchronous M-variable assignments already in the lookahead buffer are discarded; they 
cannot be recovered.  Although the program could be resumed with an R or S command, execution would 
miss all of the discarded segments from the lookahead buffer.  Special recovery algorithms would be 
required to resume operation, so the abort command is not recommended except for stopping quickly 
under error conditions. 

Kill All 
The <CTRL-K> kill-all command breaks into the executing trajectory immediately, and disables all 
motors on the Turbo PMAC by opening the servo loops, forcing zero-value command outputs, and 
disabling the amplifiers.  Motors will coast to a stop in the absence of brakes or regeneration circuits. 

Segments and synchronous M-variable assignments already in the lookahead buffer are discarded; they 
cannot be recovered.  Although the program could be resumed after re-enabling the servo loops with an R 
or S command, execution would miss all of the discarded segments from the lookahead buffer.  Special 
recovery algorithms would be required to resume operation, so the “kill-all” command is not 
recommended except for emergency conditions. 

Note that the motor-specific K kill command is not permitted when the motor is in a coordinate system 
that is executing a motion program.  The program must first be halted, usually with an A abort command. 

Reversal While in Lookahead 
If the lookahead buffer has been sized larger than what is required simply for the actual lookahead, it will 
contain historical data that can be used for reversal along the programmed path.  This capability gives the 
system a “retrace” capability, allowing it easily to go backwards along the already executed path.  The 
key command to be used in reversal is the < backup command, which causes the coordinate system to 
start execution in the reverse direction through the segments in the lookahead buffer. 

Back-up Command 
If the < command is given while the coordinate system is in normal forward execution in the lookahead 
buffer, Turbo PMAC will internally generate a \ “quick-stop” command to halt the forward execution, 
then start reverse execution. 

The < command can also be given after execution of the program has been halted with a \ quick-stop 
command.  It cannot be given after stopping with an / end-of-block, Q quit, S single-step, A abort or 
<CTRL-K> kill-all command, or an automatic error termination. 

Reverse Execution 
Execution in the reverse direction will observe the position, velocity, and acceleration limits, just as in the 
forward direction.  Note, that if Isx20 is set to 1, limits are not observed in either the forward or reverse 
direction.  In this mode, the lookahead buffer is simply used to buffer points to enable reversal, without 
the computational overhead of actual lookahead calculations.  This mode is appropriate for EDM 
applications, which require quick reversal, but not careful acceleration limiting. 

If not stopped by another command, reverse execution will continue until it reaches the beginning (oldest 
stored point) of the lookahead buffer.  It will stop automatically at this point with a controlled 
deceleration within the acceleration constraints.  The oldest stored point in the lookahead buffer will 
never be from before the first point in the current continuous blended motion sequence.  This means that 
you cannot reverse into, past, or through any of the following: 
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• A DWELL point 
• A RAPID, SPLINE, or PVT-mode move 
• A homing-search move 
• A point where the program was stopped with a /, Q, or S command. 
• A point where blending was stopped for any other reason (e.g. Isx92=1, double jump-back) 

Remember that a DELAY command in a motion program does not disable blending, so it is possible to 
reverse execution through a DELAY point.  If a stop at a point is desired during execution of the program, 
but the ability to reverse through the point is required, DELAY should be used instead of DWELL. 

Stopping Reverse Execution 
The reverse execution can be halted before this point with the \ quick-stop command.  Reverse execution 
can be resumed with another < back-up command; forward execution can be re-started with a > resume, R 
run, or S single-step command.  The > resume command puts the coordinate system in either continuous 
run mode, or single-step mode, whichever mode it was in before the back up. 

No synchronous M-variable assignments are executed either during a reversal or during the forward 
execution over the reversed part of the path. 

Forward execution over the reversed part of the path will blend seamlessly into previously unexecuted 
parts of the path.  At this point, standard execution of the lookahead buffer will resume, with new points 
being added to the end of the lookahead buffer, and execution of buffered synchronous M-variable 
assignments starting again. 

Quick Reversal from within Turbo PMAC 
If you wish to reverse very quickly from within PMAC, as for quick retracts in EDM applications, it is 
best to bypass the command interpreter, which acts in background.  This can be done by writing directly 
to a lookahead-control I-variable from the PMAC program. 

Variable Isx21 for each coordinate system contains the control bits for the state of lookahead execution.  
By setting the value of this I-variable directly from a PLC program, the overhead and delay of the 
command interpreter can be avoided and slightly faster reaction obtained.  There are three values of use: 

• Setting Isx21 to 4 is the equivalent of issuing the \ quick-stop command 
• Setting Isx21 to 7 is the equivalent of issuing the < back-up command 
• Setting Isx21 to 6 is the equivalent of resuming forward motion with the > resume-forward command. 

If you are monitoring Isx21 at other times, you will see that the 4’s bit is cleared after the command has 
been processed.  Therefore, you will see the following values: 

• Isx21 = 0 when stopped with a quick-stop command 
• Isx21 = 3 when running reversed in lookahead 
• Isx21 = 2 when running forward in lookahead 

Axis Transformation Matrices 
Turbo PMAC provides the capability to perform matrix transformation operations on the X, Y, and Z-
axes of a coordinate system.  These operations have the same mathematical functionality as the matrix 
forms of the axis definition statements, but these can be changed on the fly in the middle of programs; the 
axis definition statements are meant to be fixed for a particular application. 

The matrix transformations permit translation, rotation, scaling, mirroring, and skewing of the X, Y, and 
Z-axes.  They can be very useful for English/metric conversion, floating origins, making duplicate mirror 
images, repeating operations with angle offsets, and more. 

The basic mathematical operation that the matrix operation performs is as follows: 
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[X']   [R11  R12  R13] [X]   [D1] 
[Y'] = [R21  R22  R23] [Y] + [D2] 
[Z']   [R31  R32  R33] [Z]   [D3] 

The base X, Y, and Z coordinates are those defined by the axis definition statements.  Those statements 
may or may not incorporate a matrix relationship between the axes and motors.  If there is a matrix 
relationship in the definition statements, these matrix operators will act “on top” of that relationship. 

Setting up the Matrices 
The first thing that must be done is to define a buffer space for the transformation matrices.  This is done 
with the on-line command DEFINE TBUF{constant}, where {constant} represents the number 
of matrices to be defined.  Each matrix is automatically set to the identity matrix at this command.  This 
needs to be done only once, as the space and the values for the matrices will be kept in battery-backed 
RAM until a DELETE TBUF or $$$*** command is given. 

Using the Matrices 
Inside the motion program, the TSEL{constant} (transform select) command picks one of the 
matrices that has been defined for use as the active transformation matrix for the coordinate system.  This 
matrix will be in force for the next calculated moves in the program. 

Once selected, the matrix may be processed with several program commands.  The processing serves to 
put new values in the selected matrix.  The matrix is used, with whatever values it contains at the time, 
during the calculation of any move involving the X, Y, or Z-axes. 

Initializing the Matrix   
The TINIT (transform initialize) command makes the selected matrix the identity matrix, so that 
transformed positions would equal untransformed positions. 

Absolute Displacement  
The ADIS{constant} (absolute displacement) command sets up the displacement portion of the 
selected matrix by making the three displacement values (D1, D2, and D3) equal to the three Q-variables 
starting with the one specified with {constant}.  For instance, ADIS 25 would make the X-
displacement equal to Q25, the Y-displacement equal to Q26, and the Z-displacement equal to Q27. 

Incremental Displacement 
The IDIS{constant} (incremental displacement) command changes the displacement portion of the 
selected matrix by adding the values of the three Q-variables to the existing displacement. 

Absolute Rotation/Scaling 
The AROT{constant} (absolute rotation) command sets up the rotation/scaling portion of the selected 
matrix by making the nine rotation/scaling values equal to the nine Q-variables starting with the one 
specified by {constant}.  For instance, AROT 71 would make R11 in the matrix equal to Q71, R12 
equal to Q72, and so on, to R33 equal to Q79. 

Incremental Rotation/Scaling 
The IROT{constant} (incremental rotation) command changes the rotation/scaling portion of the 
selected matrix by multiplying it by a matrix consisting of the nine Q-variables starting with the one 
specified by {constant}.  This has the effect of adding angles of rotation, and multiplying scale 
factors.  For instance IROT 100 would multiply the existing matrix by a matrix consisting of the values 
of Q100 to Q108. 

Details 
After using any of these commands, any following changes to the Q-variables used do not change the 
selected matrix.  Another command using the Q-variables would have to be executed to change the 
selected matrix. 
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Note: 

When using axis matrix transformation for scaling, do not use the R radius 
specification for circular interpolation because the radius will not scale with the 
axes.  Use the IJK center vector specification instead. 

Calculation Implications 
Program move calculations involving the X, Y, and Z-axes take a small but possibly significant additional 
amount of computational time (about ¼-millisecond for an 80 MHz CPU) if the matrix transformation 
calculations have been activated with the TSELECTn command.  This can decrease the maximum move-
block execution rate for the motion program slightly.  To disable the matrix transformation calculations, 
use TSELECT0, which deselects all matrices, and stops the matrix calculation overhead. 

Examples 
These concepts are probably best illustrated with some simple examples.  In actual use, much more 
sophisticated things may be done with the matrices, especially with the inclusion of math and logic. 

Scaling Example 
If axis definition statements scaled your axes in units of millimeters, but the program should at least 
temporarily, scale in inches, set up the matrix as follows: 
TSEL 1     ; Select Matrix 1 
Q11=25.4 Q12=0  Q13=0  ; Variables for first row 
Q14=0  Q15=25.4 Q16=0  ; Variables for second row 
Q17=0  Q18=0  Q19=25.4 ; Variables for third row 
AROT 11     ; Use Q11-Q19 for matrix 

Note that pure scaling uses only the primary diagonal of the matrix.  The scaling is done with respect to 
the origin of the coordinate system.  Of course, the Q-variable values do not need to be assigned as three 
per command line, but this can be nice for program readability. 

Rotation Example 
To rotate the coordinate system 15 degrees about the origin in the XY plane.  Set up the matrix as follows 
TSEL 2    ; Select Matrix 2 
Q40=COS(15) Q41=SIN(15) Q42=0 ; Variables for first row 
Q43=-SIN(15) Q44=COS(15) Q45=0 ; Variables for second row 
Q46=0 Q47=0 Q48=1 ; Variables for third row 
AROT 40    ; Assign these values to the rotation portion 

This transformation rotates the points 15 degrees counterclockwise in the XY plane relative to fixed XY 
axes when viewed from the +Z axis in a right-handed coordinate system (i x j = k).  Alternately stated, it 
rotates the XY axes 15 degrees clockwise in the XY plane relative to fixed points when viewed from the 
+Z axis in a right-handed coordinate system. 

Displacement Example 
To offset the Y and Z-axes by 5 units and 2.5 units, respectively, leaving the X axis unchanged.  Set up 
the matrix as follows: 
TSEL 3  ; Select Matrix 3 
Q191=0  ; First variable 
Q192=5  ; Second variable 
Q193=2.5  ; Third variable 
ADIS 191  ; Assign these values to the displacement portion 
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Second Rotation Example 
To rotate the coordinate system 15 degrees in the XY plane, as in the first rotation example, but about an 
arbitrary point (P1, P2) instead of the origin.  In this case the rotation matrix is the same as for a rotation 
about the origin, but a displacement vector is also required.  In general, for a rotation of angle θ about a 
point (x0, y0), the displacement vector required is: 

[x0(1-cosθ) - y0 sinθ] 

[x0 sinθ + y0(1-cosθ)] 
[ 0        ] 

To implement this in Turbo PMAC code, assuming that Q40 through Q48 are as in the above rotation 
example, add: 
Q50=P1*(1-COS(15))-P2*SIN(15) 
Q51=P1*SIN(15)+P2*(1-COS(15)) 
Q52=0 
AROT40    ; Create 15 degree rotation 
ADIS50    ; Create proper displacement 

Current Position Transformation 
When a coordinate system is transformed, it is important to realize that the starting positions for the 
upcoming move are transformed, and this has an effect on an axis not explicitly commanded in this 
upcoming move.  In absolute mode, any axis not explicitly commanded implicitly receives a command to 
its existing position, in this case, the transformed position.  For example, if the absolute move X1Y0 is 
followed by a 45o rotation, this position is transformed to X0.707Y0.707.  If this is followed by an 
absolute X2 move command, this is equivalent to an X2Y0.707 command, not to an X2Y0 command. 

Entering a Motion Program 
The motion program statements are entered one program buffer at a time into PMAC.  For each program 
buffer, the first step is to open the buffer for entry with the OPEN PROG n command (where n is the 
buffer number – with a range of 1 to 32,767).  Next, if there is anything currently in the buffer that should 
not be kept, it should be emptied with the CLEAR command.  Existing lines cannot be edited or new lines 
inserted between existing lines; only new lines can be appended to the end (with, of course, the option of 
clearing the whole buffer first). 

Typically in program development, the editing will be done in a host-based text editor such as the PMAC 
Executive Program editor, and the old version of the PMAC program buffer is cleared every time the new 
version is downloaded to the card.  After the last of the program statements is downloaded, a CLOSE 
command should be sent to the card to close the program buffer. 

It is a good idea to issue a few commands before the OPEN PROG n command to make sure the buffer 
space is ready for the program statements.  First, make sure that no motion programs are currently 
executing (except for rotary programs). The A (for the addressed coordinate system) or <CTRL-A (for all 
coordinate systems) abort command can be used to make sure execution has stopped.  In addition,  make 
sure that no other buffer is open; use the CLOSE command for this.  Next, make sure that all the open 
buffer space has not been taken up with a data gathering buffer; use the DELETE GATHER command for 
this. 

All of these (on-line) commands can be included in the editor file with the actual motion program 
statements, even though they are not part of the actual program.  They would not be reported as part of the 
program if PMAC were asked to LIST PROG n.  (The PMAC Executive program editor, as part of its 
Upload function, appends these commands to the returned program.) 

The advisable format to use when working in a text editor is: 
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A 
CLOSE 
DELETE GATHER 
OPEN PROG n 
CLEAR 
{program statements} 
CLOSE 

After the program has been downloaded and the buffer CLOSEd, a coordinate system that is to execute 
this program must be pointed to the program with the B command.  For example, B6 would point the 
addressed coordinate system’s program counter to the beginning of motion program 6.  This can be 
confirmed with the PC (program counter) query command, which should return P6:0 if it is pointing to 
the top of program 6.  If it returns a <BELL> character, it is not pointing to any valid program.  Once the 
coordinate system is pointing to the top of the program, execution can be started with the R command.  
The B and the R commands can be combined into one command line, such as B6R. 

Learning a Motion Program 
It is possible to have Turbo PMAC learn lines of a motion program using the on-line LEARN command.  
In this operation, the axes are moved to the desired position and the command is given to Turbo PMAC.  
Turbo PMAC then adds a command line to the open motion program buffer that represents this position.  
This process can be repeated to learn a series of points. 

The motors can be open-loop or closed-loop as they are moved around.  At the time of the LEARN 
command, Turbo PMAC reads the motor commanded positions (in open-loop, commanded positions are 
always equal to actual positions) and converts them to axis positions by effectively executing a PMATCH 
command, inverting the axis definition equations. 

If the LEARN command specifies which axes are to be learned (e.g. LEARN(A,B,C) ), only those axis 
commands will be added to the program.  If the LEARN command does not specify any axes, commands 
for all 9 axis names are added to the motion program. 

The LEARN function can add only axis move commands to the program.  Any other parts of the motion 
program, including math, logic, move modes, and move times, must be sent to the open motion program 
buffer directly. 

Motion Program Structure 
Turbo PMAC motion programs typically are combinations of movement specification statements, 
calculation statements, and logic statements.  The movement specification statements are used to generate 
commanded trajectories for the axes, according to the rules explained in the descriptions for each 
trajectory mode earlier in this section.  The calculation statements can be used to determine the 
parameters for the movement specifications, and the logic statements can be used to determine which 
movement statements get executed, and when. 

Basic Move Specifications 
The simplest motion programs contain only movement specifications.  Take the example: 
F5000 
X10000 
DWELL1000 
X0 

(Remember that in entering this program, these statements would be surrounded with the buffer control 
commands explained above.) 
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The F (feedrate) statement specifies a speed, the X statements command actual moves for the X-axis, and 
the DWELL statement commands a halt for the specified time.  This program simply specifies a basic 
move and return. 

Defaults 
A program this simple relies on quite a few default settings and modes.  This one uses the following 
defaults: LINEAR move mode, ABS (absolute) axis specification, with Isx87 and Isx88 specifying the TA 
and TS acceleration times, respectively. 

Controlling Parameters 
What the values in the program mean can depend on external parameters as well.  The X positions are in 
user units, as defined in the axis definition statement for the X-axis.  The F speed specification is in terms 
of user position units divided by feedrate time units, as set by variable Isx90 for the coordinate system. 

Simultaneous Moves on Multiple Axes 
To perform simultaneous coordinate moves of several axes in a coordinate system, simply put their move 
specifications on the same line.  For instance, if the above program was changed to: 
F5000 
X10000 Y10000 Z10000 
DWELL1000 
X0 Y0 Z0 

the X, Y, and Z-axes will command a simultaneous move to 10,000, stay there for one second, then 
command a simultaneous move to 0.   

If an axis in the coordinate system is not commanded in a given move line, a zero-distance move for that 
axis is assumed (note that it is technically performing a move, so it cannot be in- position). 

Sequential Moves 
If the program is in LINEAR, CIRCLE, PVT, or SPLINE mode, and there is more than one move 
command line in a program without a DWELL or DELAY in between (there can be other statements in 
between), the moves will blend together without stopping.  The exact form of the blending will depend on 
the move mode in force (see Trajectory Features).  However, if Isx92 for the coordinate system (Move 
Blend Disable), this blending capability is disabled. 

Adding Logic 
A little logic can be added to make the language more powerful.  Suppose we wanted to repeat the above 
sequence 100 times.  Rather than repeating the above statements 100 times, we can create a loop: 
F5000 
P1=0 
WHILE (P1<100) 
 X10000 
 DWELL1000 
 X0 
 DWELL1000 
 P1=P1+1 
ENDWHILE 

Note that the F5000 statement is not inside the loop.  By putting it before the loop, we save PMAC from 
having to interpret and execute the statement every time through the loop.  Since it is a modal statement, 
its effect stays in force.  This is not essential, but if loop time is very short, it can make a difference. 
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Line Labels 
It is possible to put line labels in your motion program to mark particular sections of the program.  The 
syntax for a line label is N{constant or O{constant}, where {constant} is an integer from 1 to 
262,143. 
Note that these are line labels, not line numbers (even though they are specified by number).  A line does 
not require a label; and the labels do not need to be in numerical order.  These line labels are used only to 
specify the jumps in GOTO, GOSUB, and CALL commands (all discussed below). 
GOTO Command 
Turbo PMAC provides a GOTO{data} command in its motion program syntax, which causes a jump to 
line label N{data} in the same motion program (without return).  In general, the use of GOTO 
commands is strongly discouraged, because of the tendency to build up programs that are very hard to 
decipher. 
However, when the {data} in a GOTO command is a variable or expression (e.g. GOTO(P20)), it can 
be used to build the equivalent of a structured CASE statement, creating a multiple-pronged branching 
point.  See an example under the GOTO description in the Program Command Specification. 
Adding Variables and Calculations 
Motion programs can be made a lot more flexible with the use of variables and mathematical calculations.  
The above example program will command the same moves with the same timing every time it is 
executed.  If any parameter for the program must be changed, the entire program must be re-entered (or a 
different program used).  However, if variables are used in place of the constants, only variable values 
must be changed to change the action of the program: 
F(P2) 
P1=0 
WHILE (P1<P3) 
 X(P4) 
 DWELL(P5) 
 X0 
 DWELL(P5) 
 P1=P1+1 
ENDWHILE 

The variables P2, P3, P4, and P5 could be set by the host with on-line commands (e.g. P2=2000), by a 
PLC program as a result of inputs and/or calculations, or even by this or another motion program. 

General mathematical expressions can be built in a PMAC motion program, using constants, variables, 
functions and operators (see the Computational Features section of this manual).  The calculations can be 
done in separate program statements, assigning the calculated value to a variable, and then using the 
variable in another statement. Alternately, use the expression directly in a motion specification statement, 
in which case the value of the expression is not retained after the statement is executed. 

Subroutines and Subprograms 
It is possible to create subroutines and subprograms in PMAC motion programs to create well structured 
modular programs with re-usable subroutines.  The GOSUBx command in a motion program causes a 
jump to line label Nx of the same motion program.  Program execution will jump back to the command 
immediately following the GOSUB when a RETURN command is encountered.  This creates a subroutine. 

The CALLx command in a motion program causes a jump to PROG x, with a jump back to the command 
immediately following the CALL when a RETURN command is encountered.  If x is an integer, the jump 
is to the beginning of PROG x; if there is a fractional component to x, the jump is to line label 
N(y*100,000), where y is the fractional part of x.  This structure permits the creation of special 
subprograms, either as a single subroutine, or as a collection of subroutines, that can be called from other 
motion programs. 
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Passing Arguments to Subroutines 
These subprogram calls are made more powerful by use of the READ statement.  The READ statement in 
the subprogram can go back up to the calling line and pick off values (associated with other letters) to be 
used as arguments in the subprogram.  The value after an A would be placed in variable Q101 for the 
coordinate system executing the program, the value after a B would be placed in Q102, and so on (Z 
value goes in Q126).   

This structure is particularly useful for creating machine-tool style programs, in which the syntax must 
consist solely of letter-number combinations in the parts program.  Since Turbo PMAC treats the G, M, T, 
and D codes as special subroutine calls (see below), the READ statement can be used to let the subroutine 
access values on the part-program line after the code. 

Example 
For example, the command CALL500 X10 Y20 causes a jump to the top of PROG 500.  If, at the top 
of PROG 500, there is the command READ(X,Y), the value with X will be assigned to Q124 (X is the 
24th letter) and the value with Y will be assigned to Q125.  Now the subroutine can work with the values 
of Q124 and Q125 (in this case, 10 and 20, respectively), processing them as needed. 
What Has Been Passed? 
The READ statement also provides the capability of seeing what arguments have actually been passed (the 
letters listed in the READ statement are those that can be passed).  The bits of Q100 for the coordinate 
system are used to note whether arguments have been passed successfully; bit 0 is 1 if an A argument has 
been passed, bit 1 is 1 if a B argument has been passed, and so on, with bit 25 set to 1 if a Z argument has 
been passed.  The corresponding bit for any argument not passed in the latest subroutine or subprogram 
call is set to 0. 

If the logic of the subroutine needs to know whether a certain argument has been passed to it or not, it 
should use the bit-by- bit AND operator (&) between Q100 and the value of the bit in question.  The value 
of bit 0 is 1, of bit 1 is 2, of bit 2 is 4, and so on (bit value is 2N-1, for the Nth letter of the alphabet).  For 
instance, to see if a D-argument has been passed, the condition would be: 
IF (Q100 & 8 > 0) ... 

D is the 4th letter, so the bit value is 23 = 8.  To see if an S argument has been passed – S is the 19th letter, 
so the bit value is 218 = 262,144 – the condition would be: 
IF (Q100 & 262144 > 0) ... 

The READ statement instructions in the Program Command Specification section of the manual show the 
Q-variable, bit number, and bit value for each letter’s argument. 

PRELUDE Subroutine Calls 
Turbo PMAC allows the creation of an automatic subprogram call before each move command or other 
letter-number command in a motion program or section of a motion program.  If the subprogram starts 
with a READ command, then the move command or letter-number command itself is turned arguments for 
the subprogram call.  This functionality is very useful for executing canned cycles in machine-tool style 
programs, or for turning ordinary move commands into arguments for a subprogram that executes inverse 
kinematic or similar calculations. 

This capability is accomplished through the motion-program PRELUDE command.  To turn on the 
function, declare PRELUDE1 in the motion program, followed by the subprogram call you wish to be 
executed before each subsequent move command or letter-number command.  This subprogram call can 
be declared with a CALL command, or a G, M, T, or D-code, any of which is a special subprogram call.  In 
a PRELUDE1 declaration the value in the subprogram call specifying which subprogram and which line 
must be a constant; it cannot be a variable or expression. 



 Turbo PMAC User Manual 

328 Writing and Executing Motion Programs 

Once PMAC has encountered a PRELUDE1 command in the program, it will execute the specified 
subprogram call each time it encounters a move command or other letter-number command in the motion 
program (including G, M, T, and D codes, but excluding N and O line labels).  The move command or 
letter-number command must be at the beginning of a program line, or immediately following an N or O 
line label at the beginning of a program line. 

Once PMAC has jumped to the subprogram specified by PRELUDE1, it will treat any move command or 
letter-number command in the subprogram as it normally would; these will not automatically cause 
another subprogram call.  Automatic PRELUDE subprogram calls therefore cannot be nested within each 
other; however, a single PRELUDE subprogram call may be nested within explicit subroutine and 
subprogram calls, and explicit subroutine and subprogram calls may be nested with a single automatic 
PRELUDE subprogram call. 

A new PRELUDE1 command supersedes the existing PRELUDE1 command.  A PRELUDE0 command 
(no arguments necessary) turns off the PRELUDE function. 

Running a Motion Program 
Once your motion program has been entered and the program buffer closed, you may execute the motion 
program.  Since Turbo PMAC can store multiple programs at once, the first thing you must do is tell the 
Turbo PMAC coordinate system which program you wish to run (remember that it is a coordinate system 
in Turbo PMAC that executes a motion program; different coordinate systems may be executing other 
motion programs at the same time).   

Pointing to the Program 
This is done with the B{constant} command, where the {constant} represents the number of the 
motion program buffer.  Use the B command to change motion programs and after any motion program 
buffer has been opened.  It is not necessary if repeatedly running the same motion program without 
modification; when PMAC finishes executing a motion program, the program counter for the coordinate 
system is set automatically to point to the beginning of that program, ready to run it again. 

Use the PC (program counter) command to see which program the coordinate system is pointing to at the 
time.  A response such as P5:0 will be received, which indicates that the coordinate system is pointing to 
motion program 5, at the top (address offset of 0). 

Running the Program 
Once pointing to the motion program to be run, issue the command to start execution of the program.  If 
continuous execution of the program is desired, use the R command (<CTRL-R> for all coordinate 
systems simultaneously).  On a Turbo PMAC controller, take the START/ line on the JPAN connector 
low with the coordinate system selected on the FPDn/ lines of the same connector.  The program will 
execute all the way through unless stopped by command or error condition. 

Stepping the Program 
To execute just one move, or a small section of the program, use the S command (<CTRL-S>for all 
coordinate systems simultaneously), or take the STEP/ line on the JPAN connector low with the 
coordinate system selected on the FPDn/ lines of the same connector.  The program will execute to the 
first move DWELL or DELAY, or if it first encounters a BLOCKSTART command, it will execute to the 
BLOCKSTOP command. 

What PMAC Checks For 
When a run or step command is issued, Turbo PMAC checks the coordinate system to make sure it is in 
proper working order.  If it finds anything in the coordinate system is not set up properly, it will reject the 
command, sending a <BELL> command back to the host.  If I6 is set to 1 or 3, it will report an error 
number as well telling the reason the command was rejected. 
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Turbo PMAC will reject a run or step command for any of the following reasons: 
• A motor in the coordinate system has both overtravel limits tripped (ERR010) 
• A motor in the coordinate system is currently executing a move (ERR011) 
• A motor in the coordinate system is not in closed-loop control (ERR012) 
• A motor in the coordinate system in not activated {Ix00=0} (ERR013) 
• There are no motors assigned to the coordinate system (ERR014) 
• A fixed (non-rotary) motion program buffer is open (ERR015) 
• No motion program has been pointed to (ERR016) 
• After a / or \ stop command, a motor in the coordinate system is not at the stop point (ERR017) 

Implementing a Machine-Tool Style Program 
Turbo PMAC permits the execution of machine-tool style RS-274 (G-Code) programs by treating G, M, 
T, and D codes as subroutine calls.  This permits the machine tool manufacturer to customize the codes 
for the machine, but it requires the manufacturer to do the actual implementation of the subroutines that 
will execute the desired actions.  Many of the codes are quite standard, and Delta Tau has provided 
examples of these.  This section goes beyond the simple standards to discuss subtler issues involved in 
implementing the codes. 

G, M, T, and D-Codes 
When Turbo PMAC encounters the letter G with a value in a motion program, it treats the command as a 
CALL to motion program 10n0, where n is the hundreds’ digit of the value.  The value without the 
hundred’s digit (modulo 100 in mathematical terms) controls the line label within program 10n0 to which 
operation will jump.  This value is multiplied by 1000 to specify the number of the line label.  When a 
return statement is encountered, it will jump back to the calling program. 

For example, G17 will cause a jump to N17000 of PROG 1000; G117 will cause a jump to N17000 of 
PROG 1010; G973.1 will cause a jump to N73100 of PROG 1090. 

M-codes are the same, except they use PROG 10n1; T-codes use PROG 10n2; D-codes use PROG 10n3. 

Most of the time, these codes have numbers within the range 0 to 99, so only PROGs 1000, 1001, 1002, 
and 1003 are required to execute them.  For those who want to extend code numbers past 100, PROGs 
1010, 1011, etc. will be required to execute them. 

The manufacturer’s task is to write routines for motion programs 10n0 to 10n3 to implement the codes in 
the manner he desires.  Once this is done, the method of implementation is invisible to the part 
programmers and machine operators. 

Standard G-Codes 
Now we will look at the issues involved in implementing some of the more common G-codes: 

G00 – Point-to-Point Positioning 
Typically this code is implemented in PMAC through use of the RAPID command.  Many users will only 
have RAPID RETURN as their implementation of this code.  (Since this is a call to N0 of PROG 1000, 
and the N0 label is implied automatically by the beginning of any motion program, you should not 
explicitly add an N0; this routine must be at the very top of PROG 1000.)   

Users utilizing an external feedrate override signal often want to disable the override during RAPID 
mode.  This is done in PMAC by setting the time base source address variable back to its default value 
and away from the external source (e.g. I5193=$2000).  Alternately, this variable could be set to 
another external source if the machine had a separate rapid override setting.  The section of the file to 
implement G00 would look something like: 
CLOSE 
OPEN PROG 1000 
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CLEAR   ; To erase old version when sending new 
RAPID   ; First actual line of program 
I5193=$2000 
RETURN 

G01 – Linear Interpolation Mode 
Typically, this code is implemented in PMAC through use of the LINEAR command.  The simplest 
implementation of this is N01000 LINEAR RETURN.  If feedrate override is desired, and it could have 
been disabled in RAPID mode, the subroutine should set the time- base source address variable to the 
register containing the external information (e.g. I193=$350A). 

G02 – 2D Clockwise Arc Mode 
Typically, this code is implemented in PMAC through use of the CIRCLE1 command.  The simplest 
implementation of this is N02000 CIRCLE1 RETURN.  If feedrate override is desired, and it could 
have been disabled in RAPID mode, the subroutine should set the time- base source address variable to 
the register containing the external information (e.g. I193=$350A). 

G03 – 2D Counterclockwise Arc Mode 
Typically, this code is implemented in PMAC through use of the CIRCLE2 command.  The simplest 
implementation of this is N02000 CIRCLE2 RETURN.  If feedrate override is desired, and it could 
have been disabled in RAPID mode, the subroutine should set the time- base source address variable to 
the register containing the external information (e.g. I193=$350A). 

G04 – Dwell Command 
This code requires the use of the READ command.  Different dialects of G-codes have the dwell time after 
a P or after an X.  PMAC can handle either; just use a READ(P) or a READ(X) as appropriate; the P-
value would be place in Q116, and the X-value would be placed in Q124.  Also, the units of time must be 
considered.  PMAC dwell units are in milliseconds.  If the G04 units are seconds, the value passed must 
be multiplied by 1000.  A typical implementation would be N04000 READ(P) 
DWELL(Q116*1000) RET. 

G09 – Exact Stop 
In some dialects of G-code, this code causes a stop between two moves so that no corner-rounding 
blending between the moves is done.  In PMAC, this can be implemented simply by executing a short 
dwell.  A typical implementation would be N09000 DWELL10 RET. 

G17, G18, G19 – Select Plane 
These codes select the plane in which circular interpolation and cutter radius compensation will be done.  
G17 selects the XY plane, G18 selects the ZX plane, and G19 selects the YZ plane.   In PMAC, this is 
performed by the NORMAL command, which specifies the vector normal to this plane (and is not limited 
to these choices).  The standard Turbo PMAC implementation of these codes would be: 
N17000 NORMAL K-1 
RETURN 
N18000 NORMAL J-1 
RETURN 
N19000 NORMAL I-1 
RETURN 

It is important here that the RETURN command be on a separate line; otherwise when PMAC returns to 
the line that called the subroutine, the NORMAL command would try to “pick up” more arguments from 
that line. 
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You may also want to set some variables in these routines to note what plane has been specified if you 
want to use this information for other routines (such as G68 rotation).  Turbo PMAC’s circular 
interpolation and radius compensation routines do not need such a variable. 

G40, G41, G42 – Cutter Radius Compensation 
Cutter radius compensation can be turned on and off easily with the CC0, CC1, and CC2 PMAC commands, 
corresponding to G40, G41, and G42, respectively.  The subroutines to implement this would be: 

N40000 CC0 RETURN ; Turn off cutter compensation 
N41000 CC1 RETURN ; Turn on cutter compensation left 
N42000 CC2 RETURN ; Turn on cutter compensation right 

G90 – Absolute Move Mode 
Typically, this code is implemented in PMAC through use of the ABS command.  The ABS command 
without a list of axes puts all axes in the coordinate system in absolute move mode.  The typical 
implementation would be G90000 ABS RETURN.  If the G-Code dialect has G90 making the circle-
move center vectors absolute also (this is non-standard), an ABS(R) command should be added to this 
routine. 

G91 – Incremental Move Mode 
Typically, this code is implemented in PMAC through use of the INC command.  The INC command 
without a list of axes puts all axes in the coordinate system in incremental move mode.  The typical 
implementation would be G91000 INC RETURN.  If the G-Code dialect has G90 and G91 also 
affecting the mode of circle-move center vectors (non-standard), an INC(R) command should be added 
to this routine. 

G92 – Position Set (Preload) Command 
If this code is used just to set axis positions, the implementation is very simple: N92000 PSET 
RETURN.  With the return statement on the same line, the program would jump back to the calling line 
and use the values there (e.g. X10 Y20) as arguments for the PSET command.  However, if the code is 
used for other things as well, such as setting maximum spindle speed, the subroutine will need to be 
longer and do the setting inside the routine. 
For example, if G92 is used to preload positions on the X, Y, and Z-axes, set the maximum spindle speed 
(S argument), and define the distance from tool tip to spindle center (R argument), the subroutine could be: 
N92000 READ(X,Y,Z,S,R) 
IF (Q100 & 8388608 > 0) PSET X(Q124)   ; X axis preload 
IF (Q100 & 16777216 > 0) PSET Y(Q125)  ; Y axis preload 
IF (Q100 & 33554432 > 0) PSET Z(Q126)  ; Z axis preload 
IF (Q100 & 262144 > 0) P92=Q119        ; Store S value 
IF (Q100 & 131072 > 0) P98=M165-Q118   ; Store R value 
RETURN 

The purpose of the condition in each line is to see if that argument has actually been sent to the subroutine 
in the subroutine call – if it has not, nothing will be done with that parameter (see Passing Arguments 
section, above).  In the case of the S argument, the value is simply stored for later use by other routines, 
so that a commanded spindle speed will not exceed the limit specified here.  In the case of the R 
argument, the routine calculates the difference between the current commanded X-axis position (M165) 
and the declared radial position (R argument: Q118) to get an offset value (P98).  This offset value can be 
used by the spindle program to calculate a real-time radial position. 
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G94 – Inches (Millimeters) per Minute Mode 
This code sets up the program so that F-values (feedrate) are interpreted to mean length units (inches or 
mm) per minute.  In PMAC, F-values are interpreted to mean a speed (length per time) where the length 
units are set by the axis definition statements, and the time units are set by the coordinate system variable 
Isx90.  Since the units of Isx90 are milliseconds, this routine should set Isx90 to 60,000.  Also, because 
usually G94 is used to cancel G95, which interprets F-values as inches (mm) per spindle revolution by 
using the spindle encoder as an external time base source, this routine should return the coordinate system 
to internal time base.  A typical routine would be: 

N94000 I5190=60000 ; Feedrate is per minute 
I5193=$2000 ; Use internal time base 
RETURN 

G95 – Inches (Millimeters) per Revolution Mode 
This code sets up the program so that F-values (feedrate) are interpreted to mean length units (inches or 
mm) per spindle revolution.  In Turbo PMAC, this requires that the time base for the coordinate system 
be controlled by the spindle encoder.  Feedrate is still interpreted as length per time, but with external 
time base, time is interpreted as proportional to input frequency, and hence, spindle revolutions, giving an 
effective length per revolutions feedrate.  

Therefore, the subroutine implementing G95 must cause the program to get its time base from the spindle 
encoder and get the constants of proportionality correct.  (Actually some or all of these constants may be 
set up ahead of time.)  This external time base function is performed through a PMAC software feature 
known as the Encoder Conversion Table, which is documented in detail in the Setting Up the Encoder 
Conversion Table section of this manual.  Instructions for setting up an external time base are given in 
detail in the Synchronizing Turbo PMAC to External Events section of this manual. 

Briefly, a scale factor between time and frequency must be set up in the conversion table that defines a 
real-time input frequency (RTIF).  The motion program then can be written as if it were always getting 
this frequency.  In our case, we will take a real- time spindle speed that is near or greater than our 
maximum.   

For example, we use 6000 rpm (100 rev/sec) as our real-time spindle speed.  In real time, one spindle 
revolution takes 10 msec, so we want the feedrate to be in units of length per (10 msec), which we 
achieve by setting Isx90 (feedrate time units) to 10.  If we have 4096 counts per spindle revolution (after 
decode) our RTIF would be 4096 x 100 = 409,600 cts/sec = 409.6 cts/msec.  The equation for the 
conversion table’s time-base scale factor (TBSF) is: 

TBSF = 131,072 / RTIF (cts/msec) = 131,072 / 409.6 = 320 

This value must come out to an integer for true synchronization without any roundoff errors.  Usually it is 
easy if the spindle encoder has a resolution of a power of 2.  If not, the real-time spindle speed in rps 
should be a power of 2, and Isx90 would not be an integer (which is fine). 

This scale factor would be written to the appropriate register in the conversion table.  In general, this 
would not have to be done every time G95 is executed; rather, it would be part of the system setup. 

The typical subroutine for G95 would consist of setting Isx93 and Isx90 for the coordinate system: 

N95000 I5190=10 ; PMAC F is length/ 10 msec 
I5193=$350A ; Time base source is external 
RET 
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G96 – Constant Surface Speed Mode Enable 
This code sets up the programs so that the spindle is put in constant surface speed (CSS) mode.  In this 
mode, the spindle angular velocity is varied in real time so that its surface speed past the tool tip remains 
constant.  Essentially, this means that the angular velocity of the spindle is inversely proportional to the 
radial distance of the tool tip from the spindle center.  This distance is usually the X-axis position – 
implying that the X-axis zero position is at the spindle center.  Some G-code dialects allow the parts 
program to create an X-axis offset with G92 R (q.v.), which defines what the radial distance is at the 
current X-axis commanded position. 

The method suggested here for CSS mode has the spindle in a separate PMAC coordinate system from 
the other axes.  This allows a spindle program to be executing and reacting at a different rate from the 
main parts program, yet to be ultimately controlled by the parts program through variables and flags.  
This type of spindle program is explained in detail below. 

A G96 code will carry with it a spindle surface speed S code in either feet/minute or meters/minute.  This 
value should be placed in a variable for the spindle program to pick up.  A flag should also be set noting 
which mode the spindle is in.  Note that spindle mode and speed can be set independently of spindle 
on/off state and direction (for which see M03, M04, M05). 
A typical G96 routine using this approach would be: 
N96000 READ(S) ; Read spindle surface speed into Q119 
P96=Q119 ; Store spindle speed 
M96=1 ; Flag to mark CSS mode 
RETURN 

G97 – Constant Surface Speed Disable 
This code cancels spindle constant surface speed mode and puts the spindle into a constant angular 
velocity mode.  In this mode, the spindle speed is independent of tool radial position.  With the spindle 
axis in a separate coordinate system, the subroutine executing this code simply sets a variable and a flag 
for that program to see.  Usually, a G97 code will carry with it a spindle speed S code in RPM.  If it does, 
the routine picks it up and puts it into a variable.  If it does not, the routine allows the spindle program to 
keep its last RPM computed under G96 from surface speed and radial distance.   

A typical G97 routine using this approach would be: 

N97000 READ(S)    ; Read spindle RPM into Q119 
IF (M100 & 262144 > 0) P97=Q119 ; Store for spindle program 
M96=0      ; Cancel CSS mode 

Spindle Programs 
Controlling the spindle axis may be done in many different ways in Turbo PMAC, depending on what the 
spindle needs to do.  The simplest type of spindle operation, of course, is the one in which the spindle is 
simply asked to move at constant speeds for substantial periods of time in one direction or another.  In 
this case, there is no need to write a spindle motion program; either Turbo PMAC just puts out a voltage 
proportional to speed (so the spindle is open-loop as far as Turbo PMAC is concerned), or the spindle 
motor is jogged (under Turbo PMAC closed-loop control).   

Jogged Spindle 
The jogged spindle motor does not need to be in any coordinate system (it must not be in the same 
coordinate system as the other axes, or it cannot be jogged while a parts program is running), but it is a 
good idea to put it in a different coordinate system, because motors that are not in any coordinate system 
use Coordinate System 1’s time base control (feedrate override).   

Spindle speed values are scaled and put into jog speed I-variables (Ix22), and the spindle on/off functions 
command jog starts and stops (see M03, M04, and M05). 
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Open-Loop Spindle 
If using the open loop spindle, write directly to an otherwise unused DAC output register by using a M-
variable.  For instance, the definition M425->Y:$C00A,8,16,S matches the variable M425 to the 
DAC4 output register.  Any value given to this M-variable will cause a corresponding voltage on the 
DAC4 output line.  In this method, a spindle-on command (see M03, M04) could be M425=P10 or 
M425=-P10, where P10 has been set previously by an S-code.  The spindle-off command (see M05) 
could be M425=0. 

Switching Between Spindle and Positioning 
There are cases in which the spindle motor is sometimes used as a regular axis, doing position moves 
instead of steady velocity, and sometimes as a regular spindle.  In this case, the spindle motor will be 
made an axis in the main coordinate system so it can do coordinated moves.  When real spindle operation 
is desired, a pseudo-open-loop mode can be created by setting the motor’s proportional gain to zero and 
writing to the output offset register (Ixx29).  In this method Ixx29 would be treated just as M425 was in 
the above paragraph.  Of course, a velocity-loop (tachometer) amplifier would be required for this mode 
of operation.  See the example OPENCLOS.PMC for more details.   

Constant-Surface-Speed Spindle 
If you wish the spindle to be able to perform constant surface speed (CSS) mode, you must write a motion 
program, because the speed must vary as a function of another axis position.  The suggested method – 
shown in the example SPINDLE.PMC – is to break the move into small time slices, with the commanded 
distance for each slice dependent on the system conditions at the time – including commanded speed, 
mode, and tool radial position. 

If the spindle is to be controlled in open-loop fashion in CSS mode, it would be best to have a PLC 
program modifying the output command (Mxx25 or Ixx29) as a function of tool radial position.  The 
structure of the PLC program would be much like that of the closed-loop motion program example 
SPINDLE.PMC, except no actual move command would be needed; once the math was processed, the 
value would be assigned to the appropriate variable. 

Standard M-Codes 
The sections below detail what is involved in implementing the standard M-codes.  It is important to 
realize the difference between an M-code in a program and an M-variable.  To be interpreted as an M-
variable, it must be used in an equation or expression.  For instance, M01=1 refers to M- variable number 
1 (usually this sets Machine Output 1), whereas M01 by itself is the M-code number 1. 
M-codes are treated as subprogram calls to the appropriate line label of motion program 1001. 
M00 – Programmed Stop 
The routine to execute this code simply needs to contain the STOP command.  This code is looking for 
the line label N0 of PROG 1001, and the beginning of any program is always implicitly N0, so this must 
be at the very top of PROG 1001.  The part of the file to implement this could be: 
CLOSE 
OPEN PROG 1001 ; Buffer control command 
CLEAR ; To erase old when sending new 
STOP ; First line of actual program 
RETURN ; Will jump back when restarted 

M01 – Optional Stop 
Typically, this code is used to do a stop if the "Optional Stop" switch on the operator’s panel is set.  
Assuming this switch is wired into PMAC’s Machine Input 1, and variable M11 has been assigned to this 
input (this is the default), then the routine to execute this code could be: 
N01000 IF (M11=1) STOP 
RETURN 
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M02 – End of Program 
Since PMAC automatically recognizes the end of a program, and resets the program pointer back to the 
top of the program, the routine for this code could be empty (RETURN statement only).  However, in 
many systems, a lot of variables and modes get set to default values here.  A typical end-of-program 
routine might be: 
N02000 M55=0 ; Turn off spindle 
M7=0 ; Turn off coolant 
M2=0 ; Turn off conveyor 
DWELL 0 ; Execute pending synchronous M-vars 
LINEAR ; Make sure not in circular mode 
RETURN 

M03 – Spindle On Clockwise 
M04 – Spindle On Counterclockwise 
M05 – Spindle Stop 
If the spindle is simply doing constant speed moves, these routines can simply issue jog commands.  For 
instance: 
N03000 CMD "#4J+" 
RET 
N04000 CMD "#4J-" 
RET 
N05000 CMD "#4J/" 
RET 

This assumes, of course, that motor #4 on Turbo PMAC is the spindle motor and that the counting-up 
direction is clockwise.  Spindle speed already will have been determined in other routines by setting I422 
(motor #4 jog speed). 

If Turbo PMAC is controlling the spindle with an open loop voltage, these routines would put a voltage 
on an otherwise-unused analog output by writing to a DAC register.  For example: 
N03000 M402=P97*P9 
RETURN 
N04000 M402=-P97*P9 
RETURN 
N05000 M402=0 
RETURN 

This sample assumes M402 is assigned to the DAC4 register (Y:$07800A,8,16,S), P97 is the desired 
spindle speed in RPM, and P9 is the scale factor relating RPM to DAC bits (3,276.7 DAC bits/volt).  See 
the Spindle Programs section for more details. 

If fancier tasks such as constant surface speed are desired, a separate motion program for the spindle will 
be required, as demonstrated in an above example.  If these M-codes were to interface with this example, 
they would be: 

N03000 M55=1 ; Flag for clockwise spindle 
CMD "&2B1010R" ; Start the spindle program 
RET 
N04000 M55=-1 ; Flag for counterclockwise spindle 
CMD "&2B1010R" ; Start the spindle program 
RET 
N05000 M55=0 ; Flag for spindle off 
RET ;  
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M07 – Low-Level (Mist) Coolant On 
M08 – High-Level (Flood) Coolant On 
M09 – Coolant Off 
The actual implementation of these M-codes will be very machine dependent, but it will typically be very 
simple.  For instance, if the coolant on/off control were wired into Turbo PMAC’s Machine Output 7, and 
the coolant high/low control were wired into Turbo PMAC’s Machine Output 8, the routines could simply 
be: 

N07000 M7=1 ; Set Mach. Out. 7: Coolant On 
M8=0 ; Clear Mach. Out. 8: Low Level 
RETURN 
N08000 M7=1 ; Set Mach. Out. 7: Coolant On 
M8=1 ; Set Mach. Out. 8: High Level 
RETURN 
N09000 M7=0 ; Clear Mach. Out. 7: Coolant Off 
RETURN 

DWELL statements could be added before and/or after the setting of the outputs if it is desired to provide 
some time for the change to occur.  

M12 – Chip Conveyor On 
M13 – Chip Conveyor Off 
The implementation of these codes, though machine dependent, typically will be simple.  For instance, if 
the conveyor on/off line were wired into Machine Output 2, these routines could simply be: 
N12000 M2=1 ; Set Mach. Out. 2: Conveyor On 
RETURN 
N13000 M2=0 ; Clear Mach. Out. 2: Conveyor Off 
RETURN 

M30 – End of Program with Rewind 
See M02 description.  M30 will be equivalent to M02 in most systems but will return to the beginning of 
the program. 

Default Conditions 
Typically, a machine running G-code style programs requires many default values and modes beyond 
what PMAC sets automatically during its power-up/reset cycle.  To set these defaults, it is best to use the 
PLC 1 program, which will be the first thing executed after the automatic power-up/reset cycle 
(effectively extending what is done in this cycle).  The last line in this program should be DISABLE PLC 
1, which prevents repeated execution of the program.  A simple file for such a program could be: 
CLOSE 
OPEN PLC 1 
CLEAR 
M55=0 ; Spindle Off 
P92=3000 ; Maximum spindle RPM 
P95=1000 ; Max spindle accel. in RPM/sec 
M70=0 ; English measurements 
DISABLE PLC 1 ; So this is only executed once 
CLOSE 
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Rotary Motion Program Buffers 
The rotary motion program buffers allow for the downloading of program lines during the execution of 
the program and for the overwriting of already executed program lines.  This permits continuous 
execution of programs larger than PMAC’s memory space, and also real-time downloading of program 
lines. 

Defining a Rotary Buffer 
Each coordinate system can have a rotary program buffer.  To create a rotary buffer for a coordinate 
system, address that coordinate system (&n) and send the DEFINE ROT {constant} command 
where {constant} is the size of the buffer in memory words.  Each value in a program (e.g. X1250) 
takes one word of memory.  The buffer should be sized to allow enough room for the distance ahead of 
the execution point you wish to load.  Since most applications utilizing rotary buffers will not strain 
PMAC’s memory requirements, it is a good idea to oversize the buffer by a good margin.   

For instance, to be able to load 100 program lines ahead of the execution point in a four-axis application 
where using constant values for position (e.g. X1000 Y1200 Z1400 A1600), there should be at least 
400 words of memory in the buffer, so it would be a good idea to allot 500 or 600 words for the rotary 
buffer (e.g. DEFINE ROT 600). 

Required Buffer State for Defining 
In order for PMAC to be able to reserve room for the rotary buffer, there can be no data-gathering buffer 
and no rotary program buffer for a higher-numbered coordinate system at the time of the DEFINE ROT 
command.  Therefore, delete any data-gathering buffer first, and define the rotary buffers from high-
numbered to low-numbered.  For instance: 
DELETE GATHER 
&3 DEFINE ROT 200 
&2 DEFINE ROT 1000 
&1 DEFINE ROT 20 

Preparing to Run 
To prepare to run a rotary program in a coordinate system, use the B0 command (go to beginning of 
program zero – the rotary program) when addressing that coordinate system.  This must be done when no 
buffers are open, or it will be interpreted as a B-axis command.  Once prepared this way, the program is 
started with the R command.  This command can be given with the buffer either open or closed.  If the R 
command is given for an empty rotary buffer, the buffer will simply wait for a command to be given to it, 
and then execute that command immediately. 

Opening for Entry 
The OPEN ROT command opens all of the rotary program buffers that have been defined.  Program lines 
following this are sent to the buffer for the host-addressed coordinate system (&n).  Most users of rotary 
program buffers will have only one coordinate system, so this will not be of concern to them, but it is 
possible to switch coordinate systems on the fly and use several rotary buffers at once. 

It is important to realize that after the OPEN ROT command, PMAC is treating as many commands as 
possible as buffered commands, even if it is executing them immediately (some commands mean one 
thing as an on-line command, and another thing as a buffered command).  For instance, an I100 
command is a request for a value of I-variable 100 when buffers are closed, but it is a command to do a 
full circle with a 100-unit radius when a motion program buffer is open (the I-value is the X-axis 
component of the radial vector; since no axis positions are given, they are all assumed to be the same as 
the starting point)! 
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Staying Ahead of Executing Line 
The key to the handling of a rotary program buffer is knowing how many lines ahead it is; that is, how 
many program lines have been loaded ahead of the program line that PMAC is executing.  Typically it 
will load ahead until a certain number of lines ahead is reached, and then wait until the program catches 
up to within a smaller number of lines ahead.  A real-time application may just work one line ahead of the 
executing line; an application doing periodic downloading of a huge file may get 1000 lines ahead, and 
then start again when the program has caught up to within 500 lines. 

PR Command 
There are several ways of telling how far ahead it is.  First is the PR (program remaining) command, 
which returns the number of lines ahead.  This provides a very simple polling scheme, but one that is 
probably not good for tight real- time applications. 

BREQ Interrupt 
For tightly coupled applications, there are hardware lines to handle the handshaking for the rotary buffer, 
and variables to control the transition points of the lines.  The BREQ (Buffer Request) line goes high 
when the rotary buffer for the addressed coordinate system wants more program lines, and it goes low 
when it does not.  This line is wired into PMAC-PC’s programmable interrupt controller, so it can be used 
to generate an interrupt to the host PC.  (See Using the PMAC-PC to Interrupt the Host PCof this 
manual.)  The complement, BREQ/, is provided on the JPAN connector.  In addition, there is a Buffer 
Full (BREQ/) status bit for each coordinate system. 

I17 Stops Interrupts 
Variable I17 controls how many lines ahead the host can load and still get BREQ true.  If a program line 
is sent to a rotary buffer, BREQ is taken low, at least temporarily.  If still less than I17 lines ahead of the 
executing line, BREQ is taken high again, which can generate an interrupt.  If it is I17 or more lines 
ahead, BREQ is left low.  When a rotary program buffer is entered with OPEN ROT or the addressed 
coordinate system is changed, BREQ is taken low, and then set high if the buffer is less than I17 lines 
ahead of the executing point. 

I16 Restarts Interrupts 
Variable I16 controls where BREQ gets set again as the executing program in the rotary buffer catches up 
to the last loaded lines.  If after execution of a line, there are less than I16 lines ahead in the rotary buffer, 
BREQ is set high.  This can be used to signal the host that more program lines need to be sent. 

By using these two variables and the BREQ line for interrupts, an extremely fast and efficient system can 
be created for downloading programs in real time from the PC.  

If the Buffer Runs Out 
If the program calculation catches up with the load point of the rotary buffer, there is no error; program 
operation will suspend until more lines are entered into the rotary buffer.  Technically, the program is still 
running; a Q or A command must be given to truly stop the program. 

If PMAC is in segmentation mode (I13>0) and is executing the last line in the rotary buffer, as long as a 
new line is entered before the start of deceleration to stop, PMAC will blend into the new move without 
stopping. 

Closing and Deleting Buffers 
The CLOSE command closes the rotary buffers just as it does for other types of buffers.  Closing the 
rotary buffers does not affect the execution of the buffer programs; it just prevents new buffered 
commands from being entered into the buffers until they are reopened.   

DELETE ROT erases the rotary buffer for the addressed coordinate system and de-allocates the memory 
that had been reserved for it. 
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How PMAC Executes a Motion Program 
It can be important to know how Turbo PMAC works its way through a motion program.  A motion 
program differs fundamentally from a typical high-level computer program in that it has statements 
(moves, DWELLs, and DELAYs) that take time; there is an important difference between the calculation 
time and the execution time. 

Basically, a Turbo PMAC program exists to pass data to the trajectory generator routines that compute the 
series of commanded positions for the motors every servo cycle.  The motion program must be working 
ahead of the actual commanded move to keep the trajectory generators fed with data.  If the program fails 
to keep ahead, and the time for the next move comes without the proper data in place for the trajectory 
generators, Turbo PMAC will abort the program and bring all motors in the coordinate system to a stop. 

Calculating Ahead 
PMAC processes program lines either one or two moves (including DWELLs and DELAYs) ahead.  
Calculating one move ahead is necessary in order to be able to blend moves together; calculating a second 
move ahead is necessary if proper acceleration and velocity limiting is to be done, or a three-point spline 
is to be calculated (SPLINE mode).  For linear blended moves with Isx13 (move segmentation time) 
equal to zero (disabled), Turbo PMAC calculates two moves ahead, because the velocity and acceleration 
limits are enabled here.  With the special lookahead buffer enabled, Turbo PMAC looks enough moves 
ahead in a continuous sequence to stay Isx20 segments ahead.  In all other cases, Turbo PMAC is 
calculating one move ahead. 

Starting Calculations 
Upon the command to start the program, Turbo PMAC will calculate program statements down to and 
including the first or second move statement, depending on the mode of the move and the setting of 
Isx13.  This can include multiple modal statements, calculation statements, and logical control statements.  

The programmed moves will not actually start executing until I11 milliseconds have passed, even if the 
calculations were finished earlier.  This permits proper synchronization between cards, so one will not 
start before the other.  If I11 is set to zero, the first move will start as soon as the calculations have 
finished. 
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Calculation of Subsequent Moves 
As soon as the actual execution of a move by the trajectory generating routines starts, a flag is set for 
Turbo PMAC to calculate all of the succeeding program statements down to and including the next move 
statement, putting the data thus computed into a queue for the trajectory generator.  Program calculation is 
then held up until the trajectory generator starts the next move, and Turbo PMAC performs other tasks 
(PLC programs, communications, etc.). 

Insufficient Calculation Time 
If Turbo PMAC cannot finish calculating the trajectory for a move by the time execution of that move is 
supposed to begin, Turbo PMAC will abort the program, showing a run-time error in its status word.  This 
usually happens when move times are made very short (a few milliseconds) and/or there is a very large 
amount of calculation in between move commands.  The limit on this move block calculation rate is very 
application-dependent, but is generally several hundred blocks per second. 

If concerned about this move calculation limit, during development make the move times continually 
shorter until Turbo PMAC fails.  Then for the final application, make sure that the minimum move time is 
greater than this, usually with a safety margin of at least 25%. 
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When No Calculation Ahead 
There are several conditions in a motion program that break the blending and stop the calculation ahead.  
In these cases, Turbo PMAC waits until that operation is finished before it starts calculations on the next 
move or two moves.  During any of these breaks, Turbo PMAC will use the I11 calculation time to delay 
the start of the next move. 

DWELL Commands 
A DWELL command in a motion program breaks the blending of moves, so Turbo PMAC will not 
calculate through a DWELL.  Turbo PMAC does not start the calculation of subsequent moves until after 
the DWELL time is complete.  A DELAY command, by contrast, is really a zero-distance move command 
of the specified time; Turbo PMAC does calculate through a DELAY. 

HOME, RAPID Moves 
If a homing search move (HOMEn) or a RAPID mode move is commanded from within a program, it is 
not blended with any other move.  Turbo PMAC does not start the calculation of subsequent moves until 
after all motors have completed their commanded moves of these types. 

PSET Command 
If a PSET command is used within a motion program to redefine axis positions, Turbo PMAC will not 
blend the move before the PSET to the move after.  It will not start the calculation of the subsequent 
move until after the previous commanded move has finished and the PSET command has been executed. 

Double-Jump-Back Rule 
If in the course of trying to calculate the next move, Turbo PMAC detects two backwards jumps in the 
logic of the program, PMAC will not try to blend the last calculated move to an upcoming move.  These 
backward jumps can be caused either by ENDWHILE statements or GOTO statements; GOSUB, CALL, and 
RETURN jumps do not count here.  The intent of this rule is to prevent Turbo PMAC from having to abort 
a program due to insufficient calculation time if it has to loop multiple time on short moves. 

Blending Stopped 
PMAC will instead allow the previous move to come to a stop, and will start calculating the program 
again at the next real-time interrupt (see I8 description), continuing until it finds the next move statement, 
or two more jumps back (in which case the process is repeated).  This permits indefinite waiting loops 
that will not cause Turbo PMAC to abort the motion program because of insufficient calculation time. 

Nested Loops 
This double jump-back rule can cause programmers to inadvertently stop blending when they are 
calculating moves within nested while loops.  Consider the following example that attempts to create 
continuously blended sinusoidal motion generated in the inner loop, using the outer loop to index the size 
of the sinusoid: 
SPLINE1 TM20 
P1=0 
WHILE (P1<10) 
 P2=0 
 WHILE (P2<360) 
  X(P1*SIN(P2)) 
  P2=P2+1 
 ENDWHILE 
 P1=P1+1 
ENDWHILE 
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The first 360 pieces will be blended (splined) together on the fly as Turbo PMAC cycles through the inner 
loop.  But when PMAC increments P2 to 360, it hits the first ENDWHILE and jumps back to the inner 
WHILE condition, which is now false, so it jumps down, increments P1, hits the second ENDWHILE, and 
jumps back to the outer WHILE condition, all without encountering a move command. 

At this point, Turbo PMAC invokes the double-jump-back rule and lets the last programmed move come 
to a stop.  It does this to prevent the possibility that it might be caught in an indefinitely true set of loops 
with no movement, which could mean that it would not have the next move equations ready in time.  It 
resumes calculations when this move has finished and will start up the next sequence of moves in the 
inner loop.   

To blend all of these moves together continuously, pull the last move of the inner loop outside of the 
inner loop.  This way, never will two ENDWHILE statements be encountered between move commands: 
SPLINE1 TM20 
P1=0 
WHILE (P1<10) 
 P2=0 
 WHILE (P2<359)  ; Note that loop stops earlier 
  X(P1*SIN(P2)) 
  P2=P2+1 
 ENDWHILE 
 X(P1*SIN(P2))  ; Last move from inner loop 
 P1=P1+1 
ENDWHILE 

Looping to Wait: 
There are several methods for holding program execution while waiting for a certain condition to occur.  
Usually, this is done with a WHILE loop, but what is done inside the loop has an effect on responsiveness 
and calculation load.   

The fastest execution is the WHILE({condition}) WAIT loop.  As soon as the WAIT command is 
encountered, motion program calculations are suspended until the next real-time interrupt, at which time 
they will re-evaluate the condition.  The motion program effectively becomes like a one-line PLC 
program.  If the next RTI has already occurred, it will immediately re-enter the interrupt service routine 
and re-evaluate the condition.  If this occurs repeatedly, background routines will be starved for time, 
slowing PLCs and communications, or in the worst case, tripping the watchdog timer.  Usually this 
happens only if multiple coordinate systems are in simultaneous WHILE...WAIT loops. 

Of similar speed is an empty WHILE...ENDWHILE loop, or at least one with no motion commands 
inside.  Each RTI, this will execute twice, stopped by the double-jump-back rule.  Calculations resume at 
the next RTI, or if this has occurred already, they resume immediately, with the same possible 
consequences for starving background calculations. 

Using a WHILE({condition}) DWELL single-line loop helps to control the looping rate better, 
giving time for background routines.  The condition is evaluated only once after each DWELL. 

Implications of Calculating Ahead 
The need of the motion program to calculate ahead during a continuous sequence of moves means that 
non-motion actions –particularly the setting of outputs – taken by the program happen before you might 
think they would – by one or two moves.  For variables that are only used within the program, this is no 
problem, because everything happens sequentially within the program. 

It is possible to move these non-motion actions to a point one or two moves later in the program to get the 
actions to occur when they are desired.  However this makes the program extremely difficult to read as far 
as the proper sequence of operations. 
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Synchronous M-Variable Assignment 
The synchronous M-variable assignment statement is designed to get around this problem.  This type of 
statement uses a double equals sign (==) instead of a single equals sign.  This is a flag to PMAC to hold 
off the actual execution of the statement until the beginning of the move immediately following it, so the 
actual action coincides with the actual motion. 

Synchronous M-variable assignment statements are discussed in detail in the Computational Features 
section of this manual with syntax instructions under M{constant}=={expression} in the 
Program Command Specification. 
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SYNCHRONIZING TURBO PMAC TO EXTERNAL EVENTS 
Turbo PMAC has several powerful features to help in synchronizing the motion under Turbo PMAC 
control to external events.  These include – 

• Position following, commonly known as electronic gearing; time-base control, commonly known as 
electronic cams 

• Position capture, which is useful for registration applications 
• Position compare, which can be used for precision scanning and measurement applications.   

Each of these areas is covered below. 

Position Following (Electronic Gearing) 
Turbo PMAC has several methods of coordinating the axes under its control with axes not under its 
control.  The simplest method is basic position following.  This is a motor-by-motor function, not a 
coordinate system function as time-base following is (see below).  An encoder signal from the master axis 
(which is not under Turbo PMAC’s control) is fed into one of Turbo PMAC’s encoder inputs.  Typically, 
this master signal is from either an open-loop drive or a handwheel knob.  

Position Following I-Variables 
One or more of Turbo PMAC’s motors is told that this encoder register is the master (with Ixx05).  Ixx05 
is an address I-variable; that is, its value contains the address of the register holding the master position 
information.  Typically, this register is that of some processed position data in the Encoder Conversion 
Table.  It is helpful to have done the 1/T or similar to reduce the quantization noise in the sampling of the 
master encoder (this is done automatically in the default setup). 

Encoder Table

$0720-$0739
Ix07

Ix05

D

+

-
PIFECP

AP

Ix05 Master (HW) Position Address & Mode
Ix06 Following Enable
Ix07 Master Scale Factor
Ix08 Position Loop (Load) Scale Factor
Ix09 Velocity Loop (Motor) Scale Factor

+

-

HW

Ix06

+
Ix08

Ix09

Ix08

Trajectory
Command

Cannot be
changed on

the fly

To DAC

Actual
Motor

Position

Actual
Load

Position

Can be
changed on

the fly

POSITION FOLLOWING PARAMETERS

 
The following ratio for each motor is set by Ixx07 and Ixx08, which can be analogized to the number of 
gear teeth on master and slave, or the radii of the belted wheels, in a mechanical following application.  
The following function is turned on and off with bit 0 of Ixx06.  When it is on, the input stream from the 
master acts just like a trajectory generator, creating a series of commanded positions to which the 
following axis controls.   
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Changing Ratios on the Fly 
To vary the following ratio in the middle of an application, change Ixx07 alone.  Ixx08 is involved in the 
scaling of servo feedback calculations, and so should not be changed in the middle of an application. 

There can be tradeoffs between the resolution of on-the-fly changes and the servo performance of the 
system.  The higher the Ixx08 scale factor, the finer the resolution of the changes can be.  However, the 
higher Ixx08 is, the lower proportional gain Ixx30 can be before internal saturation occurs, and the lower 
the maximum velocity can be before there is internal saturation of those registers.  In general, Ixx08 
should be kept below 1000. 

Superimposing Following on Programmed Moves 
In addition, this following function can be superimposed on calculated trajectories.  This permits, for 
instance, shapes to be cut out of a moving web, where the shape program can be written without regard to 
the web movement, and a master signal from the web compensates for the movement.   

Bit 1 of Ixx06 determines whether the following occurs in offset mode, where the reported position of the 
following motor does not reflect the change due to following, or normal mode, in which it does.  Users 
superimposing following and calculated moves will usually want to use offset mode, in which bit 1 is 1 
(so Ixx06 = 3 for activated following in offset mode).  In normal mode, calculated trajectories will 
remove the offset introduced by following each programmed move or move segment. 

In normal mode, the motor’s commanded position for a programmed move is calculated as the 
programmed position minus the master position.  The reported position (response to a P or <CTRL-P> 
command) is simply the actual position.  In offset mode, the motor’s commanded position for a 
programmed mode is simply the programmed position.  The reported position is the actual position minus 
the master position. 
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Use for Cascaded Loops 
Offset-mode following can be very useful for the implementation of cascaded servo loops.  The output of 
the outer loop is used as the master position for the inner position loop (and not sent directly to an 
actuator).  In this mode of operation, typically, the inner loop is a standard position loop; the outer loop 
closes a loop on force or tool height, or some other process variable.  The use of offset mode for this 
purpose permits normal trajectory commands to the inner loop, with the possibility for simultaneous 
corrections from the outer loop.  Refer to the Cascading Servo Loops and Setting up the Servo Loop 
sections for details. 
Changing Following Modes 
The following mode is used in determining how the calculations relating motor and axis position are 
performed, so changing the mode changes how these calculations would be done for subsequent moves, 
creating a mismatch between motor and axis position, which could cause a jump in the motor motion on 
the next move if not corrected.  This is true regardless of whether or not following is enabled.  To correct 
for this mismatch, a PMATCH position-matching command must be executed before the next motion 
program move command is processed.   
Turbo PMAC automatically executes a PMATCH command any time a R (run) or S (step) command is 
issued; however, if the mode is changed in the middle of a motion program, this on-line command must 
be issued explicitly.  A DWELL command should precede this command (to stop program lookahead); 
another DWELL command should trail this (to give the command time to execute from the on-line queue).   
The program sequence would look something like: 
DWELL0 ; Stop lookahead 
I106=3 ; Change following mode 
CMD"&1PMATCH" ; Re-match positions 
DWELL10 ; Delay for PMATCH execution 

External Time-Base Control (Electronic Cams) 
A more sophisticated method of coordination to external axes is that of time-base control, in which the 
input signal frequency controls the rate of execution of moves and programs.  Time-base control operates 
on an entire coordinate system together.  Specify which encoder register is receiving the input frequency, 
and the relationship between the input frequency and the program rate of execution.  This not only varies 
the speed of moves in proportion to the input frequency (all the way down to zero frequency), but also 
keeps total position synchronization.  This permits operations such as multi-pass screw threading. 
What Is Time-Base Control? 
Turbo PMAC’s motion language expresses the position trajectories as functions of time.  Whether the 
moves are specified directly by time, or by speed, ultimately the trajectory is defined as a position-vs-time 
function.   
This is fine for a great number of applications.  However, in many applications, we wish to slave the 
Turbo PMAC axes to an external axis not under Turbo PMAC control (or occasionally, an independent 
axis under Turbo PMAC control in a different coordinate system).  In these applications, we want to 
define the Turbo PMAC trajectories as functions of master position, not of time. 
Real-Time Input Frequency 
Turbo PMAC’s method for doing this leaves the language expressing position as a function of time, but 
makes time proportional to the distance covered by the master.  This is done by defining a real-time input 
frequency (RTIF) from the master’s position sensor, in units of counts per millisecond.  For example, 
define an RTIF of 32 cts/msec.  Then, in time-base mode, when the program refers to a millisecond, what 
it is really referring to is 32 counts of the master encoder, whatever physical distance that is.  If a move is 
programmed in the slave program to take two seconds, it will really take 64,000 counts of the master 
encoder to complete. 
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Constraints on Selection of RTIF 
If Turbo PMAC had infinite resolution and infinite dynamic range in its time base calculations, the choice 
of real-time input frequency would be entirely arbitrary –any frequency can be selected as the RTIF, and 
the motion program can be written for that RTIF.  However, Turbo PMAC does its time-base calculations 
in integer arithmetic, which limits the resolution, and in 24-bit registers, which limits the dynamic range. 

These limitations lead to three restraints on the selection of the RTIF: 

1. The time base scale factor (TBSF) derived from the RTIF must be an integer.  The value that Turbo 
PMAC needs for its calculations is not the frequency in cts/msec, but the inverse of the frequency in 
msec/ct.  In order for this number to be in the range of integer values, the rule is to multiply the 
frequency inverse by 217 (131,072).   

If a value of 100 cts/msec were chosen for RTIF, then the TBSF would be 131,072/100 = 131.072, 
which is not an integer.  Turbo PMAC could accept only the integer part of 131, and drift would 
occur. 

A choice of real-time input frequency that is a power of 2 in cts/msec (e.g. 32, 64, 128) will always 
produce an integer TBSF.  Also, RTIF values that are equal to a power of 2 divided by an integer will 
typically work.  For example, 204.8 cts/msec (=2048/10, = 211/10) will yield a TBSF of 217/211*10 = 
640. 

2. The time base calculations will saturate at an input frequency (IF) where IF/RTIF equals the servo 
update frequency in kHz.  At the default servo update frequency of 2.25 kHz and an RTIF of 32 
cts/msec, the maximum input frequency that can be accepted without saturation is 32*2.25 = 72 
cts/msec.  If the system could operate to 100 cts/msec, the choice of RTIF=32 cts/msec would not be 
acceptable, but a choice of RTIF=64 cts/msec would be acceptable (100/64=1.5625<2.25). 

A choice of RTIF greater than the maximum input frequency is always acceptable. 

How Time-Base Control Works 
Time-base control works by “lying” to the commanded position update equations that occur every servo 
cycle about the amount of elapsed time since the last servo cycle.  (Variable I10 contains the actual 
amount of time.)  The actual time between servo cycles does not change nor do the dynamics of the servo 
loops.  It is only the rate of the commanded trajectories that change with the external frequency, and since 
all of the trajectories in the coordinate system change together, the path through space does not. 

Instructions for Using an External Time-Base Signal 
Using an external time-base signal requires several steps to set up.  However, once the setup is complete, 
the time-base control is transparent to the user and the program – it is automatic.  The steps in the typical 
set-up are detailed below. 

Step 1: Signal Decoding 
The signal is input to the Turbo PMAC at one of the incremental encoder inputs (Channels A and B).  The 
signal must be either a quadrature signal (as out of an encoder) or a pulse and direction signal (pulse into 
A, direction into B).  For the Encoder inputs used, variable I7mn0 controls the decoding method, and 
defines what a “count” is.  For instance, with a quadrature signal, I7mn0 = 3 or 7 defines 4 counts per 
encoder cycle, whereas I7mn0 = 2 or 6 defines only 2 counts per encoder cycle.  The difference between 
3 and 7, or 2 and 6 is for which sense of the signal does the decoder count up.   

Note: 

Make sure that it is counting up in the direction that master signal is going – 
counting down would imply a negative time-base, which Turbo PMAC cannot 
handle. 
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Step 2: Interpolation 
Once decoded and counted, the value from the signal is brought into the encoder conversion table once 
per servo cycle, exactly as a position feedback signal would be.  Using the 1/T conversion method here is 
highly recommended; because this method gives a very good sub-count interpolation of the signal (using 
timers associated with the counter) that significantly enhances the smoothness of the time base 
information.  Make sure that the conversion table is set up to process the counter from the input signal 
this way.  The factory-default configuration for the encoder conversion table is for 1/T conversion of the 
present encoder counters.  See the description of the encoder conversion table for more details. 

Step 3: Time Base Calculation 
A separate entry in the encoder conversion table takes the interpolated position information from the 
above step, subtracts out the interpolated position information from the previous servo cycle, and 
multiplies this difference by a scale factor to produce the time base value for the servo cycle.  (This time 
base value is then a multiplying factor in the position update calculations, so the amount of update is 
proportional to the number of counts received from the time base signal in the last servo cycle.) 

The two set-up items in this step are the source of information (the interpolated position register) and the 
scale factor.  Both of these are entries (I-variables) in the encoder conversion table.  See the description of 
the table for more details on how to enter these. 

The equation for the time base conversion is: 
% value = (100.0 * SCALE_FACTOR * INPUT_FREQ) / 2N 

where the % value (also known as feedrate override value) is what controls the rate of position update – 
when it equals 100.0, programs and moves operate in “real time” (i.e. at the times and speeds specified in 
the program).   

SCALE_FACTOR is the integer value that must be determined to set up time base following properly.  
INPUT_FREQ is the count rate (as determined by the signal and I7mn0) in counts/millisecond.  N is 
equal to 17 for normal (untriggered) time base (217 is 131,072); N is 14 for triggered time base (214 is 
16,384) – see below for details of triggered time base. 

To set the scale factor, decide on a real-time input count frequency – the rate of input counts at which the 
program and moves should execute at the specified rate.  Since this is the rate at which the value will be 
100.0, solve for the scale factor as:  

SCALE_FACTOR = 2N / (REAL_TIME_INPUT_FREQ) 

Since the scale factor must be an integer, and we are dividing into a power of 2, make the real time input 
frequency a power of 2 in units of counts/msec.  For instance, if there is a system where the typical full-
speed input count frequency is 60,000 counts/second, define the real-time input frequency to be 64 
counts/msec.  This would then make the scale factor for untriggered time base equal to 131,072 / 64 = 
2,048. 

So far, all we have is a value in a register proportional to the master frequency.  Now we must make use 
of this value to control our motion program. 

Step 4: Using the Time-Base Calculation 
Time base values work on a coordinate system.  Each coordinate system has an I-variable that tells it 
where to look for its time base information.  This variable is Isx93 for Coordinate System x.  The default 
values for Isx93 are the addresses of registers that are under software control, not the control of an 
external frequency.  For a coordinate system that you wish to be under external time-base control, you 
must put the address of the scaled time-base value determined above in the encoder conversion table.   
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For instance, if the table started with eight 1/T entries (using I8000 – I8007), and the time-base entry 
followed using I8008 and I8009, the resulting time base value would be in the X-register accompanying 
I8009 (address X:$350A).  To use this value as the time base for Coordinate System 1, issue the 
command I5193=$350A (specifying the address directly), or I5193=@I8009 (specifying the address 
through the location of the I-variable).  Both commands yield the same result. 

Once this I-variable has been set up, all motors assigned to this coordinate system will be under the 
control of the external frequency, in programmed and non-programmed moves. 

I-variable Isx94 controls the maximum rate of change of the time-base value for Coordinate System x.  
When commanding the time-base value from the host (with a %n command), this value should be fairly 
low to produce a nice slewing to the new commanded value.  However, to keep synchronized to an 
external signal as time-base source, this value should be set as high as possible (maximum value is 
8,388,607) so the time base can always slew as fast as the signal.  Setting the value low can improve 
following smoothness at the cost of some ‘slip’ in the following.  If the Isx94 limit is ever used in external 
time base, position synchronization to the master is lost. 

Step 5: Writing the Program 
When writing the program that is to be under external time-base control, simply write it as if the input 
signal were always at the real-time frequency.  When run, the program will execute at a rate proportional 
to the input frequency.  There is full floating-point resolution on the move times and feedrates that are 
specify. 

Remember that DWELL commands always execute in real time, regardless of the input frequency.  To 
have pauses in the program that are proportional to an input frequency, use the DELAY command, not 
DWELL. 

Time-Base Example 
If there is a web of material moving at a nominal speed of 50 inches per second, there is a quadrature 
encoder on the web that gives 500 lines per inch.  There is a crosscutting axis under Turbo PMAC 
control.  When the web is moving at nominal speed, make a cutting move in 0.75 seconds and be ready to 
start another move 2.50 seconds later.  The web encoder is attached to Servo IC 2 Encoder 4 input lines. 

Step 1: Signal Decoding 
Since the web encoder is Servo IC 2 Encoder 4, I7240 controls the decoding.  For maximum resolution, 
set I7240 to 3 or 7 for x4 decode.  Try 3 first.  Looking in the list of suggested M-variables in the manual, 
notice that the encoder position M-variable for this encoder is M401 for a UMAC or M1201 for other 
types of Turbo PMAC.  Make the definition for M401 or M1201 and query its value repeatedly (probably 
using the Executive program Watch window) while turning the web encoder in the direction it will be 
going in the application.  If the value increases as the encoder is turned, I7240 is set properly.  If it 
decreases, change I7240 to 7.  (If it does not change, check the connections.) 

Step 2: Interpolation 
Next, look at the current setup of the encoder conversion table.  Make sure the encoder is processed with 
a 1/T conversion.  The easiest way to do this is through the Configuration menu of the PMAC Executive 
program.  If this is not available, look at the I8000+ variables directly.  Issue a command such as 
I8000..8009 and get back something like this: 
$078200 
$078208 
$078210 
$078218 
$078300 
$078308 
$078310 
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$078318 
$0 
$0 

Referring to the detailed description of the I8000 variables in the Software Reference Manual, notice that 
this table processes all four encoder channels from Servo ICs 2 and 3 using 1/T extension, so the master 
encoder is processed. 

Step 3: Time-Base Calculation 
Now set up an entry in the table to convert the interpolated position to time base format.  Looking at the 
values reported above, either in the raw form shown here, or more clearly in the Executive Program’s 
configuration window, notice that there is no time-base entry, so one must be created.  
The source encoder is processed in the fourth line of the table, with I8003.  Looking up the address of this 
entry, notice that this is at $3504.  If using the Executive Program’s configuration menu, add an entry to 
the end of the table, select the Time Base method, and enter the address – either selecting it from the pick 
list or entering the address ($3504).  Talking directly to the Turbo PMAC, send the I8008=$403504 
command (the initial 4 specifies a time-base entry). 
Now compute the scaling factor.  Look at the nominal speed of 50 inches/sec, the resolution of 500 
cycles/inch and the x4 decode, and calculate: 

50 inches/sec * 500 cycles/inch * 4 counts/cycle 
= 100,000 counts/sec 

= 100 counts/msec 

Since the math works out more easily if this number is a power of two, declare the real-ime” count rate to 
be 128 counts/msec.  Then calculate the scale factor as 131,072 / 128 = 1024.  If using the Executive 
Program’s configuration menu, enter this value into the proper field.  If talking directly to the Turbo 
PMAC, send the I8009=1024 command. 

Step 4: Using the Time-Base Calculation 
Since working in Coordinate System 1, assign I5193 to the address of the second line of this entry (either 
with I5193=@I8009 or I5193=$350A) to point to this time base value.  Set I5194 to the maximum 
value of 8,388,607 so synchronicity will not be lost on rapid changes. 

Step 5: Writing the Program 
In writing the program, work at the real-time input frequency, which differs from the nominal speed 
begun with – in this case, it is exactly 28% faster.  Therefore, any programmed speeds would be 28% 
higher; any programmed times would be 28% less.  Take the nominal cut time of 750 msec (0.75 sec) and 
multiply it by 100/128 to get exactly 585.9375 msec.  The 2500 msec return is similarly scaled to 
1953.125 msec.  (If these numbers do not come out exactly in the program, put the math directly in the 
program; Turbo PMAC calculates with 48-bit floating-point precision.)  There would be a main program 
loop such as: 
WHILE (M11=1) ; Cut as long as input is true 
TM 585.9375 ; Cut move time 
X10000 ; Actual cut move 
DELAY 500 ; Hold; part of 1953.125 msec return 
TM 953.125 ; Return time; part of 1953.125 msec 
X0 ; Actual return move 
DELAY 500 ; Hold; part of 1953.125 msec return 
ENDWHILE 
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Triggered Time Base 
The time-base techniques discussed so far keep the slave coordinate system locked perfectly to the 
master, but they do not provide a way of synchronizing to a particular point on the master.  Thus, the 
slave cycle can be out of phase with the master cycle, and some special technique, usually involving 
position capture from a registration mark, must be used to bring the cycles in phase with each other.   

Many time-base applications do not require the master and slave cycles to be in phase with each other (for 
instance, cutting blank sheets of paper to length rather than printed pages), and others have to be 
continually re-registered due to stretching, slippage, or uneven spacing.  These types of applications can 
use the standard time base function. 

However, applications that do need to be in phase with the master, and in which a registration procedure 
to do this is difficult or impossible, can use the triggered time base feature of the conversion table.  This 
technique permits perfect synchronization to the position of the master that is captured by a trigger, by 
freezing the time base until the trigger is received, then starting the time base referenced to the position 
that was captured by that trigger. 

The triggered time-base entry in the conversion table is similar to the standard time-base entry.  It is a 
two-line entry, with the first line specifying the process and the source address for the master encoder 
data, and the second line specifying the time-base scale factor.  There are two important differences 
between the triggered time-base entry and the standard time base entry.  First, the value specifying the 
process is different, and it is changed during the process of triggering ($90, $A0, and $B0, versus the $40 
for standard time-base).  Second, the source address is that of the actual master encoder counter registers, 
not the processed encoder data in the conversion table.  The scale factor is the same as for the standard 
time-base.  The rules for this entry are discussed in detail in the instructions for the conversion table. 

Instructions for the Triggered Time-Base 
Using the triggered time-base feature involves proper setup of I-variable values, M-variable definitions, 
and conversion table entries (these can be done ahead of time), writing motion programs, and writing PLC 
programs.  Each of these is covered in turn below. 

Step 1: Signal Decode Setup 
The signal decoding of the master signal is the same as for standard time-base: the quadrature or pulse 
and direction signal must be decoded so that the counter counts up. This is set with I7mn0. 

Step 2: Interpolation and Time-Base Setup 
The triggered time-base conversion in the encoder conversion table handles both the 1/T count 
interpolation and the time-base calculation from the interpolated value.  In this method, the 1/T 
interpolation produces three additional fractional count bits (for a total of eight), making the resulting 
numerical value for a given count eight times bigger than “normal” 1/T interpolation.  In the initial setup, 
a triggered time-base entry is created in the conversion table, usually in the running (not frozen or 
waiting-for-trigger) state.  The time base scale factor is also entered here; it is calculated in the same 
manner as for the standard time base, except that it is only 1/8 as big for the same real-time input 
frequency. 

Step 3: Writing the Motion Program 
In writing the motion program that is to use triggered time base, all of the axes must be brought to a stop 
at the point where they will wait for the trigger.  If this is not at the beginning of the motion, the section 
should be preceded immediately by a DWELL command.   

At the start of the calculations for the moves that are to be started on the trigger, the time base should be 
frozen to prevent the move from starting.  This is best done by using an M-variable that has been assigned 
to the process bits for the triggered time base entry in the conversion table.  If the previous moves were 
done working from a different time-base source, the time-base address for the coordinate system – Ix93 – 
should be changed to the triggered time-base entry.   
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These commands in the motion program are followed immediately by the calculations and commands for 
the first moves that are to be started on the trigger.  With the time-base frozen, Turbo PMAC will perform 
all of the calculations, but not start actual execution of these moves.  Variable I11 (calculation delay) 
should be set to 0, so Turbo PMAC will be ready to start the move as soon as the time base starts. 

Step 4: Arming the Trigger 
The motion program that calculates the moves cannot arm the trigger itself without having a chance that 
the trigger could occur before the calculations are done.  If this were to happen, the program would be 
behind the desired synchronization.  Therefore, for reliable operation, the trigger should be armed by a 
task that cannot execute until all of the move calculations are done, usually a PLC program.  Arming the 
trigger requires just one simple conditional branch in a PLC program; it just looks to see if the time base 
is frozen, and if it is, the PLC program arms the trigger.  Since the PLC program cannot interrupt the 
motion program, this is guaranteed to happen after the motion program has finished the calculations for 
the move. 

Step 5: Starting on the Trigger 
Once the trigger has been armed, Turbo PMAC waits for the position-capture trigger to occur on the 
master encoder.  Variables I7mn2 and I7mn33 determine which edges of which signals cause the trigger.  
When Turbo PMAC sees that the trigger has occurred, it starts the time base, using the captured master 
position as the starting point for the time base. 

Triggered Time-Base Example 
Motor #1 is the A-axis in Coordinate System 1.  It is a rotary axis with a 2500 line-per-revolution encoder 
on the motor, and its load is geared down from the motor at a 3-to-1 ratio.  It is to be slaved to a master 
encoder connected to Turbo PMAC on Servo IC 2 Encoder 4.  The master encoder has 4096 lines per 
revolution, and typically rotates at about 600 rpm.  After being given the command to run, the X-axis 
must wait for the index pulse of the master and for 45 degrees past it.  For the next 36 degrees of the 
master, it must accelerate up to speed, then run at speed for 144 degrees of the master, and finally 
decelerate over 36 degrees of the master.  This move must cover one full revolution of the A-axis. 

We will use the triggered time-base, triggering from the master encoder’s index pulse.  Choosing 600 rpm 
as our “real-time” speed for the master, we compute our real-time input frequency (RTIF) in counts/msec: 

600 rev/min * (min/60 sec) * (4096 lines/rev) * (4 counts/line) * (sec/1000 msec) 
= 163.84 counts/msec 

The time-base scale factor (SF) is: 
SF= 131,072 / RTIF = 131,072 / 163.84 = 800 (decimal) 

At the real-time speed of 600 rpm (10 rps), one revolution of the master takes 100 msec; so 45 degrees of 
the master takes 12.5 msec, and so on. 

Set-up and Definitions 
I7240=3 ; x4 decode of IC 2 Enc 4, set to count up in direction of motion 
I7242=1 ; ENC 4 capture trigger on rising edge of index pulse 
I8008=$A78218 ; Add triggered time base entry to end of default conversion table 
 ; process $A is triggered time-base, running (post-trigger); $78218  
 ; points to IC 2 Enc 4 registers 
I8009=800 ; Scale factor is 800 decimal Result is at address $350A 
M199->Y:$3509,20,4 ; Method digit of conversion table entry =$9 frozen, $B armed,  
 ;$A running 
&1 ; Address Coordinate System 1 
#1->83.33333333A ; Motor 1 is A-axis in C.S. 1; 3 x 2500 x 4 cts/rev / (360 deg rev) 
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Motion program 
The motion program freezes the time base and calculates the first move.  But actual execution of this 
move will not happen until the time base has been triggered. 
CLOSE 
OPEN PROG 12 CLEAR 
I5193=$350A ; Time base source address is triggered time-base conversion in table  
 ; (2nd line) 
DWELL0 ; Stop lookahead in program 
M199=$9 ; Freeze time-base 
LINEAR ; Linear move mode 
INC ; Incremental move specification 
TA10  ; 36 degrees of master is 10 msec 
TS0 ; No S-curve 
DELAY12.5 ; 45 degrees of master is 12.5 msec 
TM50 ; 36+144 deg of master is 50 msec 
A360 ; One full revolution of slave axis 
CLOSE 

PLC Program 
The PLC program simply looks to see if the time base has been frozen; if so, it arms the time base.  In the 
armed state, the triggered time-base conversion table entry looks for the trigger every servo cycle. 
CLOSE  
OPEN PLC 10 CLEAR 
IF (M199=$9) ; Has time-base been frozen? 
  M199=$B ; Then arm for trigger 
ENDIF 
CLOSE 

Synchronizing Turbo PMAC to other Turbo PMACs 
When multiple Turbo PMACs are used together, inter-card synchronization is maintained by passing the 
servo clock signal from the first card to the others.  With careful writing of programs, this permits 
complete coordination of axes on different cards. 

Turbo PMAC provides the capability for putting multiple cards together in a single application.  To get 
the cards working together properly in a coordinated fashion, several factors must be considered: 

• Host communications addressing 
• Clock timing 
• Motion program timing 

The host communications addressing is covered in Talking to Turbo PMAC and Writing a Host 
Communications Program sections of this manual.  The timing (synchronization) issues are covered below. 

Clock Timing 
Turbo PMAC cards use a crystal clock oscillator (the master clock) as the fundamental time measuring 
device.  Each Turbo PMAC has its own crystal oscillator.  Although these crystals are made to a very 
tight tolerance (50 ppm accuracy standard; 10 ppm with Option 8) they are not exactly the same from card 
to card.  The phase and servo clock signals that actually control the timing of moves are derived from the 
crystal clock frequency, and so have the same tolerance.  This can cause cards to lose synchronicity with 
each other over long move sequences if they are each using their own master clock.  Generally, this will 
be noticeable only if a continuous move sequence lasts more than 10 minutes.  For example, in the worst 
case, with 100 ppm difference between two cards, at the end of a 10-minute continuous sequence, the 
cards will be off by 60 msec. 
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Synchronizing Clock Signals over MACRO Ring 
If the multiple Turbo PMACs to be synchronized are Turbo PMAC2s on a common MACRO ring, the 
synchronization will be achieved automatically over the ring.  In this case, each Turbo PMAC2 generates 
its own clock signals using MACRO IC 0 (so I6800, I6801, and I6802 control the frequency), but these 
signals are forced into full synchronization through use of the “sync packet” passed over the MACRO 
ring.  I6800, I6801, and I6802 should be set to obtain the same nominal frequencies on all controllers, so 
any synchronizing corrections are small, and do not affect performance. 

One Turbo PMAC2 on the MACRO ring must be set up as the synchronizing ring master.  It will force 
the clock signals on other devices on the ring into full synchronization.  I6840 for this controller must be 
set to $xx30.  Other Turbo PMAC2s on the ring are masters but not the ring master.  I6840 for these 
controllers must be set to $xx90. 

Generally, the Node 15 data packet sent from the ring master is the sync packet.  Bit 15 of I6841 on this 
controller must be set to 1 to enable the sending of this packet.  On the other controllers, bits 16 to 19 (the 
second hex digit) of I6841 must all be set to 1 (making the second hex digit $F, or 15) to specify this as 
the sync packet, and bit 15 of I6840 must be set to 1 (e.g. I6840 = $8090) to enable the controller to 
accept this packet from another master. 

Sharing Clock Signals on the Serial Port 
If the Turbo PMACs to be synchronized are not linked on a common MACRO ring, the solution to this 
problem is to have all the cards physically share common phase and servo clock signals.  With Turbo 
PMAC, this is done over spare lines on the main serial port (RS-422 connector only).  A straight-across 
flat cable between the serial ports of multiple Turbo PMACs will connect these clock signals directly 
from one card to another.  It is acceptable, but not necessary, to connect the serial communications signals 
between cards on the same cable.  It is acceptable, but not necessary, to connect the clock signals and/or 
the serial communications signals to a host computer on the same cable. 

A jumper or set of jumpers in each Turbo PMAC system controls whether that Turbo PMAC will 
generate its own phase and servo clock signals from its own crystal frequency and output them on its 
main serial port, or expect to receive phase and servo clock signals from an external source through its 
serial port.  Note that a Turbo PMAC set up to receive external clock signals will fail immediately with a 
watchdog timer trip if it does not receive these signals. 

In a board-level Turbo PMAC, base-board jumpers E40 – E43 must all be ON for it to generate its own 
clock signals.  If any of these is removed, it will expect its clock signals through the serial port.  In a 
board-level Turbo PMAC2, base-board jumper E1 must be OFF for it to generate its own clock signals; if 
E1 is ON, it will expect its clock signals through the serial port.   

On a UMAC Turbo CPU board, jumper E1A must connect pins 1 and 2, and E1B must connect pins 2 
and 3 for the UMAC to generate its own clock signals.  If E1A connects pins 2 and 3, and E1B connects 
pins 1 and 2, it will expect to receive its clock signals through the serial port and pass them on to the 
UBUS backplane. 

Only one Turbo PMAC of those sharing clock signals can be set up to generate its own phase and servo 
clocks.  All others must be set up to input these clock signals.  Of course, only the clock-frequency 
control jumpers or I-variables on the Turbo PMAC that is generating the clock signals really matter.  
However, it is a good idea to set up the other Turbo PMACs for the same nominal frequencies.  If PWM 
signals are generated on any Turbo PMAC in the system, the PWM frequency is restricted to 
N*PhaseFreq/2, where N is a positive integer. 

The I10 servo-period parameter must be set to the same value on all of these Turbo PMACs to maintain 
precise synchronization. 
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Synchronizing with External Time Base 
If synchronicity is desired in an application where axes on several cards are tied to an external frequency 
time base, the same frequency signal must be brought into encoder counters on all cards.  If it is not also 
required to have complete synchronicity when on internal time base, there is no need to tie the Turbo 
PMAC clock signals together, because the external frequency will provide the common clock. 

Motion Program Timing 
Whether or not cards share a common clock signal, the synchronization of moves between multiple cards is 
only as good as the time specification in the motion programs in each card.  If one card is told to do a 3-
second long move, and another to do a 4-second long move, and they are started at the same time, obviously 
they will not finish together.  Therefore, it is imperative that motion programs on several cards that are 
intended to run together must be written carefully so as to take the same amount of time for moves. 

Initial Calculation Delay 
After receipt of a Run or Step command, a Turbo PMAC requires some initial calculation time before it 
can start the first move – typically a few milliseconds.  If several Turbo PMACs are told to start a 
program simultaneously, the cards will in general not take the same amount of time to calculate their first 
move.  If each card started its first move immediately on finishing the calculations, there would be a loss 
of synchronicity between cards.  Turbo PMAC parameter I11 (Motion Program Calculation Delay) exists 
to prevent this problem.  It determines the number of milliseconds between the receipt of the Run or Step 
command, and the start of the first move.  I11 should be set to the same value on all cards for which 
synchronicity is desired; the default value of 10 (=10 msec delay) can be used in virtually all applications.  
(If I11 is set to 0, the first move starts immediately after calculations are finished.  Typically, this is OK in 
single-card applications, but not in multi-card applications.)  

Time-Specification of Moves 
In general, moves in these programs should be specified by move time (TM, TA, and TS), and not by 
feedrate (F).  The time for a feedrate-specified move is calculated as the vector distance of all feedrate 
axes (FRAX) divided by the feedrate.  It is difficult to ensure that such moves on separate cards will take 
the same amount of time. 

DWELL is a non-synchronous move and should not be used when writing programs for multi card 
applications.  Use the DELAY command to maintain program synchronicity.   

No-Drift Conditions 
If motion programs are written carefully, using time-specified moves, and the cards share common clock 
signals, they can run indefinitely with no drift between the cards.  There can be an initial offset between 
the cards of up to a few msec as to when they start their motion programs, even with simultaneous 
commands, but this offset will not increase with properly written motion programs and shared clock 
signals.  The following section explains how to minimize (and usually eliminate) this offset. 

Minimizing Initial Offset 
Turbo PMAC cards told to start a program simultaneously usually will do so on the same servo cycle 
providing that no PLC programs are enabled.  Programs that do not start on the same servo cycle will start 
at the next real time interrupt.  This will be ((I8 + 1) * servo cycle length) µs later.  If PLC programs are 
enabled, the starting offset between cards could be as much as the amount of time the longest PLC 
requires to run and be translated.  A good method for eliminating an initial execution offset is as follows: 

• Initialize all program counters on all Turbo PMAC cards.  For the simple case of the same program 
with the same name on each card enter @@B1<CR>.  A more complicated case might be 
@0B1@1&3B2<CR>. 

• Disable all PLC programs using <CTRL-D>.  This will give the fastest possible response to a 
command. 
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• Set I8 to 0, which forces a real time interrupt every servo cycle.  If not running a PLC 0, leave this at 
zero permanently. 

• Begin your programs using R<CR> if @@ has been issued as in the simple case or use <CTRL-R>, 
which is the global run command. 

• To run a PLC 0, set I8 back to its original value, usually 2.  Leaving I8 at 0 probably will cause PLC 
0 to starve the background tasks for processor time, causing loss of communications or even a 
watchdog timer failure. 

• Enable the PLC programs required.  Have the first line of each motion program enable the PLC 
programs for its respective Turbo PMAC card.   

Example: 
OPEN PROG 1 CLEAR 
ENA PLC 1..31 
TM 1000 
 . 

Hardware Position-Capture Functions 
The hardware position-capture function latches the current encoder position at the time of an external 
event into a special register.  It is executed totally in hardware, without the need for software intervention 
(although it is set up, and later serviced, in software).  This means that the only delays in the capture are 
the hardware gate delays (negligible in any mechanical system), so this provides an incredibly accurate 
capture function.  The accuracy is not limited by the servo update rate, as the position can be captured at 
any time during the servo cycle. 
Turbo PMAC has high-level move-until-trigger constructs that can utilize the hardware position-capture 
function to end a commanded move automatically at a precise distance from the captured feedback trigger 
position.  The triggered time base slaving function uses the hardware-capture function on the master 
position data to provide a precise starting reference point for the following.  It is also possible to create 
your own low-level algorithms to use the hardware capture functions for other purposes. 
Requirements for Hardware Capture 
The hardware position-capture function in a Turbo PMAC Servo IC latches the encoder counter value 
upon a pre-defined change in a flag and/or index-channel input for that channel.  Note that for position 
data to have this hardware-capture capability, it must be processed through the encoder counter of a Servo 
IC (although the sensor does not have to be an encoder – many resolver-to-digital converters produce 
simulated quadrature whose count can be captured this way).  Parallel-format and analog feedback do not 
support this immediate hardware capture (the closest they can get is to the nearest servo cycle). 

Both PMAC-style and PMAC2-style Servo ICs support the hardware position capture function.  The 
newest revisions (“D” rev and later) of the PMAC2-style Servo ICs optionally can support capture of 
estimated sub-count position as well. 

The position counter for a given encoder channel can be captured only by using input signals for that 
channel.  To capture multiple positions simultaneously, wire the triggering signal into inputs for each of 
the channels whose position to capture. 

Setting the Trigger Condition 
For both automatic and manual uses, variables I7mn2 and I7mn3 determine what the trigger condition for 
the capture is.  This is true for both PMAC-style and PMAC2-style Servo ICs.  I7mn2 specifies that the 
encoder’s index channel is used to trigger, or an input flag for the channel is used, or both; and which 
edges of these signals will cause the trigger.  I7mn3 specifies which of the four main input flags for the 
channel is used for triggering (if I7mn2 specifies that a flag is used). 
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By having software setup for a hardware capture, Turbo PMAC gets the best of both worlds: the 
flexibility of software configuration, plus the immediacy and accuracy of hardware capture.  It is possible 
to have one setup for homing and another for probing or registration, for example, both with the high 
accuracy of hardware capture, and the change requires no rewiring. 

Automatic Move-Until-Trigger Functions 
Turbo PMAC has three types of move-until-trigger functions that can use the hardware position-capture 
feature to latch the triggered position: 
1. Homing search moves (on-line or in a motion program) 
2. On-line jog-until-trigger moves 
3. Motion program RAPID-mode moves-until-trigger 

All of these create basically the same type of motion.  All of them end their post-trigger move at a pre-
defined distance from the triggered position.  These moves are described in detail in the Executing 
Individual Motor Moves section of this manual. 

Manual Use of the Capture Feature 
If the automatic move-until-trigger functions do not accomplish the action needed, create custom 
functions by accessing the capture registers directly. 

Position-Capture Registers and Flags 
Each channel in a Turbo PMAC Servo IC has position-capture registers and a position-capture flag. 

Position-Capture Flag 
Each channel has a position-capture flag in the channel’s status word.  In PMAC-style Servo ICs, this is 
bit 17; in PMAC2-style Servo ICs, this is bit 11.  This bit is set to 1 by the IC’s capture logic when the 
trigger condition occurs and the position is latched into the capture register(s).  It is set to 0 when the 
(whole count) capture-position register is read by the processor.  The act of reading this register 
automatically resets and re-arms the capture logic. 

Note:  

The capture circuits in PMAC-style Servo ICs are edge-triggered.  After the 
capture logic is reset by reading the position-capture register, the triggering 
input(s) must create another edge to the capturing state before the next capture will 
occur.  By contrast, the capture circuits in PMAC2-style Servo ICs are level-
triggered.  If the triggering input(s) is (are) still in the capturing state when the 
capture logic is reset, another capture will occur immediately. 

For PMAC-style Servo ICs, the M-variable definitions for the position-capture flags are shown in the 
following table.  With the standard assignment of channels to motors, the suggested M-variable for the 
flag for Motor xx is Mxx17. 

Servo IC # Channel 1 Channel 2 Channel 3 Channel 4 
0 X:$078000,17 X:$078004,17 X:$078008,17 X:$07800C,17 
1 X:$078100,17 X:$078104,17 X:$078108,17 X:$07810C,17 
2 X:$078200,17 X:$078204,17 X:$078208,17 X:$07820C,17 
3 X:$078300,17 X:$078304,17 X:$078308,17 X:$07830C,17 
4 X:$079000,17 X:$079004,17 X:$079008,17 X:$07900C,17 
5 X:$079100,17 X:$079104,17 X:$079108,17 X:$07910C,17 
6 X:$07A200,17 X:$07A204,17 X:$07A208,17 X:$07A20C,17 
7 X:$07A300,17 X:$07A304,17 X:$07A308,17 X:$07A30C,17 
8 X:$07B200,17 X:$07B204,17 X:$07B208,17 X:$07B20C,17 
9 X:$07B300,17 X:$07B304,17 X:$07B308,17 X:$07B30C,17 
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For PMAC2-style Servo ICs, the M-variable definitions for the position-capture flags are shown in the 
following table.  With the standard assignment of channels to motors, the suggested M-variable for the 
flag for Motor xx is Mxx17. 

Servo IC # Channel 1 Channel 2 Channel 3 Channel 4 
0 X:$078000,11 X:$078008,11 X:$078010,11 X:$078018,11 
1 X:$078100,11 X:$078108,11 X:$078110,11 X:$078118,11 
2 X:$078200,11 X:$078208,11 X:$078210,11 X:$078218,11 
3 X:$078300,11 X:$078308,11 X:$078310,11 X:$078318,11 
4 X:$079000,11 X:$079008,11 X:$079010,11 X:$079018,11 
5 X:$079100,11 X:$079108,11 X:$079110,11 X:$079118,11 
6 X:$07A200,11 X:$07A208,11 X:$07A210,11 X:$07A218,11 
7 X:$07A300,11 X:$07A308,11 X:$07A310,11 X:$07A318,11 
8 X:$07B200,11 X:$07B208,11 X:$07B210,11 X:$07B218,11 
9 X:$07B300,11 X:$07B308,11 X:$07B310,11 X:$07B318,11 

Bit 10 of the same status word on PMAC2-style Servo ICs also is set to 1 if the most recent position 
capture used the encoder’s index (Bit 0 of I7mn2 = 1) gated to a single quadrature state wide (I7mn4 = 1).  
This indicates that the captured position is suitable for use to see if the proper number of counts have 
elapsed since the previous gated-index capture, a good safety check for encoder count loss. 

Whole-Count Position-Capture Register 
The position-capture register for an encoder channel contains the value of the encoder counter at the time 
when the last trigger condition occurred.  It is a 24-bit register, in units of counts, usually treated as a 
signed quantity.  The suggested M-variable for this register is Mxx03 for Motor xx (with encoders 
assigned to motors in the standard order).   

A count here is a hardware count that is, one increment of the hardware encoder counter.  This is often, 
but not necessarily, the same as a software count, what the motor software considers a count.  In the case 
of digital quadrature feedback where the motor gets feedback position with 5 bits of estimated or 
measured fraction – 1/32 of a count – hardware and software counts will be the same.   

However, in some cases, as with high-resolution interpolation of a sinusoidal encoder through an Acc-51, 
where 10 bits of fraction are calculated per hardware count, the resolution of hardware counts and 
software counts will be different.  In the case of Acc-51 position, a hardware count will be equivalent to 
32 software counts. 

For PMAC-style Servo ICs, the M-variable definitions for the position-capture registers are shown in the 
following table.  Note that the capture register is read-only; a write operation to the same address is a 
write to the position-compare register for the channel. 

Servo IC # Channel 1 Channel 2 Channel 3 Channel 4 
0 X:$078003,0,24,S X:$078007,0,24,S X:$07800B,0,24,S X:$07800F,0,24,S 
1 X:$078103,0,24,S X:$078107,0,24,S X:$07810B,0,24,S X:$07810F,0,24,S 
2 X:$078203,0,24,S X:$078207,0,24,S X:$07820B,0,24,S X:$07820F,0,24,S 
3 X:$078303,0,24,S X:$078307,0,24,S X:$07830B,0,24,S X:$07830F,0,24,S 
4 X:$079003,0,24,S X:$079007,0,24,S X:$07900B,0,24,S X:$07900F,0,24,S 
5 X:$079103,0,24,S X:$079107,0,24,S X:$07910B,0,24,S X:$07910F,0,24,S 
6 X:$07A203,0,24,S X:$07A207,0,24,S X:$07A20B,0,24,S X:$07A20F,0,24,S 
7 X:$07A303,0,24,S X:$07A307,0,24,S X:$07A30B,0,24,S X:$07A30F,0,24,S 
8 X:$07B203,0,24,S X:$07B207,0,24,S X:$07B20B,0,24,S X:$07B20F,0,24,S 
9 X:$07B303,0,24,S X:$07B307,0,24,S X:$07B30B,0,24,S X:$07B30F,0,24,S 
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For PMAC2-style Servo ICs, the M-variable definitions for the position-capture registers are shown in the 
following table: 

Servo IC # Channel 1 Channel 2 Channel 3 Channel 4 
0 X:$078003,0,24,S X:$07800B,0,24,S X:$078013,0,24,S X:$07801B,0,24,S 
1 X:$078103,0,24,S X:$07810B,0,24,S X:$078113,0,24,S X:$07811B,0,24,S 
2 X:$078203,0,24,S X:$07820B,0,24,S X:$078213,0,24,S X:$07821B,0,24,S 
3 X:$078303,0,24,S X:$07830B,0,24,S X:$078313,0,24,S X:$07831B,0,24,S 
4 X:$079003,0,24,S X:$07900B,0,24,S X:$079013,0,24,S X:$07901B,0,24,S 
5 X:$079103,0,24,S X:$07910B,0,24,S X:$079113,0,24,S X:$07911B,0,24,S 
6 X:$07A203,0,24,S X:$07A20B,0,24,S X:$07A213,0,24,S X:$07A21B,0,24,S 
7 X:$07A303,0,24,S X:$07A30B,0,24,S X:$07A313,0,24,S X:$07A31B,0,24,S 
8 X:$07B203,0,24,S X:$07B20B,0,24,S X:$07B213,0,24,S X:$07B21B,0,24,S 
9 X:$07B303,0,24,S X:$07B30B,0,24,S X:$07B313,0,24,S X:$07B31B,0,24,S 

The value in this register is referenced to the power-up/reset position of the sensor.  That is, the counter is 
set to zero at power-up/reset, and it counts from there.  It does not get reset to zero if the motor using it 
for feedback is homed.  If the travel of the sensor from the power-up/reset position goes more than +/-
8,388,608 (+/-223) counts, the count value will roll over.  In this case, you must keep track of the rollover. 

Note that the act of reading the position-capture register resets the trigger logic, automatically re-arming it 
for another trigger.  It is a good idea to perform a dummy read of the capture register before starting a 
capture sequence to make sure the trigger logic is armed (the standard move-until-trigger functions do this 
automatically).  If you are also reading the fractional-count capture register (see below), read that register 
first to ensure that both it and the whole-count register represent the same triggered position. 

Fractional-Count Position-Capture Register 
In PMAC(2)-style Servo ICs of Revision D and newer (started shipments in 2002), it is possible to 
capture timer-estimated sub-count position as well as the whole-count position described above.  This is 
most commonly used with the Acc-51 high-resolution sinusoidal-encoder interpolator, but can be used 
with quadrature encoders as well. 

If variable I7mn9 for Channel n of Servo IC m is set to 1, this function is enabled.  (Note that if this is 
enabled, the traditional “software 1/T” interpolation registers are disabled.)  In this case, bits 12 – 23 of 
the Y-register of the channel’s base address (Y:$078000 for Servo IC 0 Channel 1), contain the captured 
fractional count value.  Bit 23 has a value of ½-count, bit 22 has a value of ¼-count, and so on.  A count 
in this context is a “hardware count,” which is not necessarily the same as the motor’s “software count.” 

The M-variable definitions for the fractional-count position-capture registers are shown in the following 
table.  The suggested M-variable for Motor xx, assuming the standard matching of channels to motors, is 
Mxx83. 

Servo IC # Channel 1 Channel 2 Channel 3 Channel 4 
0 Y:$078000,12,12,U Y:$078008,12,12,U Y:$078010,12,12,U Y:$078018,12,12,U 
1 Y:$078100,12,12,U Y:$078108,12,12,U Y:$078110,12,12,U Y:$078118,12,12,U 
2 Y:$078200,12,12,U Y:$078208,12,12,U Y:$078210,12,12,U Y:$078218,12,12,U 
3 Y:$078300,12,12,U Y:$078308,12,12,U Y:$078310,12,12,U Y:$078318,12,12,U 
4 Y:$079000,12,12,U Y:$079008,12,12,U Y:$079010,12,12,U Y:$079018,12,12,U 
5 Y:$079100,12,12,U Y:$079108,12,12,U Y:$079110,12,12,U Y:$079118,12,12,U 
6 Y:$07A200,12,12,U Y:$07A208,12,12,U Y:$07A210,12,12,U Y:$07A218,12,12,U 
7 Y:$07A300,12,12,U Y:$07A308,12,12,U Y:$07A310,12,12,U Y:$07A318,12,12,U 
8 Y:$07B200,12,12,U Y:$07B208,12,12,U Y:$07B210,12,12,U Y:$07B218,12,12,U 
9 Y:$07B300,12,12,U Y:$07B308,12,12,U Y:$07B310,12,12,U Y:$07B318,12,12,U 
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Scaled properly, this value can be added to the whole-count capture register value, regardless of the 
direction of motion at the trigger.  To combine these into units of hardware counts (which are the same as 
software counts in many cases), the following equation can be used: 

EncCaptureHWPos = FractionCount/4096 + WholeCount 

If the capture is done on an Acc-51 interpolated sinusoidal encoder, the following equation can be used to 
calculate the captured position in the motor’s software counts: 

EncCaptureSWPos = FractionCount/32 + WholeCount*32 

Note that the net position must be stored in a floating-point variable to keep the fractional value, and that 
these equations use the fractional count first because reading the whole-count register resets the trigger 
logic.  In Turbo PMAC code, this could be something like: 
P103=M183/32+M103*32 

Converting to Motor and Axis Coordinates 
The capture registers are scaled in encoder counts, referenced to the position at the latest power-up/reset.  
Typically, the user wants to work in either motor coordinates, still in counts and referenced to the home 
position, or in axis coordinates, in engineering units (mm, inches, degrees) and referenced to a user-set 
origin. 

Two values are needed to convert encoder position in software counts (which may be the same as 
hardware counts) to motor position for capture calculations.  First is the home capture position, the 
encoder position captured at the home trigger, a value PMAC stores for future use.  The second is the 
home-offset variable Ixx26, which contains the difference between the trigger position and the home 
position.  The relationship is: 

MotorCapturePos = EncCapturePos - HomeCapturePos- HomeOffset 

The home capture position is a 24-bit signed integer, expressed in counts.  It is best accessed with a 24-bit 
signed M-variable.  The register and suggested M-variable for Motor 1 is: 
M173->Y:$0000CE,0,24,S ; #1 home capture position (cts) 

The home offset I-variable Ixx26 is in units of 1/16 count, so it should be divided by 16 before adding to 
the motor position.  In Turbo PMAC code, this conversion could be done as: 
P104=P103-M173-I126/16 

The conversion from motor position to axis position involves a scale factor and an offset, with the 
following equation: 

AxisCapturePos = MotorCapturePos / ScaleFactor - Offset 

The scale factor is specified in the axis definition statement in counts per engineering unit; it should be 
constant for an application.  The scale factor can be specified directly in the equation, or the actual 
register that PMAC is using can be accessed with suggested M-variables: 
Mxx91 ; Axis scale factor for X, U, A, B, or C assigned to Motor xx 
Mxx92 ; Axis scale factor for Y or V assigned to Motor xx 
Mxx93 ; Axis scale factor for Z or W assigned to Motor xx 

The offset is the position bias term, with suggested M-variable Mx64, and units of 1/(Ixx08*32) counts.  
It is set equal to the axis definition offset (usually 0) on power-up/reset and homing.  It can be changed 
after this with on-line command {axis}= or motion program command PSET. 
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Using the Position-Compare Feature on Turbo PMAC 
The Turbo PMAC has powerful position compare functions built into its Servo ICs, particularly with the 
PMAC2-style DSPGATE1 Servo ICs.  The position-compare feature provides a fast and accurate digital 
output based on the actual position counter – when the hardware counter in the IC becomes equal to the 
compare register, the output toggles immediately.  Often, this output is used to trigger a measurement 
device or to fire a laser. 

Because the triggering of the compare output is a pure hardware function (although the setup is done in 
software), there are no software delays to affect the accuracy.  The compare output is accurate to the exact 
count at any speed.   

The position-compare function is implemented in software-configurable hardware registers in the Servo 
ICs.  The software configuration gives the function its flexibility; the hardware circuitry gives the 
function its speed.   

The individual hardware used determines where the position-compare outputs are brought out, and the 
nature of the driver circuit.  Consult the Hardware Reference manual for your product.  In some cases, the 
driver IC is socketed, so you have a choice of circuits to use. 

These outputs, typically labeled EQUn, can be used to drive external hardware, such as the triggers for 
scanning and measurement equipment. 
Scaling and Offset of Position-Compare Registers 
The position-compare registers are scaled in hardware encoder counts.  A hardware count is defined by 
the channel Encoder Decode I-variable I7mn0, typically with 4 counts per cycle or line.  The compare 
registers are always referenced to the position at the most recent power-up or reset, called Encoder Zero.  
This reference does not change with motor homing, which changes Motor Zero, or axis offsets, which 
change Axis Zero.  See the Converting from Motor and Axis Coordinates section below for more details. 
The position-compare registers, like the hardware encoder counters, are 24-bit values that can, and often 
do, roll over in the normal course of operation.  You must keep track of any rollover effects.  Note, 
however, that by assigning a 24-bit M-variable to a compare register, the act of writing to this M-variable 
automatically truncates a longer value properly to this word length. 
Setup on a PMAC-Style Servo IC 
Each encoder counter in the PMAC-style “DSPGATE” Servo IC has a position-compare function.  On the 
Turbo PMAC-PC and the Turbo PMAC-PCI, several of the position-compare outputs may be used to 
interrupt the host computer over the backplane bus.  Note that if the dual-ported RAM ASCII 
communications interrupt function is enabled (I56=1 and I58=1), the compare output for the board’s 
Channel 1 is used for this interrupt, and so cannot be used for true position compare functions. 
The position-compare circuitry for each channel has a 24-bit compare register, three control bits, and one 
status bit.  The compare register contains the position count value at which the output is to be toggled.  
Note that this is a write-only register; if the same address is read; the captured position value is read.   
Compare Control Bits 
The control bits for a PMAC-style Servo IC channel are: 
1. Compare output-enable bit: This must be set to 1 to get the compare signal output from the IC.  (The 

internal status bit always works). 
2. Compare flag latch control bit: If this bit is set to 0, the output is transparent – it is on only for the 

single count when the position counter equals the value in the compare register.  If this bit is set to 1, 
the output is latched – it turns on when the counter becomes equal to the compare value, and stays on 
until this latch bit is cleared.  This is the more common mode of use. 
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3. Compare output invert control bit: If this bit is set to 0, the off state is a low voltage out of the Servo 
IC, and the on state is a high voltage.  (Depending on the output driver circuitry, the actual output 
from the card may be inverted from this.)  If this bit is set to 1, the off state is a high voltage and the 
on state is a low voltage.  Note that this control bit can be used by itself to make the compare output a 
general-purpose digital output, or in some cases, a software-driven interrupt to the host computer. 
The single status bit is the position-compare flag, which shows the present state of the compare output 
logic (and if the output is enabled, of the physical output).  It is set to 1 if the compare output logic 
state is on, and to a 0 if the output logic state is off. 

There are no firmware functions for the automatic use of the position-compare circuitry.  Your application 
software must deal with the compare registers and control/status bits directly.  Usually, these are accessed 
with M-variables, and the file of suggested M-variables includes these definitions.  For the first channel of 
a Turbo PMAC (Servo IC 0 Channel 1), these definitions are: 
M101->X:$078001,0,24,S  ; 24-bit position counter register 
M103->X:$078003,0,24,S  ; 24-bit position compare register 
M111->X:$078000,11,1  ; Compare flag latch control 
M112->X:$078000,12,1  ; Compare output enable control 
M113->X:$078000,13,1  ; Compare output invert control 
M116->X:$078000,16,1  ; Compare logic status 

To preload a compare position, simply write a value to the compare register (e.g. M103=1250). 

Example: We have an array of 50 points in P1 through P50 that represent the distances from a starting 
position at which we want compare outputs.  Program code (running just a single time) that could start 
this process is: 
P100=1 ; Select first point of array 
P101=M101 ; Read and store starting position 
M103=P101+P(P100) ; Write first relative position to compare 
M111=1 ; Set for latched output 
M112=1 ; Enable compare output 

Repeatedly executing program code (probably in a PLC 0 or PLCC 0) that could work through the array 
is: 
WHILE (P100<51) ; Loop until 50 points completed 
  IF (M116=1) ; Reached last compare position? 
    P100=P100+1 ; Select next point 
    M103=P101+P(P100) ; Write next relative position to compare 
    M111=0 ; Clear output by making transparent 
    M111=1 ; Set for latched output again 
  ENDIF 
ENDWHILE 

Setup on a PMAC2-Style Servo IC 
Each encoder counter in PMAC2-style Servo IC has a position-compare function.  Furthermore, the first 
encoder counter (Channel 1) in each Servo IC can use the position-compare circuitry from any of the 
other channels on the ASIC, so it can utilize up to four independent compare circuits. 

On the Turbo PMAC2-PC and the Turbo PMAC2-PCI, the compare outputs for Channel 1 and Channel 5 
(if present) also can be used to interrupt the host computer over the backplane bus.  Note that if the dual-
ported RAM ASCII communications interrupt function is enabled (I56=1 and I58=1), the compare output 
for the board’s Channel 1 is used for this interrupt, and so cannot be used for true position compare 
functions. 
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In addition, there is a memory-mapped status bit for the output that Turbo PMAC software can access 
with M-variables for its own use. 

If the Servo IC is on a Turbo PMAC, or directly connected to it, the registers and control/status bits are 
accessed with user-defined M-variables.  If the Servo IC is on a MACRO Station, these registers and bits 
are accessed with pre-defined Station node-specific MI-variables for the MACRO node matched to this 
interface channel. 

Compare Registers 
The position compare circuitry for each channel is based on three memory-mapped registers: 

• Compare A (Turbo suggested M-variable Mxx08; MACRO Station MS{node},MI925) 
• Compare B (Turbo suggested M-variable Mxx09; MACRO Station MS{node},MI926) 
• Compare Auto-Increment (Turbo suggested M-variable Mxx10; MACRO Station 
MS{node},MI922) 

When the encoder counter value matches the value in either the channel’s Compare A Register or 
Compare B Register, the compare output is toggled from the existing state; either from 0 to 1, or from 1 
to 0.  The toggling occurs on the transition from equal to not-equal in either direction.  For instance, if the 
compare register contains 100, the toggling of the output would occur on the transition from 100 to 101 
counts in the positive direction, or on the transition from 100 to 99 counts in the negative direction. 

In addition, when the output is toggled by one of the compare registers, the other register is incremented 
immediately by the amount in the auto-increment register.  If the output is toggled by moving in the 
positive direction, the value in the auto-increment register is added to the other compare register.  If the 
output is toggled by moving in the negative direction, the value in the auto-increment register is 
subtracted from the other compare register. 

If the auto-increment register is non-zero, all of the compare edges should be at least two counts apart.  
This means that the Compare A and Compare B registers should not be less than two counts apart, and the 
minimum non-zero value for the auto-increment register should be 4. 

Compare Control Bits 
There are three control bits for each channel on a PMAC2-style Servo IC. They are: 

1. Compare Channel Select Bit: (Turbo I-variable I7mn1; MACRO Station MS{node},MI911)  This 
control bit determines whether the compare circuitry for the channel acts on the encoder for that 
channel, or the encoder for Channel 1 of this Servo IC.  (Note that this bit does nothing for Channel 
1.)  This control bit has been assigned an I-variable – I7mn1 for Servo IC m Channel n.  Note that 
when multiple compare circuits have been assigned to Channel 1 of a Servo IC, the compare output 
for the first channel is the logical OR of all of the compare logical outputs assigned to Channel 1. 

2. Compare Direct-Write (Initial State) Value: (Turbo suggested M-variable Mxx12; MACRO Station 
MS{node},MI929)  This control bit allows you to set the state of the compare output for the channel 
directly, either as an initial state for a compare sequence, or to use the output for general-purpose use, 
or for a software-driven interrupt.  A 1 here will force a high voltage on the output of the Servo IC; a 0 
will force a low voltage.  (Depending on the output driver used, this may be inverted on the output of 
the controller itself.)  It is the user’s responsibility to determine whether he is in his desired 0 region or 
the “1” region when he uses the direct-write feature.  Writing to this bit alone does not set the output; 
this does not happen until the write is enabled, using the next control bit. 

3. Compare Direct-Write Enable: (Turbo suggested M-variable Mxx11; MACRO Station 
MS{node},MI928)  Writing a 1 to this bit forces the value of the direct-write bit onto the compare 
output line.  As soon as the output state is set, this bit automatically sets itself back to 0. 
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The single status bit is the compare output status, which reflects the state of the output at any instant.  A 1 
here indicates a high voltage out of the Servo IC; a 0 indicates a low voltage.  Depending on the output 
driver used in a particular configuration, the voltage sense may be inverted out of the control card. 

There are no firmware functions for the automatic use of the position-compare circuitry.  The user’s 
application software must deal with the compare registers and control/status bits directly.  Usually, these 
are accessed with M-variables (or MACRO Station setup MI-variables), and the file of suggested M-
variables includes these definitions.  For the first channel of a Turbo PMAC2 (Servo IC 0 Channel 1), 
these definitions are: 
M101->Y:$078001,0,24,S  ; Hardware position value (counts) 
M108->Y:$078007,0,24,S  ; Position compare A value (counts) 
M109->X:$078007,0,24,S  ; Position compare B value (counts) 
M110->X:$078006,0,24,S  ; Auto-increment value (counts) 
M111->X:$078005,11  ; Position compare write enable 
M112->X:$078005,12  ; Position compare direct-write (initial-state) value 
M113->X:$078000,9   ; Position compare output status 

Refer to the Suggested M-variable list in the Software Reference Manual for equivalent definitions for 
other channels. 

Setting Up for a Single Pulse Output 
If just a single compare pulse is desired (not using the auto-increment feature), take the following steps: 
• Write the encoder value at the front edge into the Compare A register 
• Write the encoder value at the back edge into the Compare B register 
• Set the Auto-Increment register to zero 
• Set the initial state with the direct-write feature in a two-step process: 

• Write a value to the initial state bit 
• Write a 1 to the direct-write enable bit (this is self-clearing to 0) 

• Start the move that will cause the compare function 
Example: With the axis sitting still at about encoder position 100, and a 1 value of position compare 
desired between encoder positions 1000 and 1010, the following code could be used: 
M108=1000 ; Set front end compare in A 
M109=1010 ; Set back end compare in B 
M110=0 ; No auto-increment 
M112=0 ; Prepare initial value of 0 
M111=1 ; Enable direct write (resets immediately to 0) 
{Command to start the move} 

Setting Up for Multiple Pulse Outputs 
By using the auto-increment feature, it is possible to create multiple compare pulses with a single 
software setup operation.  When the auto-increment register is a non-zero value, its value is automatically 
added to or subtracted from one compare register’s value when the other compare value is matched.  
PMAC keeps track of the direction of incrementing, so only positive values should be used in the auto-
increment register, even if the encoder will be counting in the negative direction. 

The setup for multiple pulses is like the setup for a single pulse, except that a non-zero value must be 
entered into the auto-increment register, and the value entered for the back edge must be that of the first 
back edge minus the auto-increment if the move will be positive, or that of the first back edge plus the 
auto-increment value if the move will be negative.   

In other words, the starting values to the two compare registers must “bracket” the starting position.  
When either compare value is matched by the encoder counter, the other compare value is incremented in 
the direction of movement. 
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         Starting Position 
    B0                    A0          B1                    A1 
 
 
 
 
 
 
            Auto-Increment  

 
Example: Starting from the above example, desiring the compare output on between 1000 (A0) and 1010 
(B1) counts, but adding an auto-increment value of 2000 counts, with a starting position of about 100 
counts, program code to start the sequence could be: 
M110=2000 ; Auto-increment of 2000 encoder counts 
M108=1000 ; First front edge (A0) at 1000 counts 
M109=1010-M110 ; First back edge (B1) at 1010 counts 
M112=0 ; Prepare initial value of 0 
M111=1 ; Enable direct write (resets immediately to 0) 
{Command to start the move} 

Fractional-Count Compare 
Starting in the D revision of the DSPGATE1 PMAC2-style Servo IC (starting shipping in 2002), the 
compare circuitry has the capability of triggering the output at a fractional count value, not just at the 
nearest whole number of counts.  This IC can create a fractional count value every encoder-sample clock 
(SCLK) cycle using 1/T timer-based techniques and use this extended count value in the position-
compare (and capture) circuitry.  This capability is not possible in PMAC-style Servo ICs. 
This capability is particularly valuable when using a sinusoidal encoder through an interpolator circuit, 
such as the Acc-51E.  The interpolator greatly increases the resolution of the servo feedback, but does not 
by itself increase the resolution of the compare function.  Note, however, that use of a sinusoidal encoder 
and interpolator is not required for the extended compare function; it works identically with digital 
quadrature encoders. 
This extended-count mode is enabled for Servo IC m Channel n by setting variable I7mn9 to 1.  This 
variable was implemented in V1.937 firmware, but not documented until the V1.939 software reference 
manual (because the ICs that could use it did not start shipping until then).  With I7mn9 set to the factory 
default value of 0, the extended-count mode is disabled.  This single-bit I-variable is bit 18 in the control 
word for the channel in the IC. 
When this mode is enabled, the meaning of the two 24-bit timer registers for the channel changes.  (This 
means that you cannot use the traditional software 1/T count extension in the conversion table for this 
channel; if you are using digital quadrature encoders in this mode, you must use the new “hardware 1/T” 
conversion method.)  In extended-count mode these two registers contain four 12-bit values.  The lower 
half of each register contains the fractional count value for the position compare function.  Suggested M-
variables for these values for Servo IC 0 Channel 1 are: 
M188->Y:$078001,0,12,U ; Compare A fractional count 
M189->Y:$078000,0,12,U ; Compare B fractional count 

These registers must be used as unsigned values.  Treated this way, these registers take a value of 0 to 
4095, representing a (whole) count value 1/4096 as big.  Higher values of fractional count are closer to 
the more positive whole count, regardless of the direction of motion. 
Note carefully what a count means here.  Because we are dealing with the hardware counter in the Servo 
IC, these are hardware counts – one unit of the hardware counter.  With the times-4 decode that is almost 
universally used (and must be used with the Acc-51 boards), there are 4 hardware counts per line (signal 
cycle) of the encoder. 
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Turbo PMAC’s high-resolution interpolation of sinusoidal encoders produces 4096 states per line, or 
1024 states per hardware count (10 bits of fraction).  However, Turbo PMAC’s servo software assumes 
there are only 5 bits of fractional count data in the positions it accesses.  Therefore, a software count from 
an Acc-51 interpolator is 1/32 the size of a hardware count, yielding 128 software counts per line of the 
encoder. 

The following table shows, for each Servo IC and channel, the I-variable that enables the sub-count 
compare and the M-variable definitions for whole count and fractional count data. 

IC 
# 

Chan 
# 

Mode 
I-Var 

Compare A 
Whole Count 

(Mxx08) 

Compare A 
Fractional Count 

(Mxx88) 

Compare B 
Whole Count 

(Mxx09) 

Compare B 
Fractional Count 

(Mxx89) 
0 1 I7019 Y:$078007,0,24,S X:$078001,0,12,U X:$078007,0,24,S Y:$078000,0,12,U 
0 2 I7029 Y:$07800F,0,24,S X:$078009,0,12,U X:$07800F,0,24,S Y:$078008,0,12,U 
0 3 I7039 Y:$078017,0,24,S X:$078011,0,12,U X:$078017,0,24,S Y:$078010,0,12,U 
0 4 I7049 Y:$07801F,0,24,S X:$078019,0,12,U X:$07801F,0,24,S Y:$078018,0,12,U 
1 1 I7119 Y:$078107,0,24,S X:$078101,0,12,U X:$078107,0,24,S Y:$078100,0,12,U 
1 2 I7129 Y:$07810F,0,24,S X:$078109,0,12,U X:$07810F,0,24,S Y:$078108,0,12,U 
1 3 I7139 Y:$078117,0,24,S X:$078111,0,12,U X:$078117,0,24,S Y:$078110,0,12,U 
1 4 I7149 Y:$07811F,0,24,S X:$078119,0,12,U X:$07811F,0,24,S Y:$078118,0,12,U 
2 1 I7219 Y:$078207,0,24,S X:$078201,0,12,U X:$078207,0,24,S Y:$078200,0,12,U 
2 2 I7229 Y:$07820F,0,24,S X:$078209,0,12,U X:$07820F,0,24,S Y:$078208,0,12,U 
2 3 I7239 Y:$078217,0,24,S X:$078211,0,12,U X:$078217,0,24,S Y:$078210,0,12,U 
2 4 I7249 Y:$07821F,0,24,S X:$078219,0,12,U X:$07821F,0,24,S Y:$078218,0,12,U 
3 1 I7319 Y:$078307,0,24,S X:$078301,0,12,U X:$078307,0,24,S Y:$078300,0,12,U 
3 2 I7329 Y:$07830F,0,24,S X:$078309,0,12,U X:$07830F,0,24,S Y:$078308,0,12,U 
3 3 I7339 Y:$078317,0,24,S X:$078311,0,12,U X:$078317,0,24,S Y:$078310,0,12,U 
3 4 I7349 Y:$07831F,0,24,S X:$078319,0,12,U X:$07831F,0,24,S Y:$078318,0,12,U 
4 1 I7419 Y:$079207,0,24,S X:$079201,0,12,U X:$079207,0,24,S Y:$079200,0,12,U 
4 2 I7429 Y:$07920F,0,24,S X:$079209,0,12,U X:$07920F,0,24,S Y:$079208,0,12,U 
4 3 I7439 Y:$079217,0,24,S X:$079211,0,12,U X:$079217,0,24,S Y:$079210,0,12,U 
4 4 I7449 Y:$07921F,0,24,S X:$079219,0,12,U X:$07921F,0,24,S Y:$079218,0,12,U 
5 1 I7519 Y:$079307,0,24,S X:$079301,0,12,U X:$079307,0,24,S Y:$079300,0,12,U 
5 2 I7529 Y:$07930F,0,24,S X:$079309,0,12,U X:$07930F,0,24,S Y:$079308,0,12,U 
5 3 I7539 Y:$079317,0,24,S X:$079311,0,12,U X:$079317,0,24,S Y:$079310,0,12,U 
5 4 I7549 Y:$07931F,0,24,S X:$079319,0,12,U X:$07931F,0,24,S Y:$079318,0,12,U 
6 1 I7619 Y:$07A207,0,24,S X:$07A201,0,12,U X:$07A207,0,24,S Y:$07A200,0,12,U
6 2 I7629 Y:$07A20F,0,24,S X:$07A209,0,12,U X:$07A20F,0,24,S Y:$07A208,0,12,U
6 3 I7639 Y:$07A217,0,24,S X:$07A211,0,12,U X:$07A217,0,24,S Y:$07A210,0,12,U
6 4 I7649 Y:$07A21F,0,24,S X:$07A219,0,12,U X:$07A21F,0,24,S Y:$07A218,0,12,U
7 1 I7719 Y:$07A307,0,24,S X:$07A301,0,12,U X:$07A307,0,24,S Y:$07A300,0,12,U
7 2 I7729 Y:$07A30F,0,24,S X:$07A309,0,12,U X:$07A30F,0,24,S Y:$07A308,0,12,U
7 3 I7739 Y:$07A317,0,24,S X:$07A311,0,12,U X:$07A317,0,24,S Y:$07A310,0,12,U
7 4 I7749 Y:$07A31F,0,24,S X:$07A319,0,12,U X:$07A31F,0,24,S Y:$07A318,0,12,U
8 1 I7819 Y:$07B207,0,24,S X:$07B201,0,12,U X:$07B207,0,24,S Y:$07B200,0,12,U
8 2 I7829 Y:$07B20F,0,24,S X:$07B209,0,12,U X:$07B20F,0,24,S Y:$07B208,0,12,U
8 3 I7839 Y:$07B217,0,24,S X:$07B211,0,12,U X:$07B217,0,24,S Y:$07B210,0,12,U
8 4 I7849 Y:$07B21F,0,24,S X:$07B219,0,12,U X:$07B21F,0,24,S Y:$07B218,0,12,U
9 1 I7919 Y:$07B307,0,24,S X:$07B301,0,12,U X:$07B307,0,24,S Y:$07B300,0,12,U
9 2 I7929 Y:$07B30F,0,24,S X:$07B309,0,12,U X:$07B30F,0,24,S Y:$07B308,0,12,U
9 3 I7939 Y:$07B317,0,24,S X:$07B311,0,12,U X:$07B317,0,24,S Y:$07B310,0,12,U
9 4 I7949 Y:$07B31F,0,24,S X:$07B319,0,12,U X:$07B31F,0,24,S Y:$07B318,0,12,U
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The auto-increment function is still available in extended-count mode, but the auto-increment value is 
limited to integer numbers of counts. 

In operation in this mode, you write to both the standard (integer) compare register and the fractional 
compare register.  In this mode, the integer value written to the compare register is offset by one count 
from the count value at which the compare output will toggle.  The direction of this offset is dependent on 
the direction of motion.  If a value of n counts is written to the integer compare register, the compare 
output will toggle at n+1 counts when moving in the positive direction, or n-1 counts when moving in the 
negative direction.  To compensate for this, simply add or subtract 1 count depending on the direction of 
motion.  For instance, to get a compare edge at 743.25 counts when moving in the positive direction, 
write 742 (=743-1) to the integer compare register, and write 1024 (=0.25*4096) to the fractional 
compare register. 

Example: P108 and P109 are floating-point variables representing the first count values at which the 
compare output is to be turned on, then off.  P110 is an integer value representing the auto-increment 
length in counts.  Motion is to be in the positive direction.  Program code to start the sequence could be: 
M110=P110 ; Auto-increment value 
M108=INT(P108)-1 ; Compare A integer component 
M188=(P108-(M108+1))*4096 ; Compare A fractional component 
M109=INT(P109)-1-M110 ; Compare B integer component 
M189=(P109-(M109+1+M110))*4096 ; Compare B fractional component 
M112=0 ; Prepare initial value of 0 
M111=1 ; Enable direct write 

Converting from Motor and Axis Coordinates 
The compare registers are scaled in encoder counts, referenced to the position at the latest power-up/reset.  
Typically, work in either motor coordinates, still in counts and referenced to the home position, or in axis 
coordinates, in engineering units (mm, inches, degrees) and referenced to a user-set origin. 

Two values are needed to convert motor position to encoder position for compare calculations.  First is 
the home capture offset, the encoder position captured at the home trigger – a value PMAC stores for 
future use.  The second is the home-offset variable Ixx26, which contains the difference between the 
trigger position and the home position.  The relationship is: 

EncoderPosition = MotorPosition + HomeCaptureOffset + HomeOffset 
The home capture offset is a 24-bit signed integer, expressed in counts.  It is best accessed with a 24-bit 
signed M-variable.  The register and suggested M-variable for Motor 1 is: 
M173->Y:$0000CE,0,24,S ; #1 Encoder home capture position (cts) 
The home offset I-variable Ixx26 is in units of 1/16 count, so it should be divided by 16 before adding to 
the motor position. 

For example, for Motor 1 using Encoder 1 in a PMAC2-style Servo IC, if you want to set the Compare 
1A register to trigger at motor position +1500 counts, you could use the following command, on-line, in a 
motion program, or in a PLC program: 
M108=1500+M173+I126/16 

If you also want to specify the fractional count value, you can initially calculate the compare position in 
counts as a floating-point value.  Then you can break this into the integer and fractional components.  
Modifying the above example: 
P108=P500+M173+I126/16  ; Compare position in counts 
M108=INT(P108)   ; Write whole-count value 
M188=(P108-INT(P108))*4096 ; Write fractional-count value 
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The conversion from axis position to motor position involves a scale factor and an offset, with the 
following equation: 

MotorPosition = ScaleFactor * AxisPosition + Offset 
The scale factor is specified in the axis definition statement in counts per engineering unit.  It should be 
constant for an application.  You can specify the scale factor directly in your equation, or you can access 
the actual register that PMAC is using with suggested M-variables: 
Mxx91 ; Axis scale factor for X, U, A, B, or C assigned to Motor xx 
Mxx92 ; Axis scale factor for Y or V assigned to Motor xx 
Mxx93 ; Axis scale factor for Z or W assigned to Motor xx 

The offset is the position bias term, with suggested M-variable Mx64, and units of 1/(Ixx08*32) counts.  
It is set equal to the axis definition offset (usually 0) on power-up/reset and homing.  It can be changed 
after this with on-line command {axis}= or motion program command PSET. 

For example, with Motor 1 assigned to the X-axis, if you want to set the Compare 1A register to trigger at 
+2.5 engineering units from the axis origin, you can compute motor position in counts as: 
P1=M191*2.5+M164/(I108*32) 

Then you can set the actual compare register with: 
M108=P1+M173+I126/16 

Note  

If the expression on the right-hand side of this equation had produced a result 
outside of the range of the compare register, the act of writing to the M-variable 
assigned to this register would truncate the value properly to the 24-bit range so 
that the compare function will work properly.  24-bit signed registers have a range 
of -8,388,608 to +8,388,607.  If you attempted to write a value of +9,388,608 – 
one million counts past the rollover point – into this register, the resulting value 
would be -7,388,608, which would be reached one million counts after the 
rollover. 

Synchronous M-Variable Assignment Outputs 
Synchronous M-variable assignment statements allow outputs to be set and cleared synchronously with 
the start of the next commanded move in the motion program.  Note that the output is synchronous with 
the commanded position, not necessarily the actual position, which can be different due to following 
error.  These statements are discussed in detail in the Computational Features section of this manual. 
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WRITING AND EXECUTING PLC PROGRAMS 
What are PLC Programs? 
Turbo PMAC has 64 PLC programs that operate asynchronously and with rapid repetition – 32 compiled 
PLC programs and 32 interpreted (uncompiled) PLC programs.  They are called PLC programs because 
they perform many of the same functions as hardware programmable logic controllers.  PLC programs 
have most of the same logical constructs as the motion programs, but no move-type statements.   

Most compiled PLC programs are similar, if not identical, to uncompiled PLC programs.  In fact, before a 
PLC program is compiled, it should be tested and debugged as an uncompiled PLC.  The differences 
between the two types of PLC programs are in the area of buffer control, L-variables, some command 
syntax, and the use of the compiler.  Because of their similarities, much of the section about uncompiled 
PLC programs also applies to compiled PLC programs.  The information specifically concerning 
compiled PLC programs is contained in the Compiled PLC Programs section. 

When To Use 
PLC programs are designed for calculations and actions that are asynchronous to the motion.  If the 
calculation action you want is synchronous to the programmed motion (e.g. at the boundary of a 
programmed move), use a motion program instead to create the action.  Even if the action is to repeat for 
each programmed move, it is best done in a motion program, probably in a subroutine. 

Common Uses 
PLC programs are particularly useful for monitoring analog and digital inputs, setting outputs, sending 
messages, monitoring motion parameters, issuing commands as if from a host, changing gains, and 
starting and stopping moves.  By their complete access to Turbo PMAC variables and I/O and their 
asynchronous nature, they become powerful adjuncts to the motion control programs. 

64 PLC Programs 
WARNING:  

A PLC 0 that is too large can cause unpredictable behavior and can even trip Turbo 
PMAC’s Watchdog Timer by “starving” background tasks of time to execute. 

PLC programs are numbered 0 through 31 for both the compiled and uncompiled PLCs.  This means that 
you can have both a compiled PLC n and an uncompiled PLC n stored in Turbo PMAC.  PLC program 0 
is a special fast program that operates at the end of the servo-interrupt cycle with a frequency specified by 
variable I8 (every I8+1 servo cycles).  This program is meant for a few time-critical tasks, and it should 
be kept small, because its rapid repetition can steal time from other tasks. 

PLC programs 1 through 31 operate continually in background as time allows, effectively in an infinite 
loop.  They are interrupted by the higher-priority tasks of motor phasing, servo-loop closure, move 
planning, and PLC 0. 

Entering a PLC Program 
The PLC program statements are entered as buffered command lines into Turbo PMAC.  In preparation, it 
is a good idea to make sure no other buffers have been left open, by issuing a CLOSE command.  It is also 
good practice to make sure that memory has not been tied up in data gathering or program trace buffers, 
by issuing a DELETE GATHER command.  
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Opening the Buffer 
For each PLC program, the next step is to open the buffer for entry with the OPEN PLC n statement, 
where n is the buffer number.  Next, if there is anything currently in the buffer that should not be kept, it 
should be emptied with the CLEAR statement (PLC buffers may not be edited on the Turbo PMAC itself; 
they must be cleared and re-entered).  If the buffer is not cleared, new statements will be added onto the 
end of the buffer.   

Downloading the Program 
Typically in program development, the editing will be done in a host-based text editor, and the old buffer 
is cleared every time the new version is downloaded to the card.  When finished, close the buffer with the 
CLOSE command.  Opening a PLC program buffer automatically disables that program.  After it is 
closed, it remains disabled, but it can be re-enabled again with the ENABLE PLC n command, where n 
is the buffer number (0–31).  I5 must also be set properly for a PLC program to operate. 

Note:   

Because all PLC programs in Turbo PMAC’s memory are enabled at power-
on/reset it is good practice to have I5 saved as 0 in Turbo PMAC’s memory when 
developing PLC programs.  This will allow resetting Turbo PMAC with no PLCs 
running (an enabled PLC only runs if I5 is set properly) and recovering more easily 
from a PLC programming error. 

The general form for this technique is: 
CLOSE 
DELETE GATHER 
OPEN PLC n 
CLEAR 
{PLC statements} 
CLOSE 
ENABLE PLC n 

Closing the Buffer 
At the closing, Turbo PMAC checks to make sure all IF branches and WHILE loops have been terminated 
properly.  If not, it reports an error, and the buffer is inoperable.  Then correct the PLC program in the 
host and re-enter it (clearing the erroneous block in the process, of course).  This process is repeated for 
all of the PLC buffers being used. 

Erasing the Program 
To erase an uncompiled PLC program, open the buffer, clear the contents, and then close the buffer again.  
This can be done with three commands on one line, as in: 
OPEN PLC 5 CLEAR CLOSE 

Example 
A quick example of a PLC block entry is shown below: 
OPEN PLC 2 
CLEAR 
IF (M11=1) 
 I130=10000 
ELSE  
 I130=8000 
ENDIF 
CLOSE 
ENABLE PLC 2 
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PLC Program Structure 
The important thing to remember in writing a PLC program is that each PLC program is effectively in an 
infinite loop; it will execute over and over again until told to stop.  (These are called PLC because of the 
similarity in how they operate to hardware Programmable Logic Controllers – the repeated scanning 
through a sequence of operations and potential operations.) 

Calculation Statements 
Much of the action taken by a PLC is done through variable value assignment statements: 
{variable}={expression}.  The variables can be I, P, Q, or M types, and the action thus taken 
can affect many things inside and outside the card. 
Perhaps the simplest PLC program consists of one line: 
P1=P1+1 

Every time the PLC executes, usually hundreds of times per second, P1 will increment by one. 
Of course, these statements can get a lot more involved.  The statement: 
P2=M162/(I108*32*10000)*COS(M262/(I208*32*100)) 

could be converting radial (M162) and angular (M262) positions into horizontal position data, scaling at 
the same time.  It updates this frequently, so whoever needs access to this information (e.g. host 
computer, operator, motion program) can be assured of having current data. 

Conditional Statements 
Most action in a PLC program is conditional, dependent on the state of Turbo PMAC variables such as 
inputs, outputs, positions, counters, etc.  The action should be level-triggered or edge-triggered; both can 
be done, but the techniques are different. 

Level-Triggered Conditions 
A branch controlled by a level- triggered condition is easier to implement.  Taking our incrementing 
variable example and making the counting dependent on an input assigned to variable M11, we have: 
IF (M11=1) 
  P1=P1+1 
ENDIF 

As long as the input is true, P1 will increment several hundred times per second.  When the input goes 
false, P1 will stop incrementing.  

Edge-Triggered Conditions 
Suppose instead that you want to increment P1 only once for each time M11 goes true (triggering on the 
rising edge of M11 sometimes called a one-shot or latched).  We need a compound condition to trigger 
the action, then as part of the action, we set one of the conditions false, so the action will not occur on the 
next PLC scan.  The easiest way to do this is through the use of a shadow variable, which will follow the 
input variable value.  Action is taken only when the shadow variable does not match the input variable. 
Our code could become: 
IF (M11=1) 
  IF (P11=0) 
    P1=P1+1 
    P11=1 
  ENDIF 
ELSE 
  P11=0 
ENDIF 
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Notice that we had to make sure that P11 could follow M11 both up and down.  We set P11 to 0 in a 
level-triggered mode.  We could have done this edge-triggered as well, but it does not matter as far as the 
final outcome of the routine is concerned.  It is about even in calculation time, and it saves program lines. 

Any SEND, COMMAND, or DISPLAY action statement should be done only on an edge-triggered 
condition, because the PLC can cycle faster than these operations can process their information, and the 
communications channels can get overwhelmed if these statements are executed on consecutive scans 
through the PLC.   
IF (M11=1) ; input is ON 
  IF (P11=0) ; input was not ON last time 
    COMMAND"#1J+" ; JOG motor 
    P11=1 ; set latch 
  ENDIF 
ELSE 
  P11=0 ; reset latch 
ENDIF 

WHILE Loops 
Normally a PLC program executes all the way from beginning to end within a single scan.  The exception 
to this rule occurs if the program encounters a true WHILE condition.  In this case, the program will 
execute down to the ENDWHILE statement and exit this PLC.  After cycling through all of the other 
PLCs, it will re-enter this PLC at the WHILE condition statement, not at the beginning.  This process will 
repeat as long as the condition is true.  When the WHILE condition goes false, the PLC program will skip 
past the ENDWHILE statement and proceed to execute the rest of the PLC program. 

If we want to increment our counter as long as the input is true, and prevent execution of the rest of the 
PLC program, we could program: 
WHILE (M11=1) 
  P1=P1+1 
ENDWHILE 

This structure makes it easier to hold up PLC operation in one section of the program, so other branches 
in the same program do not need extra conditions to prevent their execution when this condition is true.  
Contrast this to using an IF condition (see above). 

Some COMMAND action statements should be followed by a WHILE condition to ensure they have taken 
effect before proceeding with the rest of the PLC program.  This is always true if a second COMMAND 
action statement follows and requires the first COMMAND action statement to finish.  (Remember, 
COMMAND action statements are processed only during the communications section of the background 
cycle.)   

To have an input to stop any motion in a Coordinate System and start motion program 10 use the 
following PLC: 
IF (M11=1) ; input is ON 
  IF (P11=0) ; input was not ON last time 
    P11=1 ; set latch 
    COMMAND"&1A" ; ABORT all motion 
    WHILE(M5187=0) ; wait for motion to stop 
    ENDWHILE 
    COMMAND"&1B10R" ; start program 10 
  ENDIF 
ELSE 
  P11=0 ; reset latch 
ENDIF 
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Note: 
M5187 is the Coordinate System In-Position bit as defined in the suggested M-
variable list. 

Precise Timing 
Since PLCs 1 to 31 are the lowest computation priority on Turbo PMAC, the cycle time cannot be 
precisely determined.  To hold up an action for a fairly precise amount of time, a WHILE loop can be 
used, but instead of incrementing a variable, use an on-board timer.   
Each coordinate system on Turbo PMAC has two user countdown timers: Isx11 and Isx12 (I5111 and 
I5112 for Coordinate System 1).  These timers are active for Coordinate Systems 1 through (I68+1).  
They are 24-bit signed registers (range: -8,388,608 to +8,388,607) that count down once each servo cycle.  
Typically, write a value to it representing the time to wait, expressed in servo cycles (multiply 
milliseconds by 8,388,608/I10), then wait for it to reach zero.  Example code is: 
I5111=500*8388608/I10 ; Set timer to 500 msec 
WHILE (I5111>0) ; Loop until counts to zero 
ENDWHILE ; Exit PLC program here when true 
If more timers are needed, use memory address X:$0.  This 24-bit register counts up once per servo cycle.  
Store a starting value for this, then each scan subtract the starting value from the current value and 
compare the difference to the amount of time to wait.  By subtracting into another 24-bit register, possible 
rollover of X:$0 is handled gracefully. 
Define the following M-variables with on-line commands: 
M0->X:$0,24 ; Servo counter register 
M85->X:$0010F0,24 ; Free 24-bit register 
M86->X:$0010F1,24 ; Free 24-bit register 
Then write as part of the PLC program: 
M85=M0 ; Start of timer 
M86=M0-M85 ; Time elapsed so far 
WHILE (M86<P86) ; Less than specified time? 
  M86=M0-M85 ; Time elapsed so far 
ENDWHILE ; Exit PLC program here when true 

Compiled PLC Programs 
It is possible to compile Turbo PMAC PLC programs for faster execution.  The faster execution of the 
compiled PLCs comes from two factors: first, from the elimination of interpretation time, and second, 
from the capability of the compiled PLC programs to execute integer arithmetic.  Floating-point 
operations in compiled PLC programs run two to three times faster than in interpreted PLC programs; 
integer (including Boolean) operations run 20 to 30 times faster in compiled form. 
Turbo PMAC does not perform the compilation of the PLC programs itself.  The compilation is done in a 
PC; the resulting machine code is then downloaded to Turbo PMAC.   
Turbo PMAC can store and execute up to 32 compiled PLC programs as well as 32 interpreted 
(uncompiled) PLC programs for a total of 64 PLC programs.  15K (15,360) 24-bit words of Turbo PMAC 
memory are reserved for compiled PLCs; or 14K (14,336) words if there is a user-written servo as well.  
No other task may use this memory, and compiled PLCs may not use any other memory.   

Note:  
The size of the compiled code mentioned here refers to the space that the actual 
compiled code will occupy in Turbo PMAC’s memory.  It does not refer to the size 
of the compiler’s output file on the PC’s disk drive.   
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A compiled PLC program is labeled PLCC n (PLC-Compiled #n) on Turbo PMAC.  This distinguishes it 
from an interpreted PLC, which is simply labeled PLC n.  There is no special relationship between the 
interpreted and compiled PLCs of the same number. 

Execution of Compiled PLCs 
Of the 32 compiled PLC programs (PLCC 0 to PLCC 31) only PLCC 0 operates in the foreground, 
triggered by the real-time interrupt (RTI).  PLCCs 1 to 31 operate as background tasks. 

At each real-time interrupt, Turbo PMAC checks to see whether several user tasks need to be done.  The 
real-time interrupt occurs every (I8+1) servo cycles.  Turbo PMAC checks the tasks in the following 
order: 

1. Motion program move planning: Turbo PMAC checks to see in each coordinate system whether it is 
time to calculate the next move in the program. 

2. Interpreted PLC 0: Turbo PMAC checks to see if I5=1 or 3 and if PLC 0 is enabled.  If so, it executes 
one scan of PLC 0. 

3. Compiled PLC 0: Turbo PMAC checks to see if I5=1 or 3 and if PLCC 0 is enabled.  If so, it executes 
one scan of PLCC 0. 

It is important that the scan execution time of PLCC 0 and PLC 0 be kept less than one real-time interrupt 
period.  Otherwise, their repeated execution will starve the background for time, and probably trip the 
watchdog timer. 

In background, Turbo PMAC executes one scan of a single background interpreted PLC program 
uninterrupted by any other background task (although higher-priority tasks will interrupt).  In between 
each scan of each individual background interpreted PLC program, Turbo PMAC will execute one scan of 
all active background compiled PLCs.  This means that the background compiled PLCs execute at a 
higher scan rate than the background interpreted PLCs.  For example, if there are seven active background 
interpreted PLCs, each background compiled PLC will execute seven scans for each scan of a background 
interpreted PLC. 

Writing Compiled PLC Programs 
You can write compiled PLCs just as you write the standard interpreted PLCs, using a standard text editor 
such as that in the PMAC Executive program.  All statements that can be used in an interpreted PLC 
program also can be used in a compiled PLC program, so it is possible to change an interpreted PLC to a 
compiled PLC without any code changes. 

However, compiled PLC programs support additional programming features that increase their efficiency 
and flexibility.  These features are described below.  Remember that these features are not supported in 
interpreted PLCs. 

Compiler-Assigned Pointer Variables 
For direct and efficient access to Turbo PMAC registers, compiled PLC programs support two types of 
pointer variables for which the register assignment is made at compilation time, not at program execution 
time.   

L-Variables: Short Integer Pointers 
L-variables are pointers to short (24-bit) registers, treated as integer (fixed-point) values.  These work in 
the same way as L-variables do in compiled PLC programs.  They can access either X or Y short 
registers, either as entire 24-bit registers (treated as signed integers only), or as portions of the registers 1, 
4, 8, 12, 16, or 20 bits wide (treated as signed or unsigned integers, except for 1-bit variables, which are 
unsigned only). 

Legal L-variable names for the compiler contain the letter L followed by an integer in the range 0 to 8191, 
for a total of 8192 possible L-variables (L0 to L8191). 
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For variables referencing fixed locations in Turbo PMAC’s memory and I/O space, the L-variables will 
simply replace M-variables, and the L-variable definition will be made exactly like the M-variable 
definitions.  It is completely acceptable to retain the M-variable definition as well.  You will probably 
want to retain the M-variable definitions for debugging purposes, because Turbo PMAC will not accept a 
query command for the value or definition of an L-variable.  Often, you will use identical L-variable and 
M-variable definitions. 

For example, Machine Output 1 and Machine Input 1 on the JOPTO port typically are referenced by the 
following definitions in uncompiled programs: 
M1->Y:$078F02,8 ; Machine Output 1 
M11->Y:$078F02,0 ; Machine Input 1 
For the compiled PLC programs, you could create equivalent M-variable definitions: 
L1->Y:$078F02,8 ; Machine Output 1 
L11->Y:$078F02,0 ; Machine Input 1 
A small routine in a compiled PLC to make Machine Output 1 follow Machine Input 1 would be: 
IF (L11=1)    
 L1=1    
ELSE     
 L1=0    
ENDIF     

You may access a register in one program statement with an L-variable, and then access the same register, 
even the same part of the register, in another program statement with an integer M-variable or I-variable.  
Mixing L-variable access and P- or Q-variable access to a P- or Q-variable register will yield nonsensical 
results, because the P- and Q-variable access always treats the register as a floating-point number. 

F-Variables: Long Floating-Point Pointers 
F-variables are pointers to long (48-bit) registers.  If the F-variable definition is an L format (e.g. F1-
>L:$10F0), the register is accessed as a 48-bit floating-point register.  If the F-variable definition is a D 
format variable (e.g. F2->D:$88), the register is accessed as a 48-bit signed integer, but conversion to 
or from Turbo PMAC’s 48-bit floating-point format is automatically performed, so it can be used in 
floating-point mathematics. 

Note: 

The use of F-variables requires the PRO series of PMAC Executive program 
(PEWIN32PRO) and Turbo PMAC firmware revision 1.938 or newer. 

Turbo PMAC itself cannot recognize L-variables or F-variables; these variables have meaning only to the 
compiler on the host computer.  Turbo PMAC will reject any uncompiled command containing an L-
variable that is sent to it. 

Note: 

Do not confuse L-variables, which are short-word compiler pointers, with L-format 
F-variables and M-variables, which are long-word variables. 

Comparison to Run-Time Linked Pointers 
By contrast, when using Turbo PMAC’s M-variable pointers, the register assignment is made when the 
line is executed, each time it is executed.  This assignment requires about 600 nanoseconds additional 
computation time (on a 100 MHz CPU) each time the variable is accessed.  However, this does permit the 
M-variable definition to be changed during execution, enabling techniques such as indirect addressing. 
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It is possible to use L-variables for fast integer arithmetic while retaining the run-time flexibility of M-
variable definitions.  (This does add the run-time definition-access computational penalty described 
above.)  Instead of directly defining L-variables to registers for the compiler, reference a range of L-
variables to Turbo PMAC M-variable definitions with the LMOVERLAY {start},{end} compiler 
directive.  This directive must precede the actual compiled PLC program.  For example, LMOVERLAY 
10,20 instructs the compiler that the definitions of L10 through L20 are to be assigned at run time using 
the definitions of M10 through M20 respectively at the time each statement is executed, not at 
compilation time. 

Using the M-variable definition for an L-variable and accessing this definition at run time permits indirect 
addressing techniques through real-time modification of this M-variable definition using another pointer 
variable. 

Floating-Point vs. Fixed-Point Mathematics 
Each statement in a compiled PLC that utilizes any mathematics can be executed either floating-point or 
integer (fixed-point) mathematics.  In a floating-point statement, all variables used are processed through 
an intermediate working format that is 48-bit floating-point, regardless of the storage format of the 
variable.  Floating-point statements can utilize any of Turbo PMAC’s I, P, Q, or M-variables, and the 
compiler’s long F-variable pointers.  They cannot use the compiler’s short fixed-point L-variable pointers.  
All constants used in these statements are stored as 48-bit floating-point values. 

In an integer statement, all variables used are processed through an intermediate working format that is 
24-bit signed integer, regardless of the storage format of the variable.  Integer statements can only utilize 
the compiler’s short fixed-point L-variable pointers.  They cannot use the compiler’s long F-variable 
pointers, or Turbo PMAC’s I, P, Q, or M-variables.  All constants used in these statements are stored as 
24-bit signed integers.  All constants used and intermediate values computed must fit in the range of these 
integers: -8,388,608 to +8,388,607.  No mathematical functions (e.g. SIN, COS) may be used in an 
integer statement. 

Note that if a constant appears on a line before any variable (e.g. IF (0=P1) …), the line is assumed to 
be floating-point.  This means that the statement IF (0=L1) is illegal because it mixes floating-point 
and fixed-point data types. 

Short-word integer operations will execute more than 10 times faster than the same operations done as 
long floating-point operations, but they do not have nearly the dynamic range of floating-point operations. 

If direct conversion between integer and floating-point data types is required, compiled PLCs provide the 
ITOF (integer-to-float) and FTOI (float-to-integer) functions.  The ITOF function (with an integer 
expression as its argument) can be used in a floating-point statement, such as: 
P20=ITOF(L10+L11)*3.14159/P628 

The FTOI function (with a floating-point expression as its argument) can be used in a fixed-point 
statement, such as: 
L10=L9+FTOI(P5*100)-5 

The FTOI function will round the value of the floating-point expression to the nearest integer. 

It is not permissible to nest FTOI and ITOF functions within an expression. 

Note: 

The use of FTOI and ITOF requires the “PRO” series of PMAC Executive 
program (PEWIN32PRO) and Turbo PMAC firmware revision 1.938 or newer. 
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Arrays 
Compiled PLC programs support two types of arrays: variable arrays and register arrays.  Both provide 
useful capabilities. 

Variable Arrays 
Variable arrays work with the Turbo PMAC’s standard PMAC I, P, Q, and M-variables.  The number of 
the array index is placed inside parentheses, and specifies the variable number for the specified type of 
variable.  The expression that determines this number is a floating-point expression, so it can use Turbo 
PMAC I, P, Q, or M-variables, constants (which will be treated as floating-point values) and the 
compiler’s F-variables, but it cannot use the compiler’s L-variables (unless the value has been converted 
to floating-point with the ITOF function).  The resulting value of this floating-point expression is 
rounded automatically to the nearest integer to select the variable number to be used.  Some examples of 
statements using these variable arrays are: 
P(P1)=P10*32 
P30=I(ITOF(L10)*100+30)*P29 

Register Arrays 
Register arrays work with the compiler’s short L-variables and long F-variables.  These arrays must be 
declared to the compiler before the start of the actual Open Servo algorithm.  In use, the number of the 
array index is placed inside square brackets, and specifies the address offset from the declared beginning 
of the array.  The expression that determines this number is a fixed-point expression, so it can use only 
the compiler’s L-variables and constants that fit within the range of a 24-bit signed integer. 
L and F-variable register arrays must be declared to the compiler before the start of the actual Open Servo 
algorithm.  Examples of these definitions are: 
L100->X:$010000[32] 
F200->D:$030040[64] 
F300->L:$030080[128] 

The declared array size must be a power of 2 in the range 2 to 8192.  L-variable register arrays always use 
full 24-bit X or Y registers, treating the values as signed integers. 

Note: 

The use of register arrays requires the PRO series of PMAC Executive program 
(PEWIN32PRO) and Turbo PMAC firmware revision 1.938 or newer. 

Operators 
As with any Turbo PMAC user program, compiled PLCs can utilize the following mathematical and 
logical operators: + (addition), - (subtraction), * (multiplication), / (division), % (modulo, remainder), & 
(bit-by-bit AND), | (bit-by-bit OR), and ^ (bit-by-bit XOR).  All of these operators can be used in either 
floating-point or integer statements.  Integer division rounds the result to the nearest integer; in the case 
where the fraction is exactly 0.5, it will round to the next more positive integer (e.g. -7.5 to -7,  
and 7.5 to 8). 
Comparators 
As with any Turbo PMAC user program, compiled PLCs can utilize the following comparators in 
conditional statements: = (equal to), > (greater than), < (less than), ~ (approximately equal to [within 
0.5]), != (not equal to),!> (not greater than, less than or equal to), !< (not less than, greater than or equal 
to), and !~ (not approximately equal to [not within 0.5]).   

The ~ and !~ comparators can be used only in floating-point statements.  Note that the <>, >=, and <= 
comparators, which can be used in some programming languages, cannot be used in compiled PLCs or 
other Turbo PMAC programs. 
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Functions 
As with any Turbo PMAC user program, compiled PLCs can utilize the following mathematical 
functions.  Note that these functions can be used only in floating-point statements within a compiled PLC: 
SIN (trigonometric sine), COS (trigonometric cosine), TAN (trigonometric tangent), ASIN (trigonometric 
arc sine), ACOS (trigonometric arc cosine), ATAN (trigonometric arc tangent), ATAN2 (special 2-
argument, 4-quadrant arc tangent), ABS (absolute value), INT (greatest integer within), EXP 
(exponentiation), LN (natural logarithm), and SQRT (square root). 

The trigonometric functions use degrees if Turbo PMAC variable I15 is set to the default value of 0; they 
use radians if I15 is set to 1.  The present value of I15 is evaluated each time a trigonometric function is 
executed. 

Note:  

The ATAN2 function uses Q0 as its second argument – the cosine argument.  The 
first argument – the sine argument – is inside the parentheses immediately 
following ATAN2.  The Q0 used is that of the coordinate system selected in the 
PLCC by the ADDRESS statement, or Coordinate System 1’s Q0 if no ADDRESS 
statement has been executed in that PLCC. 

Optimization for Speed  
As mentioned above, fixed-point operations with L-variables are over 10 times faster than the same 
operations done with floating-point mathematics in a compiled PLC (and over 30 times faster than the 
same operations done in an interpreted PLC).  Even with fixed-point operations, there are differences in 
speed and efficiency. 

L-Variables that are 24-bit signed values are the fastest to read and write.  Unsigned 1- to 20-bit variables 
without offset are next fastest and signed 1- to 20-bit variables and those having an offset from bit 0 are 
the slowest.  The slower the operation, the more PLC program memory is used.  However, 24-bit L-
variables will use more data memory than the smaller-width ones.  Because speed is more of a concern 
than data memory in most compiled PLC applications, usually all L-variables that do not have to be short 
to point to a particular portion of a word (such as all the general-purpose L-variables in the user buffer) 
are 24 bits wide, even if they do not require the full range. 

A read or write operation on a signed 24-bit L-variable takes 3 DSP instruction cycles to execute and 2 
program memory locations to store. 

A read operation from a less-than-24-bit (1- to 20-bit) signed L-variable takes from 6 to 8 DSP instruction 
cycles and from 5 to 7 program memory locations.  A read operation from a less-than-24-bit (1- to 20-bit) 
unsigned L-variable takes from 7 to 9 DSP instruction cycles and from 6 to 8 program memory locations.   

A write operation to a less-than-24-bit (1- to 20-bit) signed or unsigned L-variable takes 12 to 14 
instruction cycles and 10 to 12 program memory locations. 

The &, ^, |, +, -, * operators take 1 or 2 DSP instruction cycles in fixed-point operations. 

The divide ( / ) operator takes nominally 82 DSP instruction cycles in fixed-point operations. 

The modulo ( % ) operator takes nominally 76 DSP instruction cycles in fixed-point operations. 

Memory Utilization 
The DSP563xx CPU for the Turbo PMAC employs Harvard architecture with separate areas of program, 
or instruction, memory, and data memory.  The actual instructions of the compiled PLCs are loaded into P 
program memory; all of the data registers it uses are in X and Y data memory.  
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If an Option 5x0 standard memory configuration is ordered, 48K words of program memory are available 
for the machine code of compiled PLCs (P:$050000 through P:$05BFFF).  If an Option 5x3 extended 
memory configuration is ordered, 432K words of program memory are available for the machine code of 
compiled PLCs (P:$050000 through P:$0BBFFF).  The Executive program’s downloader will tell you 
how many words of program memory are occupied by the PLC programs you just compiled and 
downloaded. 
For general data memory, most users will utilize some of Turbo PMAC’s 8192 P-variables for floating-
point values.  If just a few open registers are desired for use, the registers at X/Y:$0010F0 – 
X/Y:$0010FF are unused by any firmware task, other than to be zeroed automatically at power-up/reset. 
For large amounts of extra data memory, it is recommended to use the “User Buffer” setup with the on-
line DEFINE UBUFFER command.  The User Buffer occupies a number of registers at the high end of 
X/Y data memory.  With an Option 5x0 standard memory configuration, the end of data memory is at 
X/Y:$0107FF; if DEFINE UBUFFER 2048 is declared, all data memory from $010000 through 
$0107FF is reserved for your own purposes.  With an Option 5x3 extended memory configuration, the 
end of data memory is at X/Y:$03FFFF; there is by default a User Buffer of 65,536 words, reserving all 
memory registers from X/Y:$030000 to X/Y:$03FFFF for your use.  It is your responsibility to make sure 
that registers in the UBUFFER utilized for Open Servo data storage are not used for other purposes as 
well. 
Compiling the PLCs 
The download function of the PMAC Executive program’s editor will compile these PLCs automatically 
and transmit the resulting compiled machine code to the Turbo PMAC.  The process of compilation is 
basically invisible to the user, requiring no more work than downloading interpreted programs or on-line 
commands. 
The downloader observes the following rules in processing the editor file: 
• The downloader automatically incorporates the contents of any file reference with a #include 

directive.  If the contents of the included file (e.g. macro substitutions) are referenced in the main file, 
the #include directive must precede the use of the contents. 

• The downloader automatically takes note of any macro substitution set with a #define directive.  
Such a macro substitution directive must precede the use of the macro name in the file, whether made 
directly in the file, or accessed through a #include directive. 

• The downloader automatically recognizes L-variable and F-variable definitions, and uses them for 
subsequent compiled code, but does transmit these statements to Turbo PMAC, as it would for M-
variable definition statements. 

• The downloader recognizes three styles of comment delimiters.  All characters from a semi-colon (;) 
or a double-slash (//) to the end of the line are ignored; all characters from a “slash-star” (/*) to a star-
slash (*/) are ignored. 

• The downloader will attempt to compile all statements between OPEN PLCC n and CLOSE, except 
comments.  The CLEAR command is not required after OPEN PLCC n, because the act of 
downloading new compiled PLCs automatically erases the existing version.  However, there is no 
need to remove the CLEAR command for the compiler.   

• The downloader automatically erases all of the compiled PLCs in the Turbo PMAC if it encounters 
any compiled PLCs in the file(s) to be downloaded.  Therefore, it is necessary to compile all of the 
PLCC programs together every time.  A change to a single PLCC program requires re-compilation of 
all of the PLCC programs. 

• All other commands are passed unchanged through the compiler to the output file. 

The downloader places the compiled PLC code in Turbo PMAC’s active, but volatile SRAM memory.  
To retain these programs through a power-cycle or reset, copy them to Turbo PMAC’s non-volatile flash 
memory with the SAVE command. 
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Running Compiled PLCs 
The downloader automatically activates the compiled PLCs after downloading.  If I5 is set to permit these 
programs to run, they will be executing immediately after download.  Compiled PLC programs can be 
enabled and disabled individually or in groups with the ENABLE PLCC and DISABLE PLCC 
commands.  These can be given as on-line commands, or as buffered commands within motion programs, 
uncompiled PLC programs, or compiled PLC programs.  A PLC program can even disable itself.  The 
only limitation is that you should not use the DISABLE PLCC command from within either PLC 0 or 
PLCC 0; they cannot be guaranteed to work here. 

On power-up/reset, all existing PLC programs, compiled and uncompiled, are enabled individually.  If I5 
was saved to a value that permits a given PLC program to run, it will be ready to run on power-up. PLC 1 
will be the first PLC to execute after power-up/reset (before even PLCC 1).  Many people use this as the 
reset PLC, executing once and disabling itself to prevent repeated execution.  This PLC program can be 
used to prevent other PLC programs from executing immediately on power up with DISABLE PLC and 
DISABLE PLCC commands.  In this way, power up can be done with only a choice of PLC programs 
enabled. 

Sending the <CONTROL-D> character is a quick way of disabling all PLC programs, compiled and 
interpreted. 

Note:  

It is never advisable to have PLC 0 or PLCC 0 running on power-up.  Therefore, 
do not save an I5 value of 1 or 3.  Instead, save I5 as 2; then in the PLC 1 reset 
PLC use a command sequence like: 

DISABLE PLCC 0 
DISABLE PLC 0 
I5=3 

The PLC 0 and/or PLCC 0 can then be enabled as needed. 
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WRITING A HOST COMMUNICATIONS PROGRAM 
If communicating from a host computer to Turbo PMAC in the actual application, a host communications 
program must be written.  The PMAC Executive program used in development is not intended as a host 
program for an actual application; it was designed simply as a development tool. 

This section describes the actions to take if writing custom communications software, including low-level 
drivers.  If using Delta Tau’s PCOMM32 or PCOMM32PRO communications libraries for Microsoft 
Windows operating systems, this work has been done by the library routines, and it is not necessary to 
deal with the details presented in this section (although it is still a good idea to familiarize yourself with 
the basic issues presented in this section).  If using one of these communications libraries, refer to the 
manual for that library. 

At a fundamental level, the host communications routines that are written send and receive strings of 
ASCII-coded characters to and from PMAC.  Create some low-level routines to send and receive 
individual characters and text lines; these will be called repeatedly; specifying the different text strings to 
read or write.   

Note: 

The basic concepts of communications are covered in the Talking to Turbo PMAC 
section.  That section should be reviewed before studying this one. 

If dual-ported RAM option is present, it may be communicating by transfers of binary-coded numerical 
data through the shared registers of the DPRAM. 

Turbo PMAC Command/Response Format 
It is important to understand Turbo PMAC’s basic command/response format before attempting to write 
communications routines.  In general, both commands to Turbo PMAC and responses from it are ASCII 
text strings that are terminated with a carriage-return control character (although in dual-ported RAM they 
are null-character terminated).  It is also possible to send special control-character commands (such as 
<CTRL-A> to abort all motion), which do not require any text characters or a carriage return. 

The fundamental action in communicating with Turbo PMAC is to send a command, monitor the port 
until Turbo PMAC’s response is ready, pull in the response characters, and interpret them.   

Response Types 
Depending on the command given, there are three classes of responses: no-line, single-line, and multiple-
line.  With the proper setup on Turbo PMAC, and careful structuring of your communications routines, it 
is possible to write simple and efficient routines to handle all of these cases.  The most important factor 
for efficient and robust communications routines is setting I3=2.  This causes the overall response to all 
valid text commands to be terminated with an <ACK> character, making it a unique end-of-transmission 
character, and all invalid commands to be responded to with a <BELL> character.  The following 
descriptions assume a setting of I3=2. 

No-Line Responses 
A command to Turbo PMAC, such as J+(jog positive), that does not call for a text response will just get 
an <ACK> character in response if it is valid, or a <BELL> if it is not valid. 

Single-Line Responses 
A command to Turbo PMAC, such as P (report addressed motor position), that calls for a single-line text 
response, if valid will get the text-line response terminated by a <CR>, followed by an <ACK>.  If it is 
invalid, Turbo PMAC will respond with a <BELL> character instead. 
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Multi-Line Responses 
A command to Turbo PMAC, such as LIST PROG 1 (report contents of motion program 1), that calls 
for a multi-line text response, if valid will get multiple text-line responses each terminated by a <CR>, 
followed by a single <ACK> character at the end.  If it is invalid, Turbo PMAC will respond with a 
<BELL> character instead. 

Variations 
Error Reporting 
If Turbo PMAC variable I6 is set to 1 or 3, after Turbo PMAC responds to an invalid command with a 
<BELL> character, it will send an error code, such as ERR004, as well to inform the host why the 
command was rejected. 

Checksums 
If Turbo PMAC variable I4 is set to 1 or 3, Turbo PMAC will report the checksums it computes for both 
commands from the host and response lines to the host.  The checksum byte for the command is returned 
immediately after the <ACK> character.  The checksum byte for each response line is returned 
immediately after the <CR> character that terminates that line.  Note that Turbo PMAC does not compare 
any checksums for validity; it is up to the host computer to evaluate the validity of checksums for both 
commands and responses. 
It is possible to evaluate the checksum of a text command sent to Turbo PMAC before that command is 
executed.  After the characters of the command have been sent, but before the <CR> character that causes 
its execution is sent, the host computer can send the <CTRL-N> command.  This causes Turbo PMAC to 
compute the checksum of the pending command and to return the checksum byte to the host computer.  If 
the host evaluates the checksum as valid, it can then send the <CR> to cause execution of the command.  
If it evaluates the checksum as invalid, it can then send the <CTRL-X> character to clear out the 
command, and then re-transmit the command.  If I4 is set to 1 or 3, Turbo PMAC will also report the 
checksum of the command as part of the acknowledgement. 
Checksums are mainly intended for serial communications; they are not supported for dual-ported RAM 
communications. 
Clearing the Port 
Sending the <CTRL-X> character over a port to the Turbo PMAC causes Turbo PMAC to clear out both 
the command and response queues for that port.  A <CTRL-X> should be sent before a command any 
time the communications software is not sure of the state of the port, as when starting the program, after a 
communications error, or when sharing the port with another routine that is independently 
communicating.  If I63 is set to 1, Turbo PMAC will respond with a <CTRL-X> character when it is 
finished clearing the ports.  The clearing routine should also attempt to read a character from the port 
register itself in case one has already been moved there from the response queue. 

Unsolicited Messages 
It is possible for Turbo PMAC to send text strings to the host computer without the host first sending a 
command, using the SENDx or CMDx statements from within a motion or PLC program.  (If these 
statements are not used, Turbo PMAC will communicate to the host only in response to a host command.)  
These unsolicited messages are a powerful feature, but have the potential to confuse communications 
routines if not adequately prepared for, because it is possible for this message to come when the host is 
expecting the response to a command. 

If Turbo PMAC variable I64 is set to 1, any unsolicited message is preceded with a <CTRL-B> character.  
This permits the host to distinguish the unsolicited message from a command response and to act 
accordingly.  If expecting unsolicited messages, it is a good idea not to use <CTRL-X> port clearing, 
because that can easily erase an unsolicited message. 
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Serial Port Communications 
When communicating to the Turbo PMAC through either its main or auxiliary serial ports, you typically 
use one of the COM ports in the host computer.  In a standard, these are usually the built-in COM1 and 
COM2 RS-232 ports, but they can be on expansion ports as well.  Most COM ports, even on other types 
of computers, use the same ICs, so they usually have the same registers on the host side. 

Setting Up the Interface 
Every time the system is started up, the serial port of the host computer must be initialized to interface 
properly with the settings of the Turbo PMAC.  This is done with some simple byte-write commands to 
the I/O space of the computer. 

Base Address 
The first thing you must know is the base address of the COM port in the computer's I/O space.  In a 
standard PC, the COM1 port base address is at 3F8 hex (1016 decimal), and the COM2 port is at 2F8 hex 
(760 decimal). 

Baud Rate 
You must set up the baud rate counter in the host computer to match Turbo PMAC’s baud rate, which is 
determined by the saved value of I54 for the main serial port, and I53 for the auxiliary port.  The baud 
rate counter in the host computer must be given a value equal to 115,200 divided by the baud rate (e.g. for 
9600 baud, the value is 115,200/9600 = 12).  The following program segment illustrates how this can be 
done: 
outportb (combase + 3, 131);   /* Put COM port in setup mode */ 
baud_count = 115200/baud;   /* Calculate counter value */ 
outportb (combase, baud_count);   /* Write to low byte of counter */ 
outportb (combase + 1, baud_count/256);  /* Write to high byte of counter */ 
outportb (combase + 3, 3);   /* Put COM port back in normal mode */ 
      /* with 8 bits, 1 stop bit */ 

The command outportb is a byte-write command; combase is the base address; baud is the baud rate in 
bits per second. 

It is a good idea in the initial set up to compute a timeout value, related to both the baud rate and the host 
computer’s speed.  As the host polls Turbo PMAC to see if it is ready to communicate, a counter 
increments.  If the counter exceeds the timeout value, the host should give up on this attempt to talk to 
Turbo PMAC.  Depending on the circumstances, it should either just try again later (as when waiting for 
some asynchronous communications) or assume there is an error condition. 

Sending a Character 
In polled communications, the host must see two status bits (write-ready bits) in the serial interface 
registers become 1 before it may write a character to the serial output port.  These two bits are Bit 5 of 
{base + 5}, and Bit 4 of {Base +6}.  A sample C code segment to do this is: 
i = 0;       /* Reset counter */ 
while (i++<timeout && (inportb(combase+5)&32==0); /* Loop until bit true */ 
while (i++<timeout && (inportb(combase+6)&16==0); /* Loop until bit true */ 
if (i < timeout) outportb(combase, outchar);   /* Send char. unless timed out */ 

Sending an entire line simply involves repeated calls to this routine, with a different outchar each time. 

Reading a Character 
To read a character from the serial port, the host must prepare the port to read (it may want to do this for 
and entire line), then poll a status bit (read-ready bit) in a serial interface register; when this becomes 1, 
the character may be read.  A sample C code segment to do this is: 
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i = 0;      /* Reset counter */ 
outportb(combase + 4, 2);    /* Set port for input */ 
while (i++<timeout && (inportb(combase+5)==0); /* Loop until bit true */ 
if (i < timeout) inchar = inportb(combase);  /* Get char. unless timed out */ 
disable();     /* Disable interrupts */ 
outportb(combase + 4, 0);    /* Set port for output */ 
enable();     /* Re-enable interrupts */ 

To be able to read an entire line in a single routine, only turn around the port at the beginning and end of 
the line. 

ISA/PCI Host Port Communications 
Host Port Structure 
The host port interface of PMAC, used directly for communications over the ISA and PCI busses, 
occupies 11 consecutive addresses of a 16-address region in the I/O space of the host computer (it is not 
memory mapped).  On the host side, these registers are accessed with byte-write and byte-read 
commands, such as outportb, inportb, outp, and inp.  On the PMAC side, the PMAC firmware takes care 
of the direct access to these registers, in response to commands from the host. 

For the ISA bus, the location of the first of these 11 registers in the host computer’s I/O space (the “base 
address”) is selected by the settings of jumpers E91-E92, E66-E71 on Turbo PMAC boards and by the 
settings of the S1 DIP switches on Turbo PMAC2 boards.  Refer to the Talking to Turbo PMAC section 
or the individual Hardware Reference manual for actual setting information.  The addresses of these 
registers range from base address to base address + 10. 

For the PCI bus, the location of the base address of these registers is automatically determined by the host 
computer’s operating system.  Refer to the operating system documentation for instructions as to how to 
determine where the operating system located these registers.  If using Delta Tau’s PCOMM32PRO 
library for Microsoft Windows operating systems, consult the documentation for PCOMM32PRO for 
instructions for determining the host-port base address in this environment. 

Register Functions 
Each of these eleven registers has its own function for host communications, although only a few of them 
are used commonly, and some are not used at all.  The functions of the registers are: 

Base + 0: Interrupt Control Register 
Base + 1: Command Vector Register 
Base + 2: Interrupt Status Register 
Base + 3: Interrupt Vector Register 
Base + 4: (Unused) 
Base + 5: High-Byte Data Transmit and Receive  
Base + 6: Middle-Byte Data Transmit and Receive 
Base + 7: Low-Byte Data Transmit and Receive 
Base + 8: Interrupt Controller Command Word 0 
Base + 9: Interrupt Controller Command Word 1 

Base + 10: Interrupt Acknowledge Word 

Registers for Simple Polled Communications 
Basic polled communications can be accomplished with just two of these addresses.  {Base + 7} holds 
each byte (character) as it is passed to or from the PMAC.  The read and write registers are separate, so 
you do not need to worry about overwriting a character sent in the other direction.   
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{Base + 2} holds the handshaking status bits; even though this is called the Interrupt Status Register, it 
can be used for polled communications with the host:  The Write-Ready Bit (bit 1) is true when PMAC is 
ready to have the PC write it a character; and the Read-Ready Bit (bit 0) is true when PMAC is ready to 
have the PC read a character.   

Setting up the Port 
No real setup is required for the host port, although it is advisable to write zero values to the high-byte 
and middle-byte registers to clear them.  The following sample C code segment does this: 
outportb (combase + 5, 0);   /* Clear high-byte register */ 
outportb (combase + 6, 0);   /* Clear mid-btye register */ 

It is a good idea in the initial set up to compute a timeout value, related to the host computer’s speed.  As 
the host polls PMAC to see if it is ready to communicate, a counter increments; if the counter exceeds the 
timeout value, the host should give up on this attempt to talk to PMAC.  Depending on the circumstances, 
it should either just try again later (as when waiting for some asynchronous communications) or assume 
there is an error condition. 

Sending a Character 
To send a character, the host waits for the Write-Ready Bit to go true, and then writes the character to the 
output port, as this sample C code segment shows: 
i = 0;       /* Reset counter */ 
while (i++<timeout && !(inportb(combase+2) & 2)); /* Loop until bit true */ 
if (i < timeout) outportb(combase+7, outchar);  /* Write character */ 

Reading a Character 
To read a character, the host waits for the Read-Ready Bit to go true, and then reads the character from 
the input port, as this sample C code segment shows: 
i=0; 
while (i++<timeout && !(inportb(combase+2) & 1)); /* Loop until bit true */ 
if (i < timeout) inchar = inportb(combase+7);  /* Read character */ 

ISA/PCI Interrupts 
The ISA-bus and PCI-bus versions of the Turbo PMAC have a built-in programmable interrupt controller 
(PIC) that can be used to let Turbo PMAC interrupt the host computer over the bus.  Each controller has 
its own set of signals that can be used to interrupt the host computer, up to eight of which can be used at 
any one time.  The detailed description of the signals available for interrupt are shown in the hardware 
reference manual for each controller; the signals for presently existing controllers are summarized below. 

The Turbo PMAC-PC for the ISA bus uses a commercially available 8259 PIC chip.  All other Turbo 
PMAC designs integrate PCI logic that is similar, but not identical, to the 8259 into integrated bus logic 
ICs.  The differences are noted below.   

Host Computer Interrupt Lines 
ISA Bus 
For ISA-bus Turbo PMAC boards, the interrupt line used on the ISA bus is selected by a jumper on the 
Turbo PMAC.  The following table lists the possibilities for each of these controllers.  Only one of these 
jumpers for a controller should be on at any given time. 

ISA-bus Interrupt IRQ2 IRQ3 IRQ4 IRQ5 IRQ7 IRQ10 IRQ11 IRQ12 IRQ14 IRQ15
Turbo PMAC-PC E86 E81 E82 E83 E84 E80 E79 E78 E77 E76 
Turbo PMAC2-PC x x x x x E7 E8 E9 E10 E15 
Turbo PMAC2-PC 
Ultralite 

x x x x x E7 E8 E9 x E10 
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PCI Bus 
On the PCI bus, the operating system selects the interrupt line used by the controller automatically on the 
power-up/reset of the PC.  Consult the operating system documentation for details of how the operating 
system determines which interrupt is selected.  If using Delta Tau’s PCOMM32PRO library for Microsoft 
Windows operating systems, consult the documentation for PCOMM32PRO for instructions for handling 
interrupts in this environment. 

Interrupt Source Signals 
The following table shows which Turbo PMAC signals are available to produce interrupts on various ISA 
and PCI Turbo PMAC boards.  The signal that goes into line IRn of the PIC is used in bit n of the PIC 
registers.  Each signal has a brief explanation below. 

PIC Input Line IR0 IR1 IR2 IR3 IR4 IR5 IR6 IR7 
Turbo PMAC-
PC, Turbo 
PMAC-PCI 

IPOS BREQ EROR F1ER HREQ EQU1*/ 
EQU5/ 

AXEXP1 
MI1** 

EQU2/ 
EQU6/ 

AXEXP0/ 
MI2** 

EQU3/ 
EQU7/ 
EQU4/ 

EQU8**
Turbo PMAC-
PCI Lite 

IPOS BREQ EROR F1ER HREQ EQU1*/ 
AXEXP1 

MI1** 

EQU2/ 
AXEXP0/ 

MI2** 

EQU3/ 
EQU4**

Turbo PMAC2-
PC, Turbo 
PMAC2-PCI 

IPOS BREQ EROR F1ER HREQ EQU1* EQU5 WDO 

Turbo PMAC2-
PCI Lite 

IPOS BREQ EROR F1ER HREQ EQU1* EQU2 WDO 

Turbo PMAC2-
PC Ultralite, 
Turbo PMAC2-
PCI Ultralite 

IPOS BREQ EROR F1ER HREQ CTRL0* CTRL1 WDO 

* This signal can be used by the firmware for the DPRAM ASCII communications interrupt. 
** One of these is chosen by jumper on the Turbo PMAC board. 

IPOS (In-Position): The in-position signal goes true if Turbo PMAC determines that all motors in the 
addressed coordinate system are in position.  For a motor to be in-position, the following conditions must 
be met: the servo loop must be closed, the desired velocity must be zero, and the move timer must be off 
(it must be in some kind of indefinite wait, not in a move, dwell, or delay), and the following error 
magnitude must be smaller than Ixx28.  These conditions must be true for (I7+1) consecutive background 
scans. 
BREQ (Buffer-Request): The buffer-request signal goes true when an open motion program buffer, 
particularly a rotary buffer, is ready to accept another line from the PC.  For the fixed motion program 
buffers (PROG), the ready state is controlled by I18; for the rotary program buffers (ROT), the ready state 
is controlled by I16 and I17.  Refer to Rotary Motion Program Buffers in the Writing and Executing 
Motion Programs section for more details. 
EROR (Fatal Following Error): The fatal following error signal goes true when any axis in the 
addressed coordinate system exceeds its fatal following error limit as set by Ixx11. 
F1ER (Warning Following Error): The warning following error signal goes true when any axis in the 
addressed coordinate system exceeds its warning following error limit as set by Ixx12. 
HREQ (Host Request): The host-request signal goes true when the Turbo PMAC is ready to read or 
write another character over the ISA or PCI bus.  Write to the base address of the Turbo PMAC to select, 
whether the host request signal reflects write-ready only, read-ready only, or both.  Writing a byte value 
of 0 to the Turbo PMAC base address disables generation of the host-request signal; writing a 1 enables 
the signal for host read-ready only; writing a 2 enables the signal for host write-ready only; writing a 3 
enables the signal for both. 
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EQUn (Position Compare for Channel n): The EQUn line contains the state of the position-compare 
output for Servo Channel n of the Turbo PMAC.  This line can be toggled by the automatic action of the 
encoder counter’s compare circuitry, or by writing directly to control bits for this circuitry, which permits 
the use of this signal as a software-generated interrupt from Turbo PMAC programs. 

In a Turbo PMAC, the EQUn line can be used for software-generated interrupts by writing to the EQU 
out invert-enable bit for the channel (bit 13 of the channel’s control/status word, suggested M-variable 
Mxx13).  When the encoder counter and the compare register values do not match, setting this bit to 1 
takes this signal high, which can generate an interrupt; setting it to 0 takes the signal low. 

In a Turbo PMAC2, this line can be used for software-generated interrupts with the direct-write feature.  
This is a two-step process.  First, the value to be output is written to the direct-write value bit (bit 12 of 
the channel’s control word, suggested M-variable Mxx12).  Next, a 1 is written to the direct-write enable 
bit (bit 11 of the channel’s control word, suggested M-variable Mxx11).   

With the suggested M-variable definitions, the code to trigger a software-generated interrupt using EQU1 
is: 
M112=1 ; Prepare to set EQU1 high 
M111=1 ; Enable writing of M112 value to EQU1 (M111 is self-clearing) 
To clear EQU1 in advance of the next interrupt, the code is: 

M112=0 ; Prepare to set EQU1 low 
M111=1 ; Enable writing of M112 value to EQU1 (M111 is self-clearing) 
If I56 and I58 are both set to 1 to enable DPRAM ASCII communications with interrupts, a (non-
Ultralite) Turbo PMAC will generate an interrupt on the EQU1 line each time it has loaded a response 
line into the DPRAM ASCII response buffer.  With this function active, no other use of the EQU1 line 
should be made. 

AXEXPn (Axis Expansion EQU Line): The AXEXP0 and AXEXP1 lines on a Turbo PMAC-PC board 
are inputs that can be used to bring in selected EQUn lines for interrupt purposes from an Acc-24P Axis 
Expansion board.  Which EQU line is used from the Acc-24P board is determined by jumpers on the Acc-
24P board.  The AXEXPn TTL-level lines can also be driven by other external signals. 

MIn (Machine Input n): The MI1 and MI2 lines are general-purpose 5V-24V inputs on Turbo PMAC 
controllers.  With the appropriate jumpers selected, they can be used to interrupt the host computer. 

CTRLn (Control Output n): The CTRL0 and CTRL1 signals are generally unused lines on Turbo 
PMAC2 controllers.  On Turbo PMAC2 Ultralite controllers, they can be used for software-generated 
interrupts.  They can be made outputs by setting bits 8 and 9, respectively, of X:$078403 to 1; then their 
sense can be changed by writing to the inversion-control bits for these lines at bits 8 and 9 of X:$078407, 
respectively. 

If I56 and I58 both are set to 1 to enable DPRAM ASCII communications with interrupts, a Turbo 
PMAC2 Ultralite will generate an interrupt on the CTRL0 line each time it has loaded a response line into 
the DPRAM ASCII response buffer.   

WDO (Watchdog Output): The watchdog signal goes true when the Turbo PMAC watchdog timer trips 
and shuts down the card. 

Integrated Interrupt Controller 
The interrupt controller function on all Turbo PMAC2 boards and all PCI-bus Turbo PMAC boards (1 
and 2) is integrated into the bus interface logic.  It is modeled after the 8259, but is more simplified and 
straightforward. 
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Interrupt Controller Structure 
The PIC appears as four 8-bit registers in the I/O space of the PC.  The actual address of these registers 
depends on the setting of the base address (Base) of the Turbo PMAC in the I/O space of the PC.  For 
ISA-bus Turbo PMACs, this base address is set by jumpers (Turbo PMAC) or by DIP-switches (Turbo 
PMAC2) on the controller.  For PCI-bus Turbo PMACs, this base address is set by the PC’s operating 
system during the PC’s initialization. 

These four registers in the PIC are: 
• Base+8: Interrupt Status Register 
• Base+9: Interrupt Signal Status Register 
• Base+10: Interrupt Mask Control Register 
• Base+11: Interrupt Edge/Level Control Register 

For example, with the ISA-bus base address at the factory default of 528 (210 hex), these four registers 
are at 536-539 (218-21B hex). 

The eight bits (0 – 7) in each register represent the status or control of the eight interrupt source signals 
wired into the PIC lines IR0 – IR7.   

Interrupt Controller Registers 
Interrupt Status Register (Base+8): This register, when read, shows the status of the eight interrupts.  It 
will be read by any interrupt service routine to find out which signal created the interrupt to the PC.  A 1 
in a bit indicates an interrupt for the matching signal; a 0 indicates no interrupt.  An interrupt signal must 
be unmasked before it can show an interrupt in this register.  The act of writing to this register will clear 
any edge-triggered interrupts, no matter what value is written. 

Interrupt Signal Status Register (Base+9): This register, when read, shows the status of the eight signal 
inputs to the PIC.  It is not useful in interrupt service routines, but provides a fast and easy method for 
polling the status of these signals without any overhead to the Turbo PMAC. 

Interrupt Mask Control Register (Base+10): This register permits the PC to mask out interrupt signals 
that the user does not want to interrupt the PC.  In the ISA-bus Turbo PMAC-PC, writing a 0 to a bit in 
this register enables the corresponding signal to interrupt the PC; writing a 1 to a bit in this register 
disables (masks out) that signal.  In all other Turbo PMACs, writing a 1 to a bit in this register enables the 
corresponding signal to interrupt the PC; writing a 0 to a bit in this register disables (masks out) that 
signal.  This register can be read at any time to find which signals are masked without affecting the 
masking. 

Interrupt Edge/Level Control Register (Base+11): This register permits the PC to control whether an 
interrupt signal interrupts the PC on an edge-triggered basis or by level.  Writing a 1 to a bit in this 
register sets the corresponding signal for a level-triggered interrupt; writing a 0 to a bit in this register sets 
that signal for an edge-triggered interrupt.  Edge-triggered interrupts are the default, and are typically 
more useful.   

If an interrupt is edge-triggered, in order for that signal to generate another interrupt to the PC (after the 
PC clears the interrupts by writing to Base+8), the signal must go low, then high again.  If an interrupt is 
level-triggered, if the signal is still high after the PC clears the interrupts, it will immediately interrupt the 
PC again. 

Discrete Interrupt Controller 
The Turbo PMAC-PC for the ISA bus uses a discrete 8259 interrupt controller, identical to the circuitry 
used in the interrupt controllers in the PC itself.  The following section explains the steps for using this IC 
in the Turbo PMAC; more detailed information can be found in documentation for any 8259 IC. 
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Initializing the Interrupt Controller 
To start, write to the Turbo PMAC PIC’s Initialization Command Words (ICWs) to set up the PIC 
properly.  Although this IC is on Turbo PMAC, it is mapped into the PC’s port space as two registers at 
Turbo PMAC’s base address plus 8 and 9. 

To do this, perform the following steps: 

1. Write a byte of 17(hex) to [PMAC base address + 8].  This sets up ICW1 for edge-triggered 
interrupts. 

2. Write a byte of 08(hex) to [PMAC base address + 9].  This sets up ICW2. 
3. Write a byte of 03(hex) to [PMAC base address + 9].  This sets up ICW4 for 8086-mode operation. 
4. Write a byte of FF(hex) to [PMAC base address + 9].  This writes to Operation Control Word 1 to 

mask all eight interrupts into the Turbo PMAC PIC. 

Unmasking Interrupts 
When you are ready to accept interrupts from PMAC, unmask the interrupt(s) into the PMAC PIC that 
you want active.  You write a one-byte argument to {PMAC base address + 9] in which every masked 
interrupt to the Turbo PMAC PIC is represented by a 1; and every unmasked interrupt is represented by a 
0.  For instance, to unmask IR4 alone, the argument would be EF(hex); to unmask IR5 alone, the 
argument would be DF(hex).   

At this point, unmask the interrupt being used on the PC’s PIC.  First, disable the PC interrupts (TurboC 
command: disable(); ).  Next, read the current mask word at I/O port address 21(hex) with a command 
such as: 
ch = inportb(0x21)  

Then unmask the new interrupt that will be used by performing a bit-by-bit AND between the current 
mask word and a mask word that would enable only the new interrupt line -- EF(hex) for IRQ4, F8(hex) 
for IRQ3.  The C command for this is: 
ch = ch & 0xef 

The resulting new mask word is written back to I/O port address 21(hex) with: 
outportb (0x21, ch) 

Finally, re-enable the PC interrupts (TurboC command: enable();).  This completes the setup procedure. 

Using the Interrupts 
To react to an interrupt in actual use, write an interrupt service routine.  Exactly how this is done depends 
on the operating system and the programming language.  Consult the documentation for these items for 
further details. 

PCOMM32 Library Support 
Delta Tau’s PCOMM32 and PCOMM32PRO programming libraries for Microsoft Windows operating 
systems support ISA and PCI interrupts and handle the setup automatically through its routines.  Consult 
the documentation for these libraries for details. 

VME Bus Communications 
A VME-bus Turbo PMAC communicates over the VME bus as a slave device through a set of sixteen 8-
bit “mailbox registers,” each of which can hold one character and can be accessed from both the bus and 
the Turbo PMAC processor.  Optionally, there is also a dual-ported RAM IC with 8192 shared 16-bit 
registers that can be used for either ASCII-text communications or transfer of binary values. 
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Setting up VME Communications 
Communications through the mailbox registers and the DPRAM must be set up through the use of 10 I-
variables: I90 – I99.  If use is desired at other than the default settings of these variables, another 
communications port (typically a serial port) must be used to make these settings before VME bus 
communications will be possible. 

The PMAC Executive program has a menu that automatically sets these variables in response to the 
desired addresses and a few other settings, so it is not necessary to know the details of these variables.  
The Software Reference manual has detailed instructions for setting these variables. 

VME Mailbox Register Communications 
Note:  

Usually, Turbo PMAC-VME users purchase the Option 2 DPRAM and use the 
ASCII communications feature of the DPRAM rather than the ASCII mailbox 
communications described in this section.  The ASCII DPRAM communications is 
easier and faster.  Refer to the Option 2 DPRAM manual for details. 

Communicating with Turbo PMAC over the VME bus is different from talking over the RS232/422 port.  
When reading and writing to PMAC-VME over the VME bus, you must make use of the 16 mailbox 
registers.  Mailbox registers are simply a set of 16 8-bit registers that are addressable from the VME bus 
beginning at the base address of the PMAC-VME card plus 1.  That is, if we selected a PMAC base 
address of $7FA000, the first mailbox register (mailbox register #0) can be accessed at location $7FA001.  
The second mailbox register (mailbox register #1) is located $7FA003, the third at $7FA005, and so on 
up to $7FA01F for the 16th mailbox register (mailbox register #15).  As you can see, the mailbox 
registers are located at odd addresses beginning with the base address plus 1 of Turbo PMAC.  We will 
first discuss, by examples, how to send commands to PMAC through theses mailbox registers.   

Sending Commands to Turbo PMAC-VME through the Mailbox Registers 
When commands are sent to Turbo PMAC, these mailbox registers are written to.  This is relatively 
straightforward, although these two rules must be followed: 

1. Never write to mailbox register #1 (this would be location $7FA003 in our example above) when 
sending a commands to PMAC.  This mailbox register has a special purpose.  Knowing this, the 
second character of the command should be written to mailbox register #2 (the third mailbox register 
at location $7FA005), and so on. 

2. Write the first character of the message (or group of 15 characters in a long message) last; i.e. write 
all the other characters in the command first (beginning with mailbox register #2), and then write the 
first character into mailbox register #0 (at location $7FA001).  The reason for this is when writing to 
mailbox #0, PMAC immediately reads in all the mailbox registers and begins to act upon the received 
command line. 

Note:  

Do not forget to end all the ASCII messages (commands) with a carriage return 
<CR>.  Control character commands, which do not require a <CR>, should be 
written directly into mailbox register #0. 

Example: 
To send the commands to select motor #1 and to jog it, the two commands to do this can be combined on 
one line and would be: #1J+<CR>.  There are five ASCII characters here, and thus we will write into 
five mailbox registers.  To send this command, we will have to issue five VME write commands.   
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We will keep the same base address of Turbo PMAC from our previous example.  The following tables 
show the contents of the mailbox registers as we do this: 

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 $7FA00B 
Mailbox # 0 1 2 3 4 5 
Character  --- 1    

 
Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 $7FA00B 
Mailbox # 0 1 2 3 4 5 
Character  --- 1 J   
 
Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 $7FA00B 
Mailbox # 0 1 2 3 4 5 
Character  --- 1 J +  
 
Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 $7FA00B 
Mailbox # 0 1 2 3 4 5 
Character  --- 1 J + <CR> 
 
Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 $7FA00B 
Mailbox # 0 1 2 3 4 5 
Character # --- 1 J + <CR> 

We first write an ASCII 1 to location $7FA005, then a J to $7FA007, then a + to $7FA009, then a 
carriage return (ASCII code 13) to $7FA010, and finally a # to $7FA001. 

Example: 
The above example works just fine for a command line of 15 characters or less (including the <CR> 
added to terminate the line), but what if the command line contains more than 15 characters?  Remember 
there are only 15 mailbox registers that can be written to (do not forget that mailbox #1 cannot be used 
when sending data to Turbo PMAC.).   

Send the first 15 characters (do not send a <CR> yet!), followed by the remaining characters in succession 
until all characters have been written.  And after the last character, send the <CR>, which tells Turbo 
PMAC to act upon the command.  If downloading a motion program and one of the statements in the 
program happens to be the following line:  
IF(P1=1)DISPLAY"DELTA TAU"<CR> 

There are 27 characters here to send, and thus 27 VME write commands must be performed.  The 
following tables again show the contents of the mailbox registers.  After writing the first group of 14 
characters (the characters F through Y in the above command line), the mailbox registers look something 
like this: 

Address $7FA001 $7FA003 $7FA005 ... $7FA01D $7FA01F 
Mailbox # 0 1 2 ... 14 15 
Character  --- F . A Y 

Now, write the first character I: 

Address $7FA001 $7FA003 $7FA005 ... $7FA01D $7FA01F 
Mailbox # 0 1 2 ... 14 15 
Character I --- F . A Y 
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At this point, Turbo PMAC has taken these characters into its command queue, but has not done anything 
with them yet since no <CR> has been encountered yet.  It asserts the selected interrupt level (default is 2) 
and provides the command a receipt interrupt vector (default is $A0), which must be acknowledged.  Now 
send the next 11 characters (D through " followed by a<CR>): 

Address $7FA001 $7FA003 $7FA005 ... $7FA017 $7FA019 
Mailbox # 0 1 2 ... 11 12 
Character  --- D . " <CR> 

Finally, send the first character of this second (and last) group of characters, which is a ": 
Address $7FA001 $7FA003 $7FA005 ... $7FA017 $7FA019 

Mailbox # 0 1 2 ... 11 12 
Character " --- D . " <CR> 

Turbo PMAC again asserts interrupt level 2 and provides the command receipt interrupt vector.  Since a 
<CR> has been included, Turbo PMAC knows that the command line has finished.  Turbo PMAC now 
inserts this line into the program buffer that was previously opened (remember, in this example we were 
downloading a motion program to Turbo PMAC). 
Reading Data from Turbo PMAC-VME through the Mailbox Registers 
Now that data has been sent to Turbo PMAC-VME using the mailbox registers, determine how to read 
data from Turbo PMAC.  Reading data will involve using the interrupts and interrupt vectors generated 
by Turbo PMAC-VME over the VME bus.  In the following examples, Turbo PMAC’s base address is at 
$7FA000 and the I-variable I3 is set to 2 (the best setting of I3 for writing host communications routines). 

The key to reading data from Turbo PMAC through the mailbox registers is that writing to mailbox 
register #1 permits PMAC to place its data in the mailbox registers when it has something to say.  This 
can be done ahead of time, effectively pre-enabling Turbo PMAC’s response.  This is the strategy we use 
in all of the following examples. 

If not pre-enabling, write to mailbox register #1 only when expecting an immediate response, which is 
usually after acknowledging the $A0 interrupt (see examples).  If this is not done, Turbo PMAC will not 
interrupt with the $A1 vector.  (The only real advantage in not pre-enabling is that the middle of a long 
Turbo PMAC response can be broken to issue a command.)  Note that if using the pre-enable strategy, 
pre-enable once after power-up or reset.  Refer to the flowchart below after reading the following 
examples. 

Example 
This command line has just been sent to Turbo PMAC: #1J+<CR>.  This command line is not a request 
for any data, so Turbo PMAC will not respond with any data except an acknowledge <ACK>, signifying 
an acknowledgment of receipt of a valid command line (if an invalid command was sent, a <BELL> 
character would be sent instead of <ACK>).  In this case, Turbo PMAC will generate an interrupt, sending 
with it an interrupt vector $A0 (as we defined in I96).  After seeing this interrupt and accompanying 
interrupt vector, you (the VME master or host computer) must properly service or acknowledge this 
interrupt so that Turbo PMAC will withdraw its interrupt assertion.  (Generally, when you service any 
VME interrupt, the interrupt vector will be available.) 

Turbo PMAC will then interrupt again, this time with interrupt vector $A1 (the value of I96 plus 1), 
signifying there is new data in the mailbox registers to be read.  Now, read mailbox register #0 (at 
$7FA001) to pick up the <ACK> character put there by Turbo PMAC, but this is necessary only to verify 
that the command line just sent was received as a valid command by Turbo PMAC.  Finally, write $00 
into mailbox register #1 (location $7FA003), allowing Turbo PMAC to write new data into the mailbox 
registers if necessary (also read the next example to better understand this).  The next example shows how 
to read data written in the mailbox registers by Turbo PMAC. 
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Example 
Let us now assume the following command has been sent to ask for the position of motor 1: #1P<CR>.  
Turbo PMAC, of course, will respond with data containing position information of motor 1.  Let’s say 
that motor 1 is currently at position 19.2.  We now wish to read the mailbox registers to obtain this 
information Turbo PMAC has waiting for us.  The first thing we do is send the command line and service 
the interrupt Turbo PMAC generates (using an interrupt vector of $A0) as an acknowledgment.   
After Turbo PMAC has processed the command and put data into the mailbox registers, Turbo PMAC 
interrupts us a second time with an interrupt vector $A1.  Remember, we get this second interrupt because 
PMAC has just now placed data in the mailbox registers, now ready to be read.  We service this second 
interrupt and note that the accompanying interrupt vector is $A1, telling us to read the data in the mailbox 
registers.   
Actually, these registers may be read in any order, but it is best to read these characters beginning with 
the first mailbox register until we either:  
1. Encounter a <CR> (signifying the end of that line) or 
2. Encounter a <ACK> (valid command line received)  or  
3. Encounter a <BELL> (invalid command line received) or 
4. Have read all 16 mailbox registers (from $7FA001 to $7FA01F).   
These mailbox registers mya be read as many times as desired because Turbo PMAC will not write new 
data into the mailbox registers (if Turbo PMAC has more data to send) until a value of $00 is written into 
mailbox #1 (in this case, at $7FA003).   
In this example, Turbo PMAC will have six characters waiting to be read: 19.2<CR><ACK>.  (We are 
assuming I-variable I3 is set to 2.)  The data will be in the registers as follows: 

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 
Mailbox # 0 1 2 3 4 
Character 1 9 . 2 <CR> 

We start reading the characters at $7FA001, mailbox register 0. We see the <CR> in mailbox register 4, 
so we stop reading, and write a $00 into mailbox register 1 to tell Turbo PMAC it is OK to send more.  
Since Turbo PMAC still must send the final <ACK> it interrupts us again, and we find in the mail box 
registers: 

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 
Mailbox # 0 1 2 3 4 
Character <ACK> 9 . 2 <CR> 

Now we start and stop at mailbox register 0, because it contains an <ACK>. Now, read in these characters 
beginning with mailbox register #0 at $7FA001.  Recall that we said never write into mailbox register #1 
when sending data to Turbo PMAC-VME.  This is because Turbo PMAC will be allowed to write new 
data into the mailbox registers as soon as we write to mailbox #1.  (Incidentally, it actually does not 
matter what value we write into mailbox register #1, it’s the fact that we write to this register that counts.  
However, it is recommended to write a value of $00 into mailbox register #1 for reasons given later.)  
After writing a $00 into mailbox register #1, we may or may not get interrupted again by PMAC, 
depending whether or not Turbo PMAC still has more data for us to read.   
Example 
Let us again assume that the following command has been sent to ask for the contents of memory locations 
X:$1000 through X:$1002: RHX$1000,3<CR>.  Let’s say that these three locations contain the values 
$123456, $789012, and $345678.  We again wish to go and read the mailbox registers, so we send the above 
command line and service the interrupt PMAC generates (using an interrupt vector of $A0).   

After Turbo PMAC has processed the command and put data into the mailbox registers, Turbo PMAC 
interrupts us a second time with an interrupt vector $A1.   
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Remember, we get this second interrupt because Turbo PMAC has just now placed data in the mailbox 
registers, which is now ready to be read.  We service this second interrupt and note that the accompanying 
interrupt vector is $A1, telling us to read the data in the mailbox registers.  In this example, Turbo PMAC 
will have 22 characters to be read: 123456 789012 345678<CR><ACK>, with the first 16 of them 
in the mailbox registers.  (We are assuming I-variable I3 is set to 2 again.)  The data will be in the 
registers as follows: 

Address $7FA001 $7FA003 $7FA005 ... $7FA01D $7FA01F 
Mailbox # 0 1 2 ... 14 15 
Character 1 2 3 . 3 4 

We read in the mailbox registers, beginning with the first one until we encounter a <CR>, <ACK>, 
<BELL>, or have read all 16 registers.  In this case, the first 16 characters PMAC has for us does not 
contain a <CR>, <ACK>, or <BELL>.  Therefore we read in all 16 mailbox registers to obtain the first 16 
characters of Turbo PMAC’s response, and then write $00 to mailbox register #1 (in this case, at 
$7FA003) to allow Turbo PMAC to put the next chunk of data in the mailbox registers.  Turbo PMAC 
interrupts us again with vector $A1, and the remainder of the characters in the mailbox registers are: 

Address $7FA001 ... $7FA009 $7FA00B ... $7FA01D $7FA01F 
Mailbox # 0 ... 4 5 ... 14 15 
Character 5 . <CR> 2 . 3 4 

Now we read again the mailbox registers, looking for <CR>, <ACK>, or <BELL>.  The fifth character we 
read in mailbox #4 ($7FA009) happens to contain a <CR>, so we stop reading and write $00 into mailbox 
register #1.  Because Turbo PMAC still has to send the final <ACK> character, it interrupts us again with 
vector $A1 and we see in the mailbox registers: 

Address $7FA001 ... $7FA009 $7FA00B ... $7FA01D $7FA01F 
Mailbox # 0 ... 4 5 ... 14 15 
Character <ACK> . <CR> 2 . 3 4 

Now we stop at the first character, <ACK>, which serves as the end-of-transmission character, and we 
again write $00 into mailbox register 1.  Since Turbo PMAC does not having any more data to be read for 
now, we will not get another interrupt (until we send another command or one of our executing PLC or 
motion programs puts out data via the CMD or SEND command).   
The diagram on the following page summarizes the communications process over the VME bus using the 
mailbox registers. 
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3) <BELL> encountered
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Turbo PMAC-VME Communications Flow Diagram 

When we ask Turbo PMAC to list out a motion program or PLC with a command like LIST PROG 10 
or LIST PLC 0, Turbo PMAC will have multiple lines of data to be read.  All we have to do is simply 
wait for the interrupt to occur, read the mailbox registers, write $00 to mailbox register #1, and wait to be 
interrupted again, repeating this procedure until all data from Turbo PMAC has been sent and read.  The 
figure above is a flowchart diagram showing this. 

Dual-Ported RAM Communications 
Dual-ported RAM (DPRAM) is an optional feature of the Turbo PMAC for high-speed communications 
with the host computer.  Its purchase is recommended if more than 100 data items per second are desired 
to be transferred, combined in both directions.  Because this bank of memory has two ports, both the 
Turbo PMAC processor and the host processor have direct, random access to all of the registers of the 
DPRAM IC. 

The Turbo PMAC family supports both 8k x 16 and 32k x 16 banks of DPRAM.  In practice, Turbo 
PMAC designs are offered with 8k x 16 banks only, and Turbo PMAC2 designs, including UMAC and 
QMAC products, are offered with 32k x 16 banks only. 

The Turbo PMAC family has preset structures for transferring data between the host computer and the 
controller; it also permits the user to define his own data structures.  The pre-defined structures include: 
• Control Panel Functions 
• Motor Data Reporting Buffer 
• Background Data Reporting Buffer 
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• ASCII Command and Response Buffers 
• Data Gathering Buffer 
• Background Variable Copying Buffers 
• Binary Rotary Program Download 

Physical Configuration and Connection 
On the Turbo PMAC-PC, the dual-ported RAM option is a separate ½-slot board that connects to the 
Turbo PMAC’s CPU board with 2 short ribbon cables, and has its own ISA bus connector.  On other 
board-level Turbo PMACs, the dual-ported RAM is an on-board option in which the DPRAM IC is 
installed directly on the PMAC. 

The UMAC Turbo’s CPU board has DPRAM as an on-board option to support the PC/104 port that may 
be present.  The Acc-54E USB/Ethernet board for the UMAC Turbo comes standard with its own 
DPRAM IC that interfaces to the CPU board through the UBUS backplane.  USB or Ethernet 
communications through the Acc-54E will use this DPRAM IC; it cannot use the DPRAM IC on the CPU 
board itself. 

The UMAC Turbo’s new integrated CPU and high-speed communications board has integrated USB and 
Ethernet communications functionality.  The optional on-board DPRAM supports these ports. 

The UMAC-CPCI’s CPU board has integrated USB and Ethernet communications functionality.  The 
optional on-board DPRAM supports these ports.  The (planned) “bridge” board to link the UMAC-CPCI 
CPU board to a CPCI backplane has its own DPRAM IC for CPCI-port communications. 

The QMAC control board has optional on-board DPRAM to support USB and Ethernet communications. 

Host Address Setup 
The dual-ported RAM has a fixed address space in the Turbo PMAC’s address space.  However, its 
address space in the host computer can vary depending on the setup of the card.  The specification of the 
address of the card in the host computer is done entirely in software; there are no jumpers or DIP-switches 
to set. 

ISA Bus Setup 
There are two setup variables in the Turbo PMAC for the addressing of the DPRAM on the ISA bus in 
the PC’s memory space: I93 and I94.  (Note that the standard “host” bus communications port is mapped 
into the PC’s I/O space, and has no relationship to the DPRAM memory address.)  Because the PC uses 
byte addressing, a 16k x 8 slot of memory space must be found or created in the PC for the 8k x 16 
DPRAM.  For the 32k x 16 DPRAM, either a 64k x 8 slot of memory space must be found, or a 16k x 8 
slot found and “bank” addressing used. 

Note that the PC/104 bus is completely software-compatible with the ISA bus, so these instructions apply 
to setting up DPRAM on the PC/104 interface of the 3U Turbo PMAC (Turbo Stack or UMAC Turbo). 

Typically in a PC, a slot of memory space between 640k ($0A0000) and 1M ($100000), where no 
standard memory resides, is used.  Other devices also may occupy regions of this space.  VGA displays 
often occupy the space from 640k to 704k ($0A0000 to $0B0000) and the BIOS often occupies from 
960k to 1M ($0F0000 to $100000).   

Locating the DPRAM between 1M ($100000) and 16M ($FFFFFF) is possible, but most operating 
systems cannot tolerate a break in their normal RAM addressing, so the DPRAM must be placed after the 
end of regular RAM.  Since most PCs now have more than 16M of RAM, usually this is not feasible. 

Therefore, in most PCs, the DPRAM is located somewhere between 704k ($0B0000) and 960k 
($0F0000).  The default settings locate it in the range from $0D4000 through $0D7FFF. 
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I93 is an 8-bit value that specifies ISA bus address bits A23 – A16 for the DPRAM.  Usually, it is 
specified as a 2-digit hexadecimal value, and these two digits are the same as the first two digits of the 
six-digit ISA hexadecimal address, $0D in the default case. 

I94 is an 8-bit value that controls the addressing of the DPRAM over the ISA bus.  If only a 16k x 8 block 
is reserved for DPRAM, it also specifies ISA bus address bits A15 – A14.  I94 usually is specified as a 2-
digit hexadecimal number. 
If a 16k x 8 block of memory on the ISA bus is to be used for DPRAM, the first digit should be set to 
equal the third digit of the six-digit base address. It can take a value of $0, $4, $8, or $C.  For the default 
base address of $0D4000, it should be set to 4.  If a 64k x 8 block of memory is to be used, the first digit 
should be set to 0. 
The second digit represents the addressing mode.  It should be set to 5 to use a 16k x 8 address space on 
the ISA bus.  It should be set to 4 to use a 64k x 8 address space. 

For example, to use a 16k x 8 block of memory from $0EC000 to $0EFFFF on the ISA bus, I93 should be 
set to $0E, and I94 should be set to $C5.  To use a 64k x 8 block of memory from $0C0000 to $0CFFFF 
on the ISA bus, I93 should be set to $0C, and I94 should be set to $04. 

To implement these settings and to hold them for future use, these I-variable values must be stored to 
non-volatile flash memory with the SAVE command, and the card must be reset ($$$ command).  
Resetting the card copies the saved values of I93 and I94 back into the I-variable registers in RAM, and 
then into the active control registers at X:$070009 and X:$07000A, respectively. 

If a 16k x 8 block of memory has been used for the larger (32k x 16) DPRAM, the PC can view only one-
quarter of the DPRAM at a time.  Following the instructions given above, this will be the first quarter 
(lowest addresses on the PMAC side).  To get at other parts of the DPRAM, a “bank select” process must 
be used.   

I94 can control the bank select with bits 1 and 3, but it is used only at power-on/reset, so it is not 
appropriate for dynamic bank selection.  Therefore, it is better to use the active control register at 
X:$07000A directly.  With the suggested M-variable definition of M94->X:$07000A,0,7, and I94 set as 
suggested above to select Bank 0 at power-on/reset, the following equations can be used to select each of 
the 4 banks (the vertical bar ‘|’ is the logical bit-by-bit OR operator): 
M94=I94 | $00  ; Bank 0 (PMAC addresses $060000 - $060FFF) 
M94=I94 | $02  ; Bank 1 (PMAC addresses $061000 - $061FFF) 
M94=I94 | $08  ; Bank 2 (PMAC addresses $062000 - $062FFF) 
M94=I94 | $0A  ; Bank 3 (PMAC addresses $063000 - $063FFF) 

VME Bus Setup 
The address setup of the DPRAM on the VME bus is integrated with the general VME setup, including 
the mailbox registers, using variables I90 – I99. 

I90 controls the VME address modifier.  It should be set to $39 for 24-bit addressing, or $09 for 32-bit 
addressing. 

I91 controls the don’t care bits in the address modifier.  Usually, it should be set to $04. 

I92 controls the VME address bus bits A31 – A24 when using 32-bit addressing for both the mailbox 
registers and the DPRAM.  Usually, it is specified as two hex digits, and it should be the same as the first 
two hex digits of the 32-bit address.  For example, if the base address of the DPRAM were $18C40000, 
I92 would be set to $18.  When 24-bit addressing is set up, I92 is not used. 

I93 controls the VME address bus bits A23 – A16 for the mailbox registers.  Although it is possible for 
these address bits to be the same for both the mailbox registers and the small DPRAM, usually they are 
different. 
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I94 controls the VME address bus bits A15 – A08 for the mailbox registers.  If bits A23 – A16 are the 
same for both the mailbox registers and the DPRAM, it is essential that I94 be set up so that there is no 
conflict between the 512 addresses required for the mailbox registers and the 16k registers required for 
the DPRAM. 

I95 controls which interrupt line is used when PMAC interrupts the host computer over the bus.  Values 
of $01 to $07 select IRQ1 to IRQ7, respectively.  Turbo PMAC will use this interrupt line during 
DPRAM ASCII communications if I56 is set to 1 and I58 is set to 1. 

I96 controls the interrupt vectors that are provided when Turbo PMAC interrupts the host computer.  If 
the interrupt is asserted because PMAC has placed an ASCII response line in the DPRAM, the interrupt 
vector provided is equal to (I96 + 1). 

I97 controls the VME address bus bits A23 – A20 for the DPRAM.  It is usually specified as a 2-digit 
hexadecimal value.  The first digit should always be set to 0.  The second digit should be set to be equal to 
the 1st of 6 hex digits of the address if 24-bit addressing is used, or to the 3rd of 8 hex digits of the address 
if 32-bit addressing is used.  For example, if the base address is $700000 in 24-bit addressing, I97 should 
be set to $07.  If the base address is $18C40000 in 32-bit addressing, I97 should be set to $0C. 

I98 controls whether the DPRAM is enabled.  It should be set to $E0 to enable DPRAM access. 

I99 controls the VME bus address width.  It should be set to $90 for 24-bit addressing with DPRAM, or 
to $80 for 32-bit addressing with DPRAM. 

To implement these settings and to hold them for future use, these I-variable values must be stored to 
non-volatile flash memory with the SAVE command, and the card must be reset ($$$ command).  
Resetting the card copies the saved values of I90 – I99 back into the I-variable registers in RAM, and then 
into the active control registers at X:$070006 – X:$07000F. 

One further step must be taken after every power-on/reset to select the VME address lines A19 – A14 for 
the DPRAM.  These address lines are selected using a dynamic page-select technique, which must be 
used even if there is only a single “page” of DPRAM.  One page consists of a 16k x 8 bank of memory 
addresses – for the small (8k x 16) DPRAM, this page selects the entire DPRAM.  For the large (32k x 
16) DPRAM (when available), this page selects one-quarter of the DPRAM. 

These address lines are selected by writing a byte over the VME bus to (the mailbox base address + 
$121).  The mailbox base address is defined by the settings of I92, I93, and I94 at the last power-on/reset.  
If the mailbox base address is at the default value of $7FA000, this byte must be written to VME bus 
address $7FA121. 

Bits 0 to 5 of this byte must contain the values of A14 to A19, respectively, of the page of the DPRAM.  
One way to calculate this value is to take the 2nd and 3rd hex digits of the DPRAM page base address in 
24-bit addressing, or the 4th and 5th hex digits in 32-bit addressing, and divide this value by 4 (shift right 
two bits). For example, if the base address is $780000 in 24-bit addressing, this byte should be set to $20 
($80/4 = $20).  If the base address is $18C40000 in 32-bit addressing, this byte should be set to $10. 

Note:  

It is common that this byte value will be $00, and some Turbo PMAC-VME 
boards will power up with this byte already set at $00.  However, this may not be 
true on some boards, so the user should not count on this default setting.  For 
robust operation, this byte must be written after every power-on/reset. 

PCI Bus 
When using DPRAM communications over the PCI bus, the computer’s operating system automatically 
establishes the base address of the DPRAM IC on the bus.  Consult the documentation for the operating 
system to understand how to find and use the base address established by the operating system. 
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USB/Ethernet 
When USB or Ethernet communications is used with DPRAM, the host computer does not actually have 
direct access to the DPRAM IC on the Turbo-PMAC end of the wire link.  However, the USB and 
Ethernet implementations support the creation of a virtual shared memory interface so higher level 
routines can work as if there were direct access. 

Mapping of Memory Addresses 
The mapping of memory addresses between the host computer on one side, and Turbo PMAC on the 
other side, is quite simple.  Using this memory is a matter of matching the addresses on both sides.  To 
Turbo PMAC, the DPRAM appears as extra memory in the fixed address range $060000 to $060FFF 
($063FFF for the large DPRAM).  Since Turbo PMAC has two (X and Y) registers per numerical 
address, the small DPRAM appears to the Turbo PMAC as a 4k x 32 block of memory; the large DPRAM 
appears as a 16k x 32 block of memory.  When the PMAC hexadecimal addresses of the DPRAM are 
specified, the assembly-language convention of a ‘$’ prefix is used to denote the use of hex numbers. 

Probably the host computer will use byte addressing.  Therefore, the small DPRAM appears to the host 
computer as a 16k x 8 block of memory.  The large DPRAM appears as a 64k x 8 block of memory.  
Since the address range of the DPRAM in the host computer will vary from application to application, we 
can talk only of offsets from the base address when referring to individual registers.  When the host 
hexadecimal address offsets of the DPRAM are specified, the C-language convention of a ‘0x’ prefix is 
used to denote the use of hex numbers. 

Because the Turbo PMAC uses 32-bit addressing, and the host computer uses 8-bit addressing, the host 
uses 4 numerical addresses for each 1 numerical address in PMAC.  The following table shows how this 
address incrementing works for key addresses in the DPRAM. 

Turbo PMAC 
Address 

Host Address 
Offset 

Example Host 
Address 

Y:$060000 0x0000 0x0D0000 
X:$060000 0x0002 0x0D0002 
Y:$060001 0x0004 0x0D0004 
X:$060001 0x0006 0x0D0006 

… … … 
Y:$060450 0x1140 0xD1140 

… … … 
Y:$060FFF 0x3FFC 0xD3FFC 
X:$060FFF 0x3FFE 0xD3FFE 

… … … 
Y:$063FFF 0xFFFC 0xDFFFC 
X:$063FFF 0xFFFE 0xDFFFE 

The following two equations can be helpful for calculating matching DPRAM addresses: 
PMAC_address = $060000 + 0.25*(Host_address – Host_base_address) 

Host_address = Host_base_address + 4*(PMAC_address - $060000) + Offset 
where: 
Offset = 0 for accessing Y memory, or for X and Y together as 32 bits 
Offset = 2 for accessing X memory alone 
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DPRAM Automatic Functions 
Turbo PMAC provides many facilities for using the DPRAM to pass information back and forth between 
the host computer and the Turbo PMAC.  Each of these functions has dedicated registers in the DPRAM.  
The following table shows each of these functions and the addresses used for it. 

Host 
Address 
Offset 

DPRAM Function Turbo 
PMAC 

Address 
0x0000 Control Panel Functions (pending) $060000 
0x006A Motor Data Reporting Buffer $06001A 
0x0676 Background Data Reporting Buffer $06019D 
0x0E9E DPRAM ASCII Command Buffer $0603A7 
0x0F42 DPRAM ASCII Response Buffer $0603D0 
0x1046 Background Variable Read Buffer Control $060411 
0x104C Background Variable Write Buffer Control $060413 
0x1050 Binary Rotary Program Buffer Control $060414 
0x113E DPRAM Data Gathering Buffer Control $06044F 
0x1140 Variable-Sized Buffers & Open-Use Space $060450 
0x3FFC End of Small (8k x 16) DPRAM $060FFF* 
0xFFFC End of Large (32k x 16) DPRAM $063FFF* 

*Turbo PMAC memory register Y:$3F contains the Turbo PMAC address of 
the last DPRAM address, plus one ($061000 or $064000). 

DPRAM Data Format 
Data is stored in the DPRAM in 32-bit sign-extended form.  That is, each short (24-bit) from PMAC is 
sign-extended and stored in 32 bits of DPRAM.  The most significant byte is all ones or all zeros, 
matching bit 23.  Each long (48-bit) word is treated as two 24-bit words, with each short word sign-
extended to 32 bits.  The host computer must re-assemble these words into a single value.  The data 
appears in the DPRAM in Intel format: the less significant bytes and words appear in the lower-numbered 
addresses. 
To reassemble a long fixed-point word in the host, take the less significant 32-bit word, and mask out the 
sign extension (top eight bits).  In C, this operation could be done with a bit-by- bit AND: (LSW and 
16777215).  Treat this result as an unsigned integer.  Next, take the more significant word and multiply it 
by 16,777,216.  Finally, add the two intermediate results together. 
To reassemble a long floating-point word in the host, treat the less significant word the same as for the 
fixed-point case above.  Take the bottom 12 bits of the more significant word (MSW and 4095), multiply 
by 16,777,216 and add to the masked less significant word.  This forms the mantissa of the floating-point 
value.  Now take the next 12 bits (MSW & 16773120) of the more significant word.  This is the exponent 
to the power of two, which can be combined with the mantissa to form the complete value. 

DUAL-PORTED RAM DATA GATHERING FORMATS

Byte 2 Byte 1 Byte 0
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DPRAM Motor Data Reporting Buffer 
Turbo PMAC can provide key motor data to the DPRAM, where it can be accessed easily and quickly by 
the host computer.  If this function is enabled, Turbo PMAC will copy key motor registers into fixed 
registers in the DPRAM.   

Foreground vs. Background: This copying function can be done either as a foreground (interrupt) task 
in Turbo PMAC, or as a background task.  Unless it is important to get the data at a guaranteed high 
frequency, it is strongly recommended that the copying be done in background, so as not to starve other 
important tasks on the Turbo PMAC for time.  Even when the information is used for real-time operator 
display, background transfer is the recommended method. 

Enabling Foreground Copying: Setting I48 to 1 enables foreground copying of motor data.  With 
foreground copying, I47 sets the update period.  If I47 is greater than 0, every I47 servo interrupts, Turbo 
PMAC will copy motor registers into the DPRAM.  With I47 at 0, Turbo PMAC will check every servo 
cycle to see if the host computer has taken the previous data.  If so, it will copy the current cycle’s data 
for an “on request” transfer. 

Enabling Background Copying: Setting I57 to 1 enables background copying of motor data and sets I48 
to 0 automatically to disable the foreground copying.  I49 must be set to 1 also to enable the background 
copying of coordinate-system and global data (see next section).  If it is desired not to transfer any 
coordinate-system data, set the “maximum coordinate system number” register in 0x0674 (Y:$06019D) to 
0 (see next section). 

With background copying, I50 sets the update period.  If I50 is greater than 0, each background cycle, 
Turbo PMAC will check to see if more than I50 servo cycles have elapsed since it last copied this data 
into DPRAM.  If so, it will copy the present data.  With I50 at 0, Turbo PMAC will check every 
background cycle to see if the host computer has taken the previous data.  If so, it will copy the present 
data, for an on request transfer. 

Motor Specification: A dedicated 32-bit mask word in DPRAM is used to specify which motors’ data 
will be copied into DPRAM, whether for foreground or background transfers.  This word can be set up 
from either the PMAC side or the host side.  The format is as follows: 

PMAC Address X:$06001C; Host Address Offset 0x0072 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Motor 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 

PMAC Address Y:$06001C; Host Address Offset 0x0070 
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Motor 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

A value of ‘1’ in the bit enables the transfer for the motor associated with the bit; a value of ‘0’ disables 
the transfer.  These bits may be changed at any time; the new value is effective for the next transfer.  
Setting this entire 32-bit word to 0 will stop all motor data copying. 

Data Copied: For each motor enabled, the following values are transferred into DPRAM: 
• Motor following error 
• Motor servo command 
• Motor servo status 
• Motor general status 
• Motor position bias 
• Motor filtered actual velocity 
• Motor master position 
• Motor net actual position 
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Addresses of Data: For details as to the exact registers used for each of these values for each motor, 
consult the Turbo PMAC Memory Map in the Software Reference Manual. 

Foreground Handshaking: If foreground transfer is used (I48 = 1), Turbo PMAC will set Bit 15 of 
0x006E (X:$06001B) to 0 while it is copying motor data into the DPRAM, and it will set this bit to 1 as 
soon as it is finished.  The host computer should not try to read the data if this bit is 0.  If I47 is set to 0 
for on request transfers, the host computer should set this bit to 0 after reading the data to indicate to 
Turbo PMAC that it is time to provide the next set of data. 

If foreground transfer is used, Turbo PMAC also copies the 24-bit servo-cycle counter value into 0x006C 
(Y:$06001B) and Bits 0 – 7 of 0x006E (X:$06001B) to “time-stamp” the data. 

The host computer can set Bit 15 of 0x006A (X:$06001A) to 1 while it is reading the data.  If Turbo 
PMAC sees that this bit is 1 when it is ready to transfer more data into the DPRAM, it will skip this cycle.  
The host must be sure to set this bit to 0 when it is done reading, to permit Turbo PMAC to transfer new 
data. 

Background Handshaking: If background transfer of motor data is used (I57 = 1 and I49 = 1), the 
handshaking is the same as for the background coordinate system and global data buffers.  Turbo PMAC 
will set Bit 15 of 0x067A (X:$06019E) to 0 while it is copying coordinate-system and global data into the 
DPRAM, and it will set this bit to 1 as soon as it is finished.  The host computer should not try to read the 
data if this bit is 0.  If I50 is set to 0 for “on request” transfers, the host computer should set this bit to 0 
after reading the data to indicate to Turbo PMAC that it is time to provide the next set of data. 

If background transfer is used, Turbo PMAC also copies the 24-bit servo-cycle counter value into 0x0678 
(Y:$06019E) and Bits 0 – 7 of 0x067A (X:$06019E) to time-stamp the data. 

The host computer can set Bit 15 of 0x0676 (X:$06019D) to 1 while it is reading the data.  If Turbo PMAC 
sees that this bit is 1 when it is ready to transfer more data into the DPRAM, it will skip this cycle.  The host 
must be sure to set this bit to 0 when it is done reading, to permit Turbo PMAC to transfer new data. 

DPRAM Background Data Reporting Buffer 
Turbo PMAC can provide key global and coordinate-system data as a background function to the 
DPRAM, where it can be accessed easily and quickly by the host computer.  If this function is enabled, 
Turbo PMAC will copy key global and coordinate-system registers into fixed registers in the DPRAM.   

Enabling Copying: Setting I49 to 1 enables this copying of global and coordinate-system data into 
DPRAM as a background function.  I50 sets the update period.  If I50 is greater than 0, each background 
cycle, Turbo PMAC will check to see if more than I50 servo cycles have elapsed since it last copied this 
data into DPRAM.  If so, it will copy the present data.  With I50 at 0, Turbo PMAC will check every 
background cycle to see if the host computer has taken the previous data.  If so, it will copy the present 
data, for an “on request” transfer. 

Coordinate System Specification: Bits 0 – 4 of 0x0676 (Y:$06019D) specify the number of highest-
numbered coordinate system in the Turbo PMAC whose data will be copied into DPRAM.  The data for 
C.S. 1 through this coordinate system will be copied each time.  If this value is set to 0, the transfer of 
coordinate-system data will be stopped. 

Data Copied: For each coordinate system whose copying is enabled, the following data will be transferred: 
• C.S. feedrate / move time 
• C.S. time-base value (feedrate override) 
• C.S. override source address 
• C.S. status words 
• C.S. axis target positions (ABCUVWXYZ) 
• C.S. program status 
• C.S. program lines remaining in rotary buffer 
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• C.S. time remaining in move segment 
• C.S. time remaining in accel/decel 
• C.S. program execution address offset 

Addresses of Data: For details as to the exact registers used for each of these values for each motor, 
consult the Turbo PMAC Memory Map in the Software Reference Manual. 

Handshaking: Turbo PMAC will set Bit 15 of 0x067A (X:$06019E) to 0 while it is copying coordinate-
system and global data into the DPRAM, and it will set this bit to 1 as soon as it is finished.  The host 
computer should not try to read the data if this bit is 0.  If I50 is set to 0 for “on request” transfers, the 
host computer should set this bit to 0 after reading the data to indicate to Turbo PMAC that it is time to 
provide the next set of data. 

Turbo PMAC also copies the 24-bit servo-cycle counter value into 0x0678 (Y:$06019E) and Bits 0 – 7 of 
0x067A (X:$06019E) to “time-stamp” the data. 

The host computer can set Bit 15 of 0x0676 (X:$06019D) to 1 while it is reading the data.  If Turbo 
PMAC sees that this bit is 1 when it is ready to transfer more data into the DPRAM, it will skip this cycle.  
The host must be sure to set this bit to 0 when it is done reading, to permit Turbo PMAC to transfer new 
data. 

DPRAM ASCII Communications 
Turbo PMAC can perform ASCII communications through the DPRAM, as well as through the normal 
bus communications port, the main serial port, and the auxiliary serial port.  It can accept commands and 
provide responses simultaneously over multiple ports.  The DPRAM provides the fastest path for ASCII 
communications. 
Enabling: The DPRAM ASCII communications is enabled by setting I58 to 1.  If I58 is set to 0, Turbo 
PMAC will not check the DPRAM for ASCII commands. 
Sending a Command Line: To send an ASCII command line to Turbo PMAC: 
1. Make sure that Bit 0 of the Host-Output Control Word at 0x0E9C (Y:$0603A7) – the Host Data 

Ready bit – is 0, to be sure that Turbo PMAC has read the previous command.  For the first command 
after Turbo PMAC’s power-on/reset, this bit may have to be set to 0 by the host. 

2. Write the ASCII characters into the ASCII command buffer starting at 0x0EA0 (Y:$0603A8).  Two 
8-bit characters are packed into each 16-bit word; the first character is placed into the low byte.  
Subsequent characters are placed into consecutive higher addresses, two per 16-bit word.  (In byte 
addressing, each character is written to an address one higher than the preceding character.)  Up to 
159 characters can be sent in a single command line. 

3. Terminate the string with the <NULL> character (byte value 0).  Do not use a carriage return to 
terminate the string, as on other ports. 

4. Set Bit 0 of the Host-Output Control Word at 0x0E9C (Y:$0603A7) – the Host Data Ready bit – to 1 
to tell Turbo PMAC that a command string is ready for it to read.  Turbo PMAC will then read this 
command in the next background cycle, set this bit back to 0, and take the appropriate action for the 
command. 

Note that the communications routines of the PCOMM32 library do all of these actions automatically.  If 
writing a custom low-level communications routine, this operation is fundamentally a string copy operation. 
Sending a Control Character Command:  Control-character commands can be sent through the 
DPRAM through a dedicated register independent of the ASCII text commands.  To send a control-
character command to Turbo PMAC through the DPRAM: 
1. Make sure that the control-character byte – Bits 0 – 7 of 0x0E9E (X:$0603A7) is set to 0.  For the 

first control-character command after Turbo PMAC’s power-on/reset, this byte may have to be set to 
0 by the host. 
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2. Write the control character to Bits 0 – 7 of 0x0E9E (X:$0603A7). 
3. Each background cycle, Turbo PMAC will read this byte.  If the byte contains a non-zero value, 

Turbo PMAC will take the appropriate action for the command, and set the byte back to 0. 
Reading a Response Line: To read an ASCII response line from the Turbo PMAC through the DPRAM: 
1. Wait for the Host-Input Control Word at 0x0F40 (Y:$063D0) to become greater than 0, indicating 

that a response line is ready. 
2. Interpret the value in this register to determine what type of response is present.  If Bit 15 is 1, Turbo 

PMAC is reporting an error in the command, and there is no response other than this word.  In this 
case, Bits 0 – 11 encode the error number for the command as 3 BCD digits.  
 
If Bit 15 is 0, there is no error, and there is a response string.  Bits 8 and 9 tell what caused the 
response.  If they form a value of 0, a command from the host computer caused the response.  If they 
form a value of 1, an internal CMDR statement caused the response.  If they form a value of 2, an 
internal SENDR statement caused the response.  Note the value in Bits 0 – 7.  These will determine 
whether this is the last line in the response or not (see Step 5, below). 

3. Read the response string starting at 0x0F44 (Y:$0603D1). Two 8-bit characters are packed into each 
16-bit word; the first character is placed into the low byte.  Subsequent characters are placed into 
consecutive higher addresses, two per 16-bit word.  (In byte addressing, each character is read from 
an address one higher than the preceding character.)  Up to 255 characters can be sent in a single 
response line. The string is terminated with the NULL character (byte value 0), convenient for C-style 
string handling.  For Pascal-style string handling, the register at 0x0F42 (X:$0603D0) contains the 
number of characters in the string (plus one). 

4. Clear the Host-Input Control Word at 0x0F40 (Y:$063D0) to 0.  Turbo PMAC will not send another 
response line until it sees this register set to 0. 

5. If Bits 0 – 7 of the Host-Input Control Word had contained the value $0D (13 decimal, “CR”), this 
was not the last line in the response, and steps 1 – 4 should be repeated.  If they had contained the 
value $06 (6 decimal, “ACK”), this was the last line in the response. 

Note that the communications routines of the PCOMM32 library do all of these actions automatically.  If 
writing a custom low-level communications routine, this operation is fundamentally a string copy operation. 
DPRAM Communications Interrupts 
If I56 is set to 1, Turbo PMAC will interrupt the host computer whenever it has a response line ready for 
the host to read.  This interrupt has the potential to make the host communications more efficient, because 
the computer does not need to poll the DPRAM to see when a response is ready. 
VME Interrupt: On any of the VME-bus Turbo PMACs, this interrupt will appear on the VME-bus 
interrupt line specified by I95.  It will have an interrupt vector equal to (I96 + 1). 
ISA Interrupt: On the ISA-bus Turbo PMACs, this interrupt will appear on the ISA-bus interrupt line 
(IRQn) selected by an E-point jumper on the board.  The interrupt controller IC on the board can pass 
interrupts from eight different sources (IR0 – IR7) through this interrupt line.   
On a Turbo PMAC-PC, source IR7 is used to generate the interrupt.  Jumper E85 must be ON, and 
jumpers E82 – E84 must be OFF for this feature to work.  This brings the EQU4 line (position compare 
for encoder 4) into the interrupt controller – the position-compare function for this encoder may not be 
used for other purposes in this case. 
On a Turbo PMAC2-PC, source IR5 is used to generate the interrupt from the EQU1 line (position 
compare for Encoder 1).  The position-compare function for this encoder may not be used for other 
purposes in this case. 
On a Turbo PMAC2-PC Ultralite, source IR5 is used to generate the interrupt from the CTRL0 line of the 
DSPGATE2 IC, which does not have other functions. 
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Turbo PMAC will continue to assert this interrupt source until the host has cleared the Host-Interrupt 
Control Word.  Because of this, the host may see the source still active when it gets an interrupt from 
another source. 
DPRAM Background Variable Read Buffer 
The Background Variable Data Read Buffer permits you to have up to 128 user-specified Turbo PMAC 
registers copied into DPRAM during the background cycle.  This function is controlled by I55.  The 
buffer has two modes of operation, single-user and multi-user.  The default mode is single-user.  It is 
active when bit 8 of the control word 0x1044 (Y:$060411) is set to zero.  Multi-user mode is active when 
bit 8 of the control word is set to one. 
General Description: The buffer has three parts.  The first part is the header: 4 16-bit words (8 host 
addresses) containing handshake information and defining the location and size of the rest of the table.  
This is at a fixed location in DPRAM (see table below).   
The second part contains the address specifications of the Turbo PMAC registers to be copied into 
DPRAM.  It occupies two 16-bit words (four host addresses) for each Turbo PMAC location to be copied, 
starting at the location specified in the header.   
The third part, starting immediately after the end of the second part, contains the copied information from 
the Turbo PMAC registers.  It contains 2 16-bit words (four host addresses) for each short (X or Y) Turbo 
PMAC location copied, and four 16-bit words (eight host addresses) for each long Turbo PMAC location 
copied.  The data format is the same as for data gathering to dual-ported RAM. 
Register Map  

Background Variable Read Buffer Part 1 
Definition and Basic Handshaking 

Address Description 

0x1044 
(Y:$060411) 

PMAC to Host (Bit 0 = 1 for single user mode) Data Ready.  PMAC 
done updating buffer - Host must clear for more data. 

0x1046 
(X:$060411) 

Servo Timer (Updated at Data Ready Time) 

0x1048 
(Y:$060412) 

Size of Data Buffer (measured in long integers of 32 bits each) 

0x104A 
(X:$060412) 

Starting Turbo PMAC Offset of Data Buffer from beginning of 
variable-buffer space $060450 (e.g.. $0100 for starting PMAC 
address $060550 – host address offset 0x1540) 

 
Background Variable Read Buffer Part 2 

Variable Address Buffer Format (2x16-bit words) 
X:Mem 
Bits 15:  Data Ready 
(multi-user mode) 

X:Mem 
Bits 4 – 5:  Variable 
type to read 
Bits 0 – 3: Bits 16 – 19 
of address 

Y:Mem 
Bits 0 – 15 of PMAC 
address of register to 
read 

Dual 
Port 
Data 
Length 

1 = PMAC data ready 
0 = Host request data 

Bits 4 – 5 = 0: PMAC 
Var. Y:Mem. 

PMAC Address of Variable 32 bits 

1 = PMAC data ready 
0 = Host request data 

Bits 4 – 5 = 1: PMAC 
Var. Long 

PMAC Address of Variable 64 bits 

1 = PMAC data ready 
0 = Host request data 

Bits 4 – 5 = 2: PMAC 
Var. X:Mem. 

PMAC Address of Variable 32 bits 
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Enabling: To start operation of this buffer: 

1. Write the starting location of the second part of the buffer into register 0x104A (X:$060412).  This 
location is expressed as a Turbo PMAC address offset from the start of DPRAM’s variable-buffer 
space at $060450, and it must be between $0000 and $0BAF for the 8k x 16 DPRAM, or between 
$0000 and $3BAF for the 32k x 16 DPRAM. 

2. Starting at the DPRAM location specified in the above step, write the Turbo PMAC addresses of the 
registers to be copied, and the register types.  The first 16-bit word holds the low 16 bits of the Turbo 
PMAC address of the first register to be copied; the second 16-bit word hold the high 4 bits of this 
address in bits 0 –3; bits 4 – 5 take a value of 0, 1, or 2 to specify Y, Long, or X, respectively, for the 
first register.  The third and fourth words specify the address and type of the second register to be 
copied, and so on. 

3. Write a number representing the size of the buffer into register 0x1048 (Y:$060412).  This value must 
be between 1 and 128.  When Turbo PMAC sees that this value is greater than zero and the individual 
data ready bit is zero, it is ready to start copying the registers you have specified into DPRAM. 

4. To enable the single-user mode, write a zero into the control word at 0x1044 (Y:$060411).  To enable 
the multi-user mode write a 256 (set bit 8 and clear bit 0) into this control and set bit 15 = 0 of each 
variable's data type register (X memory register).  This will tell Turbo PMAC that the host is ready to 
receive data and what the mode is for the data. 

5. Set I55 to 1.  This enables both the background variable data reporting function and the background 
variable data writing function. 

Single-User Mode Procedure: In operation, Turbo PMAC will try to copy data into the buffer each 
background cycle -- between each scan of each PLC program.  If bit 0 of the control word 0x1044 is set to 
1, it will assume that the host has not finished reading the data from the last cycle, so it will skip this 
cycle.  If bit 0 is 0, it will copy all of the specified registers.   

When Turbo PMAC is done copying the specified registers, it copies the low 16 bits of the servo timer 
register (X:$000000) into the DPRAM at 0x1046 (X:$060411).  Then it sets Bit 0 of the control word 
0x1044 (Y:$060411) to let the host know that it has completed a cycle. 

When the host wants to read this data, it should check to see that Bit 0 of the control word at 0x1044 (the 
Data Ready bit) has been set.  If it has, the host can begin reading and processing the data in the DPRAM.  
When it is done, it should clear the Data Ready bit to let Turbo PMAC know that it can perform another 
cycle. 

Multi-User Mode Procedure: The operation of this mode is similar to the Single-User Mode described 
above.  The main difference is that the control word is no longer used as a global handshaking bit for 
updating the buffer.  It only enables or disables the multi-user mode.  In multi-user mode the control word 
is never modified by Turbo PMAC.  Handshaking is now on an individual variable basis and is controlled 
by bit 15 of the variable's data type specifier.   

Each background cycle, between each scan of each uncompiled PLC program, Turbo PMAC will try to 
copy data into each variable in the buffer.  Bit 15 of each variable's data type specifier controls whether or 
not Turbo PMAC is allowed to update that particular variable's value.  Turbo PMAC will skip updating 
any variable that has bit of its data type specifier set to 1.  Any variable that has bit 15 set to 0 will be 
updated.   

When Turbo PMAC is done servicing the buffer, it copies the low 16 bits of the servo timer register 
(X:$000000) into the DPRAM at 0x1046 (X:$060411).  This is not dependent upon updating any 
variables in the buffer. 
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When the host wants to read a register, it should check to see that Bit 15 of the data type specifier (the 
Data Ready bit) has been set.  If it has, the host can begin reading and processing the data from that 
register.  When it is done, it should clear the Data Ready bit to let Turbo PMAC know that it can update 
that register the next cycle. 

Data Format: Each 24-bit (X or Y) register is sign-extended to 32 bits.  For a 48-bit (Long) register, each 
24-bit half is sign-extended to 32 bits, for a total of 64 bits in the DPRAM.  This data starts immediately 
after the last address specification register. 

Disabling: To disable this function, you can set the size register 0x1048 (Y:$060412) to 0, or simply 
leave the individual Data Ready bit(s) set. 

DPRAM Background Variable Data Write Buffer 
The Background Variable Data Write Buffer is essentially the opposite of the Background Variable Data 
Read Buffer described above.  It lets you write to up to 32 user-specified registers or particular bits in 
registers to Turbo PMAC without using a communications port (PCbus, serial, or DPRAM ASCII I/O).  
This lets you set any Turbo PMAC variable without using an ASCII command such as M1=1 and without 
worrying about an open Rotary Buffer.  This function is controlled by I55.   

General Description: The buffer has two parts.  The first part is the header: 2 16-bit words (4 host 
addresses) containing handshake information and defining the location and size of the rest of the table.  
This is at a fixed location in DPRAM (Turbo PMAC address $060413 as shown in the table below).   

The second part contains the address specifications of the Turbo PMAC registers to be copied into Turbo 
PMAC.  It occupies 6 x 16-bit words (12 host addresses) for each Turbo PMAC location to be written to, 
starting at the location specified in the header.   

Registers: 
Background Variable Data Write Buffer Part 1 

Definition and Basic Handshaking 
Address Description 
0x104C 

(Y:$060413) 
HOST to PMAC Data Transferred.  PMAC is updated when cleared.  
Host must set for another update. 

0x07E8 
(X:$060413) 

Starting Turbo PMAC Offset of Data Buffer from beginning of 
variable-buffer space $060450 (e.g.. $0100 for starting PMAC 
address $060550 – host address offset 0x1540) 

Background Variable Write Buffer Part 2 
Format for each Data Structure (6x16-bit) 

Address X-Register Contents Y-Register Contents 
 
 
 
 
 
n 

Bits 11 – 15: Offset (= 0 – 23) – Starting bit 
number of target register into which value will be 
written 
Bits 6 – 10: Width (= 0, 1, 4, 8, 12, 16, or 20 – 0 
represent 24 bits) – number of bits of target 
register into which value will be written 
Bits 3 – 5: Type of target register 
=0: Y-register 
= 1: Long (X/Y-register) 
= 2: X-register 
Bits 0 – 2: Upper 3 bits (bits 16 – 18) of target 
register address 

 
 
 
 
 
Bits 0 – 15 of target register 
address 

n+1 Upper 16 bits of data word 1 Lower 16 bits of data word 1 
n+2 Upper 16 bits of data word 2 (only used for writing 

into long register) 
Lower 16 bits of data word 2 
(only used for writing into long 
register) 
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Enabling: To start operation of this buffer: 
1. Write the starting location of the second part of the buffer into register 0x104E (X:$060413). This 

location is expressed as a Turbo PMAC address offset from the start of DPRAM’s variable-buffer 
space at $060450, and it must be between $0000 and $0BAF for the 8k x 16 DPRAM, or between 
$0000 and $3BAF for the 32k x 16 DPRAM. 

2. Starting at the DPRAM location specified in the above step, write the Turbo PMAC addresses of the 
registers to be copied, and the register types.  The first 16-bit word contains the low 16 bits of the 
Turbo PMAC address of the first register to be copied.  The second 16-bit word takes a value of 0 to 
65535 to specify the type, width, offset, and high 3 bits of address for this target Turbo PMAC 
register.  The third, fourth, fifth, and sixth words specify the data to be written. 

Note:   
If you specify address 0, you will terminate the writing operation.  No write 
operations further down in the buffer will be executed. 

3. Write a number representing the size of the buffer into register 0x104C (Y:$060413).  This value 
must be between 1 and 32.  When Turbo PMAC sees that this value is greater than zero, it is ready to 
start copying the registers you have specified into Turbo PMAC.  When it is finished it will change 
the value in this register to a 0. 

4. Set I55 to 1.  This enables both the background variable data read function and the background 
variable data write function. 

Procedure: In operation, Turbo PMAC will copy the data from the buffer into Turbo PMAC during the 
background cycle whenever 0x104C (Y:$060413) is a not zero.  If this register is 0 it will assume that the 
host has not finished placing the data in the buffer and will not write to Turbo PMAC.  Once this register 
is set to a number from 1 to 32 it will copy that many registers, starting at the start of the header start 
address information, from the DPRAM to Turbo PMAC.   
When Turbo PMAC is done copying the specified registers, it sets register 0x104C (Y:$060413) to zero 
to let the host know that it has completed a cycle. 
When the host wants to update this buffer, it should check to see that 0x104C (Y:$060413) is zero.  When 
it is done, it should set up the address/data structure.  Then set 0x104C (Y:$060413) to the number of 
registers to copy to Turbo PMAC to let Turbo PMAC know that it can perform another cycle. 
Data Format: Turbo PMAC X and Y registers will use the long 32-bit data 1word.  The 32-bit data 2 
word is not used in this case.  The high 8 bits are sign-extension bits.   
For a 48-bit Turbo PMAC integer or float point value, The L (Long) format should be used.  L-format 
will have the lower 32 bits of the total 48 bits in the long 32-bit data 1 word and the upper 16 bits in the 
lower 32-bit data 2 word.  This data starts immediately after the last address specification register. 
Disabling: To disable this function, simply leave 0x104C (Y:$060413) set to zero. 
DPRAM Binary Rotary Program Transfer Buffers 
The binary rotary program transfer buffers in Turbo PMAC’s DPRAM permit the host computer to send 
motion program commands to Turbo PMAC in its internal binary storage format for the fastest possible 
transmission of these commands.  Each of the 16 possible coordinate systems in the Turbo PMAC can 
have its own binary rotary transfer program buffer in DPRAM. 
Each coordinate system for which this feature is used must also have a rotary motion program buffer 
defined in Turbo PMAC’s internal RAM.  This is done with the &n DEFINE ROTARY {size} 
command.  These internal rotary motion program buffers are not retained through a power-down or board 
reset, so they must be defined after every board power-up/reset.  If multiple internal rotary program 
buffers are defined, they must be defined from the highest-numbered coordinate system to the lowest. 
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The binary rotary program transfer buffers in DPRAM are simply pass-through buffers to the internal 
rotary program buffers.  When Turbo PMAC receives a binary-format motion program command in the 
DPRAM buffer from the host computer, it copies this data into the rotary buffer in internal memory.  The 
end result is the same as if an ASCII program command had been sent to Turbo PMAC through any of 
the ports, but the transmission is quicker for several reasons: 
1. There is no handshaking of individual characters. 
2. There is no parsing of an ASCII command into internal binary storage format. 
3. Multiple command lines can be processed in a single communications cycle. 
If I45 is set to the default value of 0, Turbo PMAC checks the binary rotary buffers in DPRAM every 
background cycle, transferring any new contents to the internal rotary program buffers.  If I45 is set to 1, 
it checks the binary buffers as a higher-priority foreground task, every real-time interrupt. 
Routines in Delta Tau’s PCOMM32 communications library provide automatic support for the binary 
rotary-program transfer buffer. 
General Description: Each coordinate system’s binary rotary transfer buffer has two parts.  The first part 
is the header, at a fixed address in DPRAM.  The header for each binary rotary transfer buffer occupies 
six 16-bit words, and contains the key information on the size and status of the second part of the buffer. 
The second part of the buffer is at a location in DPRAM specified by the user in the header.  It contains 
the actual binary-format motion-program commands.  The size of this part is also specified by the user in 
the header. 
Registers: The following table shows the structure of the header.  The addresses given are for the first 
coordinate system.  Headers for the other coordinate systems follow immediately after.  Those addresses 
can be found in the memory map in the Software Reference Manual. 

Binary Rotary Transfer Buffer Control 
Address for first 

C.S. Rotary 
Buffer 

Description 

0x1050 
(Y:$60414) 

PMAC to HOST Binary Rotary Buffer Status Word 

 Bit 15  = 1:Error (Stops processing commands) 
 Bit 14  = 1 :Internal Rotary buffer full (Busy flag) PMAC Index stops updating. 
 Bits 7-0 = Code       Error 
                 ------         ------------------------------------ 
                    1            Internal Rotary Buffer size = 0 
                               or DPRAM Rotary Buffer Size = 0 
 These flags are set and reset by the PMAC.  The Busy flag is 
 Set when the PMAC internal rotary buffer is full.   
 This however does not mean the DPRAM Binary 
 Rotary buffer is full.  The Busy flag is  
 Reset when the PMAC internal rotary buffer is  
 Not full or the DPR binary rotary buffer is empty. 

0x1052 
(X:$60414) 

Coordinate System Number and Enable Control 
Bits 0 – 4 represent C.S. #; buffer enabled if 0 < C.S.# < 17 

0x1054 
(Y:$60415) 

Host Binary Rotary Buffer Index – PMAC address offset from start address of 
buffer as set in 0x105A 

0x1056 
(X:$60415) 

PMAC Binary Rotary Buffer Index – PMAC address offset from start address 
of buffer as set in 0x105A 

0x1058 
(Y:$60416) 

Size of Binary Rotary Buffer – in PMAC addresses (= host computer addresses 
/ 4) 

0x105A 
(X:$60416) 

Starting Binary Rotary Buffer PMAC Address Offset – from start of DPRAM 
variable buffer space ($060450) 
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Using the Buffer: First, Turbo PMAC’s internal binary rotary program buffer must be established with 
the &n DEFINE ROT command.   
Next, the header information for the DPRAM transfer buffer must be set up.  The starting address and size 
of the transfer buffer must be declared.  The buffer should not overlap any other use of DPRAM.  The 
size parameter must be an even number, with an absolute minimum of six PMAC addresses.  The size 
should be declared large enough to not limit throughput.  Each basic PMAC command component (e.g. 
X10) occupies two PMAC addresses in the transfer buffer.  The transfer occurs each background cycle, 
typically a few milliseconds. 
Both indices should be set to zero to indicate that both sides are pointing to the start of the buffer.  Next, 
the &n OPEN BIN ROT command should be given, so that Turbo PMAC checks for new data in the 
transfer buffer. 
Now, binary format commands can be loaded into the transfer buffer, and the host index updated.  As 
Turbo PMAC reads the commands from the buffer, it updates the PMAC index. 
Binary Command Structure: Typically, PCOMM32 routines generate the binary command format 
automatically.  Contact the factory if you require knowledge of this format. 
DPRAM Data Gathering Buffer 
Turbo PMAC’s data gathering function can create a rotary buffer in DPRAM, so that the host computer 
can pick up the data as it is being gathered.  This way, the size of the data gathering buffer is not limited 
by Turbo PMAC’s own memory capacity.  The data gathering buffer in DPRAM is selected if I5000 is set 
to 2 or 3; if I5000 is set to 3, it is used in a rotary fashion, which is typically how the buffer is used. 
The DPRAM data gathering buffer always starts at address 0x1140 (Y:$060450).  Its size is determined 
by the DEFINE GATHER {size} command, where {size} sets the number of PMAC addresses 
from the start.  This size value is stored at 0x113C (Y:$06044F). 
Variables I5001 through I5048 determine the potential registers to be gathered.  I5050 and I5051 are 24-
bit mask variables that determine which of the 48 possible sources will be gathered.  I5049 determines the 
gathering period, in servo cycles. 
The actual gathering is started by the on-line GATHER command, and stopped by the on-line 
ENDGATHER command.  As Turbo PMAC gathers data into the DPRAM, it advances the pointer that 
shows the address offset where the next item to be gathered will be placed.  This pointer is stored at 
0x113E (X:$06044F).  The host computer must watch for changes to this pointer to indicate that more 
data has been copied into DPRAM. 

Turbo PMAC Ethernet Protocol 
Communications through an Ethernet port are fully supported for Microsoft Windows 98, 2000, ME, and 
XP operating systems through the PCOMM32PRO driver library.  Users writing communications 
programs under one of those operating systems should consult the manual for PCOMM32PRO.  This 
section explains how comparable Ethernet communications drivers can be written for other operating 
systems. 
This section is intended for application programmers who have a fundamental understanding of Berkeley 
sockets used in the TCP/IP protocol suite.  Before any attempt to read or understand the contents of this 
manual review basic sockets and understand them before proceeding.  The fundamental socket functions 
that must be understood are recv, send, and socket. 
The examples in this manual are for demonstration purposes only and are to there to convey the concepts 
of how to communicate with the Turbo PMAC. Therefore, the examples do not include error checking 
and timeouts.  Delta Tau’s actual production code does, however, and application programmers are 
strongly encouraged to include error checking and timeouts in their code to prevent hang-ups and 
unresponsive behavior. 
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Turbo PMAC Ethernet communications ports talk using the UDP or TCP protocol of the TCP/IP suite of 
protocols on port 1025.  Therefore, the programmer should open either a datagram socket (UDP) or a 
stream socket (TCP) on port 1025 the PMACPORT. 
sock = socket(PF_INET,SOCK_DGRAM,0);   // UDP Mode 
   or  
sock = socket(PF_INET,SOCK_STREAM,0);   // TCP Mode 
// Embedded Ethernet's IP address 
// The port that the embedded program is listening on. 
sin.sin_port = htons(PMACPORT);  
connect(*sock,(struct sockaddr*)&sin,sizeof(sin)); 

PMAC Ethernet Protocol Command Packet Description 
Command Packets.  All commands are sent over the socket in the form of the following structure: 
/ Ethernet command structure 
typedef struct tagEthernetCmd 
{ 
  BYTE  RequestType; 
  BYTE  Request; 
  WORD  wValue; 
  WORD  wIndex; 
  WORD  wLength; 
  BYTE  bData[1492]; 
} ETHERNETCMD,*PETHERNETCMD; 

The following is a description of the fields in the ETHERNETCMD structure. 

RequestType is used in certain commands to indicate whether the request is an input with respect to the 
PC or an output command with respect to the PC.  Delta Tau makes the following defines: VR_UPLOAD 
= 0xC0 for a command sent to host and VR_DOWNLOAD = 0x40 for a command sent to the device. 

Request indicates what type of command you are requesting from the Turbo PMAC Ethernet 
connection0.  Below is a list of defines for the currently supported command set. 
#define VR_PMAC_SENDLINE     0xB0 
#define VR_PMAC_GETLINE      0xB1 
#define VR_PMAC_FLUSH        0xB3 
#define VR_PMAC_GETMEM       0xB4 
#define VR_PMAC_SETMEM       0xB5 
#define VR_PMAC_SETBIT       0xBA 
#define VR_PMAC_SETBITS      0xBB 
#define VR_PMAC_PORT         0xBE 
#define VR_PMAC_GETRESPONSE  0xBF 
#define VR_PMAC_READREADY    0xC2 
#define VR_CTRL_RESPONSE     0xC4 
#define VR_PMAC_GETBUFFER    0xC5 
#define VR_PMAC_WRITEBUFFER  0xC6 
#define VR_PMAC_WRITEERROR   0xC7 
#define VR_FWDOWNLOAD        0xCB 
#define VR_IPADDRESS         0xE0 

wValue is request specific, and its use is indicated in under the description of each command. 
wIndex is request specific, and its use is indicated in under the description of each command. 
wLength indicates the length of the bData field below. 
bData is the meaningful data that is sent to the PMAC. 
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Every command that is sent to the Turbo PMAC through an Ethernet port begins using the 
ETHERNETCMD packet structure and is initiated with a PC send command.  Every command then must 
issue a recv command to either receive an acknowledgement character back via the recv command or 
receive meaningful data. 
#define ETHERNETCMDSIZE 8 
send(sock,(char *)&EthCmd,ETHERNETCMDSIZE,0); 
recv(sock,(char *)&EthCmd,1,0); 

Turbo PMAC Ethernet Protocol Command Set 
This section describes the important commands in the Ethernet communications protocols and how they 
must be implemented. 

VR_PMAC_FLUSH 
This packet causes a <CTRL-X> command character (flush communications buffers) to be issued to the 
Turbo PMAC and will wait up to 10 msec for Turbo PMAC to respond with an acknowledging <CTRL-
X> echo character.  The packet that is sent should be set up as follows.  One byte will be returned upon 
successful completion of the command. 
EthCmd.RequestType = VR_DOWNLOAD; 
EthCmd.Request     = VR_PMAC_FLUSH; 
EthCmd.wValue      = 0; 
EthCmd.wIndex      = 0; 
EthCmd.wLength     = 0; 
EthCmd.bData – not used for this command 

Example 
int CALLBACK PmacSockFlush() 
{ 
   ETHERNETCMD EthCmd; 
   int         rc,iTimeout; 
 
   EthCmd.RequestType = VR_DOWNLOAD; 
   EthCmd.Request     = VR_PMAC_FLUSH; 
   EthCmd.wValue      = htons(FLUSH_TIMEOUT); 
   EthCmd.wIndex      = 0; 
   EthCmd.wLength     = 0; 
 
   send(sock, 
        (char *)&EthCmd, 
         ETHERNETCMDSIZE , 
         0); 
   recv(sock, 
        (char *)&EthCmd, 
        1, 
        0); 
} 

The above example and all of the examples in this document do not perform error checking and timeout 
checking.  It is the application developer’s responsibility to perform error checking and timeout checks to 
insure that the application does not hang. 

VR_PMAC_SENDLINE 
This packet causes the NULL-terminated string in EthCmd.bData to be sent to the Turbo PMAC.   The 
string should not be terminated with a carriage return as this is done by the firmware.  One byte will be 
returned upon successful completion of the command. 
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EthCmd.RequestType = VR_DOWNLOAD; 
EthCmd.Request     = VR_PMAC_SENDLINE; 
EthCmd.wValue      = 0; 
EthCmd.wIndex      = 0; 
EthCmd.wLength     = htons( (WORD)strlen(outstr)); 
strncpy((char *)&EthCmd.bData[0], 
         outstr 
         ,(WORD)strlen(outstr)); 
Example 
int CALLBACK PmacSockSendLine(char *outstr) 
{ 
   EthCmd.RequestType = VR_DOWNLOAD; 
   EthCmd.Request     = VR_PMAC_SENDLINE; 
   EthCmd.wValue      = 0; 
   EthCmd.wIndex      = 0; 
   EthCmd.wLength     = htons( (WORD)strlen(outstr)); 
   strncpy((char *)&EthCmd.bData[0],outstr,(WORD)strlen(outstr)); 
 
   send(sock, 
        (char *)&EthCmd, 
        ETHERNETCMDSIZE + strlen(outstr), 
       0); 
   recv(sock,(char *)&EthCmd,1 ,0); 
} 

VR_PMAC_GETLINE 
This packet causes the Ethernet connection to return any available string that may be residing in the 
Turbo PMAC.  All characters up to a <CR>, <ACK>, or <LF> are returned. The available string in 
PMAC is returned and should be captured via an Ethernet recv command.  It is recommended that this 
function not be used.  Use VR_PMAC_GETBUFFER instead, as this function will retrieve multiple lines 
and will greatly enhance performance as opposed to using multiple calls of VR_PMAC_GETLINE. 
EthCmd.RequestType = VR_UPLOAD; 
EthCmd.Request     = VR_PMAC_GETLINE; 
EthCmd.wValue      = 0; 
EthCmd.wIndex      = 0; 
EthCmd.wLength     Not used 

Example 
int CALLBACK PmacSockGetLine(char *instr) 
{ 
   EthCmd.RequestType = VR_DOWNLOAD; 
   EthCmd.Request     = VR_PMAC_GETLINE; 
   EthCmd.wValue      = 0; 
   EthCmd.wIndex      = 0; 
   EthCmd.wLength     = htons( (WORD)strlen(outstr)); 
   strncpy((char *)&EthCmd.bData[0],outstr,(WORD)strlen(outstr)); 
 
   send(sock,(char *)&EthCmd,ETHERNETCMDSIZE,0); 
   recv(sock,(char *)&instr,255 ,0); 
} 

VR_PMAC_GETBUFFER 
This packet causes the Ethernet connection to return any available string that may be residing in the 
Turbo PMAC.  All characters up to an <ACK> or <LF> are returned.   If a <BEL> or <STX> character is 
detected, only the data up to the next <CR> is returned.  The maximum amount of data that will ever be 
returned is 1400 bytes.  It is the caller’s responsibility to logically determine if there is more data to 
follow and if VR_PMAC_GETBUFFER must be called again to retrieve all of the data available. 
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EthCmd.RequestType = VR_UPLOAD; 
EthCmd.Request     = VR_PMAC_GETBUFFER; 
EthCmd.wValue      = 0; 
EthCmd.wIndex      = 0; 
EthCmd.wLength     = htons( (WORD)strlen(outstr)); 
EthCmd.bData       - Not Used 

Example 
int CALLBACK PmacSockGetBuffer(char *instr) 
{ 
   EthCmd.RequestType = VR_DOWNLOAD; 
   EthCmd.Request     = VR_PMAC_GETBUFFER; 
   EthCmd.wValue      = 0; 
   EthCmd.wIndex      = 0; 
   EthCmd.wLength     = htons( (WORD)strlen(outstr)); 
   send(sock,(char *)&EthCmd,ETHERNETCMDSIZE,0); 
   recv(sock,(char *)&instr,1400,0); 
} 

VR_ IPADDRESS 
This packet permits either setting or retrieval of the current IP address in the Ethernet interface. 

When setting the IP address to a new value it is required that the Turbo PMAC is powered down for the 
new address to take effect. 
EthCmd.RequestType = VR_UPLOAD to retrieve the IP address 

or 
EthCmd.RequestType = VR_DOWNLOAD to set the IP address 

EthCmd.Request  = VR_IPADDRESS; 
EthCmd.wValue   = 0; 
EthCmd.wIndex   = 0; 
EthCmd.wLength  = htons(4); 
EthCmd.bData    = contains 4 bytes of data indicating the IP   
                  address set on the send command. 

For the receive command four bytes of data are returned indicating the IP address. 

VR_PMAC_SENDCTRLCHAR 
This packet permits sending of a single character or control character to the Turbo PMAC Ethernet port.  
The packet below is what is to be sent.  The data received is irrelevant; its purpose is to insure the sender's 
command was received. 
EthCmd.RequestType = VR_DOWNLOAD; 
EthCmd.Request     = VR_PMAC_SENDCTRLCHAR; 
EthCmd.wValue      = htons(outch);  // the character to write 
EthCmd.wIndex      = 0; 
EthCmd.bData       - Not Used 

VR_PMAC_PORT 
This packet permits sending of a single byte or receiving of single byte through the Ethernet port to or 
from the CPU’s host port. 

To send data to the host port set the packet as follows.  After sending the packet the programmer must 
wait to receive 1 byte via the recv function before continuing. The data received is irrelevant; its purpose 
is to insure the sender’s command was received. 
EthCmd.RequestType = VR_DOWNLOAD; 
EthCmd.Request     = VR_PMAC_PORT; 
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EthCmd.wValue      = htons((WORD)offset); 
EthCmd.wIndex      = htons((WORD)outch); 
EthCmd.wLength     = 0; 

To receive data from the host port set the packet as follows. After sending the packet the programmer will 
receive 1 byte, which is the value the Ethernet port read from the Turbo PMAC’s CPU host port. 
EthCmd.RequestType = VR_UPLOAD; 
EthCmd.Request     = VR_PMAC_PORT; 
EthCmd.wValue      = htons(offset); 
EthCmd.wIndex      = 0; 
EthCmd.wLength     = 0; 

VR_PMAC_READREADY 
This packet permits determining if there is data on the Turbo PMAC CPU ready to be read. 

Two bytes will be returned.  The first byte, if non-zero, indicates there is data to be read; if zero, there is 
no data to be read.  The packet will be set up as follows: 
EthCmd.RequestType = VR_UPLOAD; 
EthCmd.Request     = VR_PMAC_READREADY; 
EthCmd.wValue      = 0; 
EthCmd.wIndex      = 0; 
EthCmd.wLength     = htons(2); 

Example 
ETHERNETCMD EthCmd; 
char        data[2]; 
int         rc; 

EthCmd.RequestType = VR_UPLOAD; 
EthCmd.Request     = VR_PMAC_READREADY; 
EthCmd.wValue      = 0; 
EthCmd.wIndex      = 0; 
EthCmd.wLength     = htons(2); 

rc = send(sock,((char *)&EthCmd),ETHERNETCMDSIZE,0); 
rc = recv(*((SOCKET *)vh[dwDevice].hDriver),data,2,0); 
return data[0]; 

VR_CTRL_REPONSE 
This packet permits obtaining the response after sending a control character.  The packet is set up as 
follows.  The received data is the response to the sent control character.  Meaningful data is returned for 
the following control characters <CTRL-B>, <CTRL-C>, <CTRL-F>, <CTRL-G>, <CTRL-P>, and 
<CTRL-V>.  All other data control characters do not return meaningful data. 
EthCmd.RequestType = VR_UPLOAD; 
EthCmd.Request     = VR_CTRL_RESPONSE; 
EthCmd.wValue   = htons(outchar);//outchar=ctrl char to send out 
EthCmd.wIndex   = 0; 
EthCmd.wLength  = htons(len); 

rc = send(sock,((char *)&EthCmd),ETHERNETCMDSIZE,0); 
rc = recv(sock,outstr,len,0);  // returned data appears  

VR_PMAC_WRITEBUFFER 
This packet permits writing multiple lines to the Turbo PMAC with just one packet.  The packet is set up 
as follows.  The received data is the response to the sent control character.  It is usually used for 
downloading a file.  Data should be of the form in which each line is separated by null byte.   
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For example, the following multi-line string could be sent in a single packet: OPEN PLC 1 
CLEAR<00>P1=P1+1 <00> CLOSE<00>, where <00> indicates a null byte.  The maximum data 
length is 1024 bytes; anything bigger must be separated into multiple calls of 
VR_PMAC_WRITEBUFFER.   

Upon receiving this packet, the Turbo PMAC Ethernet interface sends back 4 bytes of data.  Byte 3 
indicates if there was an error downloading.  If the value of this byte is 0x80, there was an error during 
the download.  If it is 0, there was no error during download.  Byte 2 indicates the Turbo PMAC error 
type if there was a download error.  Consult the Turbo PMAC Software Reference summary or error list 
under variable I6.  Bytes 0 and Byte 1 together form a WORD that indicates the line number that caused 
the error to occur.  Byte 1 is the MSB and Byte 0 is the LSB of that word. 

Example 
char errcode[4]; 

EthCmd.RequestType = VR_DOWNLOAD; 
EthCmd.Request     = VR_PMAC_WRITEBUFFER; 
EthCmd.wValue      = 0; 
EthCmd.wIndex      = 0; 
EthCmd.wLength     = htons(len) ; 

memcpy(EthCmd.bData,data, len); 
send(sock,(char *)&EthCmd,ETHERNETCMDSIZE + len,0); 
recv(sock,(char *)errcode,4 ,0); 

VR_FWDOWNLOAD 
This packet permits writing raw data to the Turbo PMAC host port for firmware download.  The Ethernet 
firmware takes the stream of data, then writes to the Turbo PMAC CPU host port at addresses {base + 5}, 
{base + 6}, and {base + 7}.  The packet includes in the wValue parameter to command to start the 
download at host port address {base + 5}.  This packet permits writing multiple lines to the Turbo PMAC 
with just 1 packet.   

The packet is set up as follows.  The received data is the response to the sent control character.  It is 
usually used for downloading a file.  Data should be of the form each line separated by null byte. After 
sending the packet the programmer must wait to receive 1 byte via the recv function before continuing. 
The data received is irrelevant; its purpose is to insure the sender’s command was received. 
EthCmd.RequestType = VR_DOWNLOAD; 
EthCmd.Request= VR_FWDOWNLOAD; 
EthCmd.wValue = htons((WORD)bRestart); //bRestart = 1 on start 
EthCmd.wIndex      = 0; 
EthCmd.wLength     = htons((WORD)len) ; 

memcpy(EthCmd.bData,data, len); 
send(sock,(char *)&EthCmd,ETHERNETCMDSIZE + len,0); 
recv(sock,(char *)&errcode,1 ,0); 

VR_PMAC_GETRESPONSE 
This packet causes the Ethernet connection to send a string to Turbo PMAC, then to return any available 
strings that may be residing in the Turbo PMAC.  All characters up to an <ACK> or <LF> are returned.   
If a <BEL> or <STX> character is detected, only the data up to the next  <CR> is returned.  The 
maximum amount of data that will ever be returned is 1400 Bytes.  It is the caller's responsibility to 
logically determine if there is more data to follow and if VR_PMAC_GETBUFFER needs to be called 
again to retrieve all of the data available. 
EthCmd.RequestType = VR_DOWNLOAD; 
EthCmd.Request     = VR_PMAC_GETRESPONSE; 
EthCmd.wValue      = 0; 
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EthCmd.wIndex      = 0; 
EthCmd.wLength     = htons( (WORD)strlen(outstr)); 
strncpy((char *)&EthCmd.bData[0],outstr,(WORD)strlen(outstr)); 

send(sock,(char*)&EthCmd,ETHERNETCMDSIZE + strlen(outstr),0); 
recv(sock, szPmacData,1400,0); 

VR_PMAC_GETMEM 
This packet causes the Ethernet connection to read data from the DPRAM shared between the Turbo 
PMAC CPU and the Ethernet microcontroller.  Up to 1400 bytes may be received in a single packet.  The 
wValue field contains the byte offset to retrieve the data from, while the wLength parameter indicates how 
many bytes to receive. 

Example 
EthCmd.RequestType = VR_UPLOAD; 
EthCmd.Request     = VR_PMAC_GETMEM; 
EthCmd.wValue      = htons(offset);  //  
EthCmd.wIndex      = 0; 
EthCmd.wLength     = htons(length); 

send(sock,(char *)&EthCmd,ETHERNETCMDSIZE ,0); 
recv(sock,(char *)data,1400,0); 

VR_PMAC_SETMEM 
This packet causes the Ethernet connection to write data to the DPRAM shared between the Turbo PMAC 
CPU and the Ethernet microcontroller.  Up to 1400 bytes may be written in a single packet.  The wValue 
field contains the byte offset to write the data to while the wLength parameter indicates how many bytes 
to write. After sending the packet the programmer must wait to receive 1 byte via the recv function before 
continuing. The data received is irrelevant; its purpose is to insure the sender’s command was received. 

Example 
EthCmd.RequestType = VR_UPLOAD; 
EthCmd.Request     = VR_PMAC_SETMEM; 
EthCmd.wValue      = htons(offset); 
EthCmd.wIndex      = 0; 
EthCmd.wLength     = htons(length); 

VR_PMAC_SETBIT 
This packet causes the Ethernet connection to perform a write to DPRAM shared between the Turbo 
PMAC CPU and the Ethernet microcontroller that either sets bits in a 32-bit word or clears bits in a 32-bit 
word.  If the wIndex parameter is supplied with a 1, a logical OR is performed that sets bits.  If it is 0, a 
logical AND is performed, which clears bits.  It is the programmer’s responsibility to use the appropriate 
mask for setting or clearing bits. The wValue field contains the byte offset to retrieve the data from.  After 
sending the packet the programmer must wait to receive 1 byte via the recv function before continuing. 
The data received is irrelevant; its purpose is to insure the sender’s command was received. 

Example 
DWORD       mask = 0x00000001; 

EthCmd.RequestType = VR_UPLOAD; 
EthCmd.Request     = VR_PMAC_SETBIT; 
EthCmd.wValue      = htons((WORD)offset); 
EthCmd.wIndex      = htons((WORD)on); 
EthCmd.wLength     = htons(len); 

// generate the mask 
mask <<= bitno; // zero based 
// If clearing a bit complement mask to prepare firmware for AND 
if(!on) 
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     mask = ~mask; 
memcpy(EthCmd.bData,&mask,len); 

// Send command request 
send(sock,(char *)&EthCmd,ETHERNETCMDSIZE+len,0); 
recv(sock,(char *)&errcode,1,0); 

VR_PMAC_SETBITS 
This packet causes the Ethernet connection to perform a write to DPRAM shared between the Turbo 
PMAC CPU and the Ethernet microcontroller that sets bits in a 32-bit word to a new value. The wValue 
field contains the byte offset to retrieve the data from.  The bData field of the Ethernet command packet 
must be stuffed with a mask indicating which bits to set in four bytes followed by four bytes that indicate 
the bits to clear in a 32-bit word. After sending the packet the programmer must wait to receive 1 byte via 
the recv function before continuing. The data received is irrelevant; its purpose is to insure the sender’s 
command was received. 

Example 
EthCmd.RequestType = VR_UPLOAD; 
EthCmd.Request     = VR_PMAC_SETBITS; 
EthCmd.wValue      = htons((WORD)offset); 
EthCmd.wIndex      = 0; 
EthCmd.wLength     = htons(2*sizeof(DWORD)); 

temp = 0xFF03FFFF ; 
memcpy(EthCmd.bData,&temp,sizeof(DWORD)); 
temp = 0x00030000 ; 
memcpy(EthCmd.bData + 4,&temp,sizeof(DWORD)); 
// Send command request 
send(sock,(char *)&EthCmd,ETHERNETCMDSIZE + 2*sizeof(DWORD),0); 
recv(sock,(char *)&errcode,1,0); 

Data Gathering 
Turbo PMAC has a general-purpose data gathering function for repetitive on-the-fly storage of real-time 
data.  In this function, Turbo PMAC can store the contents of up to 48 memory locations at specified 
intervals up to the servo interrupt frequency.  This data is stored in a buffer in open Turbo PMAC 
memory for later transmission to the host.  This feature is useful for filter tuning and motion problem 
solving.   

Executive Program Data Gathering 
Most users will utilize this feature in conjunction with the PMAC Executive Program on the PC, which 
handles its details automatically.  Refer to the manual of the Executive Program for details.  It is possible 
(although not trivial) to write a custom host program to utilize this feature. 

Gathering I-Variables 
Variable I5000 controls the location and mode of the data-gathering buffer.  Bit 1 of I5000 controls 
whether the gathered data is stored in Turbo PMAC’s main memory (bit 1 = 0), or whether it is stored in 
optional dual-ported RAM (bit 1 = 1).  The PMAC Executive program supports only the use of data 
gathered to Turbo PMAC’s main memory. 

Bit 0 of I5000 controls whether gathering will stop when the end of the buffer is reached, or whether it 
will wrap around and continue gathering at the beginning of the buffer, overwriting previously gathered 
data.  Setting bit 0 to 0 causes gathering to stop at the end.  This is the most common mode, used for 
gathering during a known sequence of operation.   
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Setting bit 0 of I5000 to 1 enables the wrap-around.  This mode is required for gathering to DPRAM and 
real-time upload; it can be useful in gathering to main memory when trying to catch an intermittent 
problem.  When gathering in this mode, it is a good idea to gather the servo-cycle counter at X:$000000, 
so it is possible for the host-computer software to unwrap the data properly.  The PMAC Executive 
program’s data gathering and plotting routines can upload and plot data from a buffer that has wrapped 
around, but it cannot unwrap this data to plot it in the proper time order. 

The user specifies up to 48 source addresses in I-variables I5001 to I5048.  The low 19 bits of these 
variables represent the word address itself.  The top 2 bits control whether the X word, the Y word, or 
both (in fixed or floating format) will be gathered.  He sets a “mask” in 24-bit variables I5050 and I5051 
to specify which of these 48 addresses will be collected, and defines the gathering period in servo 
interrupt cycles with I5049. 

Gathering Commands 
The buffer in Turbo PMAC’s memory is set up with the on-line DEFINE GATHER [{constant}] 
command.  If no value is specified, the whole of Turbo PMAC’s open memory is reserved for this buffer.  
(This means that no new motion or PLC programs can be added to Turbo PMAC as long as this space is 
reserved).  If a data-gathering buffer is present in Turbo PMAC’s memory, even if it does not occupy all 
open memory no other buffer of the type created with a DEFINE {buffer} command (e.g. COMP, 
LOOKAHEAD) may be added to memory until the data-gathering buffer is deleted. 

The actual data gathering function is started with the GATHER command.  When this has been done, 
Turbo PMAC will store the specified data at the specified rate into the gather buffer until told to stop with 
the ENDGATHER, or until space runs out.  These are on-line commands; from within a motion program or 
PLC program, the CMD"GATHER" and CMD"ENDGATHER" statements are used.   

In a motion program, these statements are executed at the program calculation time, which can be well 
ahead of the move execution time, so if you are not careful, it is easy to miss gathering the last one or two 
commanded moves because the CMD"ENDGATHER" statement is issued before these moves actually 
execute.  Typically, it is a good idea to precede the CMD"ENDGATHER" statement with a DWELL 
statement in the motion program.  The DWELL statement stops any lookahead in the program, so the 
CMD"ENDGATHER" statement will not be issued until the actual execution of the dwell is completed.  
Even a DWELL 0 will ensure that the end of the last commanded move is gathered; a longer dwell can 
catch the final settling. 

The statements CMD"GATHER" and CMD"ENDGATHER" are executed as background tasks in Turbo 
PMAC.  Their function is simply to set and clear, respectively, the data gathering control bit at 
X:$000006 bit 19.  To do this without a background-cycle delay, you could assign an M-variable to this 
bit (e.g. M89->X:$000006,19), then set and clear this bit directly in the program.  

The stored data can be uploaded to the host with the LIST GATHER command.  The data is sent to the 
host in ASCII hexadecimal form, with 6 characters per item for the single (X or Y) words, and 12 
characters per item for the double (L or D) words.  The data is provided in 12-character groupings.  If the 
data gathered for a sample leaves the last grouping with only six characters, this last grouping is filled out 
with the contents of the servo cycle counter register X:$000000. 

It is the host program’s responsibility to decode and process this data, for plotting, storage, analysis, or 
other use.  

The space reserved for the data-gathering buffer can be freed with the DELETE GATHER command. 
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Real-Time Data Gathering Through the Dual-Ported RAM 
Using the dual-ported RAM, it is possible to perform Turbo PMAC’s data gathering function and upload 
the gathered data to the host computer in real time.  (The standard data gathering function – used by the 
PMAC Executive Program to produce plots – performs the data gathering in real time, storing to open 
regular RAM in Turbo PMAC, then uploads to the host afterwards.)  This real-time uploading requires 
tight handshaking between the host and Turbo PMAC to ensure that the data is passed reliably and 
efficiently. 

It is possible in some Turbo PMAC systems, particularly in UMAC systems, that multiple DPRAM ICs 
be present.  Data gathering is possible only to the DPRAM IC whose Turbo PMAC base address is 
specified in I24.  If I24 is set to 0, the DPRAM IC whose Turbo PMAC base address is $060000 is used. 

Setting Up 
The DPRAM data gathering function is set up the same way as for the standard data gathering function, 
with Turbo PMAC I-Variables I5001 – I5051 controlling what data is to be gathered and how often.  To 
specify data gathering into the DPRAM, I5000 should be set to 3 (it is set to 0 for the standard gathering). 

The buffer for temporary storage of the gathered data is established by the DEFINE GATHER 
{constant} command, where {constant} is the size of the buffer in Turbo PMAC words (each 
Turbo PMAC word is 32 bits in the DPRAM).  The buffer always starts at Turbo PMAC address offset 
$0450 from the beginning of DPRAM (address $060450 with the default DPRAM base address of 
$060000), which from the host side is DPRAM base address plus 0x1140 (4416 decimal) bytes.  Each 
short data source occupies one 32-bit word in the buffer; each long data source (fixed-point or floating-
point) occupies two 2 32-bit words.  You must set the size of the buffer based on the number and length 
of the data sources, and the worst-case number of gathering cycles that the host could fall behind in 
reading data from the DPRAM.  This size must not be greater than 2500 for the 8Kx16 DPRAM.  Typical 
sizes are 20 to 100 words. 

The DPRAM gathering function is started and stopped the same as for the standard gathering: either with 
the GATHER and ENDGATHER (ENDG) commands, or by setting and clearing the data-gather control bits 
directly through M-variables. 

Getting the Data 
Once the gathering function has begun, the host must monitor registers in the DPRAM that contain 
pointers to the data that has been loaded into the DPRAM.  There are two key registers, and only one of 
these needs to be read repeatedly.  At the DPRAM base address plus 0x113E (4414 decimal) is the 
pointer to the end of the buffer.  This value is determined by the DEFINE GATHER command and will be 
fixed for a given application.   

At the DPRAM base address plus 0x113C (4412 decimal) is the pointer to the next address where 
gathered data will be placed in DPRAM.  It is this register that the host should monitor repeatedly to see 
if it has changed -- meaning that new data has been placed in the DPRAM -- and if it has changed, how 
many times data has been placed. 

Both of these registers contain a Turbo PMAC memory word address – actually the offset from the start 
of the gather buffer ($0450 from the start of DPRAM itself).  To translate into a host memory byte 
address, the following equation should be used: 

 Host_address = (DPRAM_base_address + 0x1140) + 4 * (Pointer_value) 

The value of the storage pointer will wrap back to 0 (Turbo PMAC address {DPRAM base +$0450}) 
when it becomes greater than or equal to the value of the buffer-end pointer.  No item will be stored in the 
DPRAM starting at the Turbo PMAC word address shown by the buffer-end pointer, although if a long 
item would start to be stored in the previous DPRAM word, the second half would be placed in the actual 
buffer-end word. 
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Data Format 
Data is stored in the buffer in 32-bit sign-extended form.  That is, each short (24-bit) word gathered from 
Turbo PMAC is sign-extended and stored in 32-bits of DPRAM (LSByte first).  The most significant byte 
is all ones or all zeros, matching bit 23.  Each long (48-bit) word is treated as 2 24-bit words, with each 
short word sign-extended to 32 bits.  The host computer must reassemble these words into a single value. 

To reassemble a long fixed-point word in the host, take the less significant 32-bit word, and mask out the 
sign extension (top eight bits).  In C, this operation could be done with a bit-by- bit AND: (LSW & 
16777215).  Treat this result as an unsigned integer.  Next, take the more significant word and multiply it 
by 16,777,216.  Finally, add the two intermediate results. 

To reassemble a long floating-point value in the host, we must first split the 64-bit value into its pieces.  
Bits 0 to 11 of the 32-bit word at the lower address form the exponent.  Bits 12-23 of this word form the 
low 12 bits of the 36-bit mantissa.  Bits 0-23 of the 32-bit word form the high 24 bits of the mantissa; bits 
24-31 are sign extension.  The following code shows one way of creating these pieces (not the most 
efficient): 
exp = first_word & 0x00000FFFL; // Select low 12 bits for exponent 
low_mantissa = (first_word >> 12) & 0x00FFFL; 
      // Select next 12 bits for mantissa 
      // shift right and mask  
high_mantissa = second_word; 

The floating point value can then be reconstructed with: 
 mantissa = high_mantissa * 4096.0 + low_mantissa; 
 value = mantissa * pow (2.0, exp - 2047 - 35); 

2047 is subtracted from the exponent to convert it from an unsigned to a signed value; 35 is subtracted to 
put the mantissa in the range of 0.5 to 1.0.   

The following procedure in C performs the conversion efficiently and robustly: 
double DPRFLoat (long first_word, long second word) { 
 // return mantissa/2^35 * 2^(exp-2047) 
 double mantissa; 
 long int exp; 
 m = (double)(second_word) * 4096.0 +  
  (double)((first_word>>12) & 0x00FFFL); 
 if (m == 0.0) return (0.0); 
 exp = (first_word & 0x00000FFFL) - 2082; // 2082=2047+35 
 return (mantissa * pow(2.0 * (double) exp)); 
} 

To reassemble a long floating-point word in the host, treat the less significant word the same as for the 
fixed-point case above.  Take the bottom 12 bits of the more significant word (MSW & 4095), multiply 
by 16,777,216 and add to the masked less significant word.  This forms the mantissa of the floating-point 
value.  Now take the next 12 bits (MSW & 16773120) of the more significant word.  This is the exponent 
to the power of two, which can be combined with the mantissa to form the complete value. 
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DUAL-PORTED RAM DATA GATHERING FORMATS
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