AutoMax
Enhanced Ladder Language

Instruction Manual J2-3094-4

RELIANCE'.
ELECTRICH[]

The information in this user's manual is subject to change without notice.

ONLY QUALIFIED ELECTRICAL PERSONNEL FAMILIAR WITH THE
CONSTRUCTION AND OPERATION OF THIS EQUIPMENT AND THE HAZARDS
INVOLVED SHOULD INSTALL, ADJUST, OPERATE, OR SERVICE THIS
EQUIPMENT. READ AND UNDERSTAND THIS MANUAL AND OTHER
APPLICABLE MANUALS IN THEIR ENTIRETY BEFORE PROCEEDING. FAILURE
TO OBSERVE THIS PRECAUTION COULD RESULT IN SEVERE BODILY INJURY
OR LOSS OF LIFE.

WARNING

THE USER MUST PROVIDE AN EXTERNAL, HARDWIRED EMERGENCY STOP
CIRCUIT OUTSIDE THE CONTROLLER CIRCUITRY. THIS CIRCUIT MUST
DISABLE THE SYSTEM IN CASE OF IMPROPER OPERATION. UNCONTROLLED
MACHINE OPERATION MAY RESULT IF THIS PROCEDURE IS NOT FOLLOWED.
FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN BODILY INJURY.

Ethernet™ is a trademark of Xerox Corporation.

Microsoft™, Windows ™, Windows 95™, 0S/2™, MS-DOS™, and WordPad ™ are trademarks of Microsoft.
Multibus ™ is a trademark of Intel.

AutoMate, Shark, AutoMax, Resource, and R-Net are trademarks of Rockwell Automation.

Reliance Electric is a trademark of Rockwell Automation, a core business of Rockwell International
Corporation.

1.0 Relaylnstructionscccoiiiiiiiiiii i 1-1

2.0

1.1
1.2
1.3
1.4
1.5

Normally Open Contact (NOI) 1-2
Normally Closed Contact (NCI), 1-3
Positive Transition Contact (PTI)ccooinn. 1-4
Negative Transition Contact (NTI)oouun. 1-5
Using Transition Contactso, 1-6
1.5.1 Using a Variable Only on a Transition Contact 1-6

1.5.2 Using a Variable on a Coil and on a Transition Contact .. 1-7

1.5.3 Using a Variable on More Than One Coil and
Ona Transition Contact 1-8

1.5.4 Forcing or Setting Variables Used on Transition Contacts 1-9
1.5.5 Using a Variable on a Set (SCO) Coil and Reset Coll

(RCO) Pair and on a Transition Contact 1-10
1.5.6 Using Transition Contacts in a Program with a
Jump and Label Construct 1-11
1.6 Always True Contact (ATI) ... 1-12
1.7 Always False Contact (AFI)o i 1-13
1.8 COil (CO) o vveei e 1-14
1.9 Set (Latch) Coil (SCO) ... 1-15
1.10 Reset (Unlatch) Coil (RCO) 1-16
1.11 Errors Caused by the Relay Instructions 1-17
CounterInstruction.............ooiiiiii it 21
2.1 CountUp Down (CTUD) ... 2-2
2.1.1 Input Parameters for the Count Up Down Instruction 2-3
2.1.2 Output Parameters for the Count Up Down Instruction .. 2-4
2.1.3 Example of a Count Up Down Instruction 2-5
2.2 ResettingaCounter ...t 2-5

3.0

2.3 Changing the Preset Value of a Counter Instruction
by Using Ladder Logic

TimerInstructionsc.oiiiiiii i i
3.1 Retentive Timer On (RTO)
3.1.1 Input Parameters for the RTO Instruction
3.1.2 Output Parameters for the RTO Instruction
3.1.3 RTO Timing Diagramiiiiiinnnn.
3.1.4 Example ofan RTO Instruction
3.2 Timer Off Delay (TOF)o
3.2.1 Input Parameters for the TOF Instruction
3.2.2 Output Parameters for the TOF Instruction.............
3.2.3 TOF Timing Diagram
3.2.4 Example of a TOF Instruction
3.3 TimerOnDelay (TON)t
3.3.1 Input Parameters for the TON Instruction
3.3.2 Output Parameters for the TON Instruction
3.3.3 TONTiming Diagramcoiievo....
3.3.4 Example ofa TON Instruction
3.4 TimerPulse (TP) ... ot
3.4.1 Input Parameters for the TP Instruction
3.4.2 Output Parameters for the TP Instruction
343 TPTimingDiagramcoiiiiin...
3.4.4 Example of a TP Instruction

3.5 Changing the Preset Value of a Timer Instruction
by Using Ladder Logic i

4.0 Comparelnstructionsccooiiiiiiiiiiiii i

4.1

4.2

4.3

4.4

4.5

Equal To (EQ)o
4.1.1 Input Parameters for the Equal To Instruction
4.1.2 Output Parameters for the Equal To Instruction
4.1.3 Example of an Equal To Instruction
Greater Than OrEqual To(GE)ot

4.2.1 Input Parameters for the Greater Than Or Equal To
Instruction

4.2.2 Output Parameters for the Greater Than Or Equal To
Instruction

4.2.3 Example of a Greater Than Or Equal To Instruction
Greater Than (GT)ottt
4.3.1 Input Parameters for the Greater Than Instruction
4.3.2 Output Parameters for the Greater Than Instruction
4.3.3 Example of a Greater Than Instruction
LessThanOrEqual To (LE)

4.4.1 Input Parameters for the Less Than Or Equal To
Instruction

4.4.2 Output Parameters for the Less Than Or Equal To
Instruction

4.4.3 Example of a Less Than Or Equal To Instruction
LessThan (LT) ...
4.5.1 Input Parameters for the Less Than Instruction
4.5.2 Output Parameters for the Less Than Instruction
4.5.3 Example of a Less Than Instruction

5.0

4.6

4.7

4.8

4.9

Limit (LIMIT) .o
4.6.1 Input Parameters for the Limit Instruction
4.6.2 Output Parameters for the Limit Instruction
4.6.3 Example of a Limit Instruction........................
Mask Compare (MSK)
4.7.1 Input Parameters for the Mask Compare Instruction
4.7.2 Output Parameters for the Mask Compare Instruction . . .
4.7.3 Example of a Mask Compare Instruction
Not Equal To (NE)
4.8.1 Input Parameters for the Not Equal To Instruction
4.8.2 Output Parameters for the Not Equal To Instruction
4.8.3 Example of a Not Equal To Instruction
Errors Caused by Compare Instructions
4.9.1 Errors Caused by All Compare Instructions
4.9.2 Errors Caused by the Limit Instruction

Compute Instructionscoiiiiiiiiiiiiiiiiiiines

5.1

5.2

Absolute Value (ABS)
5.1.1 Input Parameters for the Absolute Value Instruction
5.1.2 Output Parameters for the Absolute Value Instruction . ..
5.1.3 Example of an Absolute Value Instruction
Add (ADD) .ot
5.2.1 Input Parameters for the Add Instruction
5.2.2 Output Parameters for the Add Instruction
5.2.3 Example of the Add Instruction

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Divide (DIV) ... 5-9

5.3.1 Input Parameters for the Divide Instruction 5-10
5.3.2 Output Parameters for the Divide Instruction 5-11
5.3.3 Example of a Divide Instruction 5-12
Modulo (MOD) ...t 5-12
5.4.1 Input Parameters for the Modulo Instruction 5-13
5.4.2 Output Parameters for the Modulo Instruction 5-14
5.4.3 Example of the Modulo Instruction 5-15
Multiply (MUL) ... 5-15
5.5.1 Input Parameters for the Multiply Instruction 5-16
5.5.2 Output Parameters for the Multiply Instruction 5-17
5.5.3 Example of a Multiply Instruction 5-18
Multiply Divide (MDV) ... e 5-19
5.6.1 Input Parameters for the Multiply Divide Instruction 5-20
5.6.2 Output Parameters for the Multiply Divide Instruction ... 5-21
5.6.3 Example of a Multiply Divide Instruction 5-22
Negate (NEG) 5-22
5.7.1 Input Parameters for the Negate Instruction............ 5-23
5.7.2 Output Parameters for the Negate Instruction 5-24
5.7.3 Example of a Negate Instruction 5-24
Square Root (SQRT) 5-25
5.8.1 Input Parameters for the Square Root Instruction 5-26
5.8.2 Output Parameters for the Square Root Instruction 5-27
5.8.3 Example of the Square Root Instruction 5-28
Subtract (SUB) ... 5-28
5.9.1 Input Parameters for the Subtract Instruction 5-29
5.9.2 Output Parameters for the Subtract Instruction 5-30

5.9.3 Example of a Subtract Instruction 5-31

Vi

5.10 Errors Caused by the Compute Instructions 5-31

5.10.1 Errors Caused by All Compute Instructions 5-32
5.10.2 Errors Caused by the Absolute Value Instruction 5-33
5.10.3 Errors Caused by the Addition Instruction 5-33
5.10.4 Errors Caused by the Divide, Modulo,
and Multiply Divide Instruction 5-34
5.10.5 Errors Caused by the Multiply Instruction 5-35
5.10.6 Errors Caused by the Negate Instruction 5-36
5.10.7 Errors Caused by the Square Root Instruction 5-37
5.10.8 Errors Caused by the Subtract Instruction 5-38
6.0 LogicalInstructionsciiiiiiiiiiiiiiiiii 6-1
6.1 Logical And (AND)o e 6-2
6.1.1 Input Parameters for the Logical AND Instruction 6-3
6.1.2 Output Parameters for the Logical AND Instruction 6-3
6.1.3 Example of a Logical AND Instruction 6-4
6.2 Logical Not (NOT)o e 6-5
6.2.1 Input Parameters for the Logical NOT Instruction 6-6
6.2.2 Output Parameters for the Logical NOT Instruction 6-6
6.2.3 Example of a Logical NOT Instruction 6-7
6.3 Logical Or (OR)ottt 6-8
6.3.1 Input Parameters for the Logical OR Instruction 6-9
6.3.2 Output Parameters for the Logical OR Instruction 6-9
6.3.3 Example of a Logical OR Instruction 6-10

7.0

6.4 Logical Exclusive Or (XOR)t 6-11
6.4.1 Input Parameters for the Logical Exclusive OR
Instruction 6-12
6.4.2 Output Parameters for the Logical Exclusive OR
Instruction 6-12
6.4.3 Example of a Logical Exclusive OR Instruction 6-13
6.5 Errors Caused by Logical Instructions 6-14
Data Conversion Instructionscciiiiiann, 7-1
7.1 Convert Integer Datato BCD (TO BCD) 7-2
7.1.1 Input Parameters for the Convert Integer Data to BCD
Instruction 7-3
7.1.2 Output Parameters for the Convert Integer Data to BCD
Instruction 7-4
7.1.3 Example of a Convert Integer Data To BCD Instruction .. 7-5
7.2 Convert From BCD to Integer Data (BCD_TO) 7-6
7.2.1 Input Parameters for the Convert From BCD to Integer
Data Instruction 7-7
7.2.2 Output Parameters for the Convert From BCD to
Integer Data Instruction 7-8
7.2.3 Example of a Convert From Binary Data to
Integer Data Instruction 7-9
7.3 Errors Caused by the Data Conversion Instructions 7-10
7.3.1 Errors Caused by All Data Conversion Instructions 7-10
7.3.2 Errors Caused by the Convert Integer Data To BCD
Instruction 7-11
7.3.3 Errors Caused by the Convert From Binary Data to
Integer Data Instruction 7-12

Vil

Vil

8.0 Movelnstructionsiiiiiiiiiiii it ii i 8-1

8.1

8.2

8.3

8.4

Move Source Data to Destination (MOVE) 8-2
8.1.1 Input Parameters for the Move Source Data to

Destination Instruction 8-3
8.1.2 Output Parameters for the Move Source Data to

Destination Instruction 8-4
8.1.3 Example of a Move Source Data to Destination Instruction8-5
Move Bits Between Integers/Double Integers (MVB) 8-6
8.2.1 Input Parameters for the Move Bits Between Integers/

Double Integers Instruction 8-7
8.2.2 Output Parameters for the Move Bits Between Integers/

Double Integers Instruction 8-8
8.2.3 Examples of a Move Bits Between Integers/

Double Integers Instruction 8-9
Masked Move (MVM) 8-10
8.3.1 Input Parameters for the Masked Move Instruction 8-11
8.3.2 Output Parameters for the Masked Move Instruction 8-12
8.3.3 Example of a Masked Move Instruction 8-13
Errors Caused by Move Instructions 8-14
8.4.1 Errors Caused by All Move Instructions 8-14
8.4.2 Errors Caused by the Move Source Data to Destination

Instruction 8-15
8.4.3 Errors Caused by the Move Bits between Integers/Double

Integers Instruction oL 8-16

9.0 Shift Register Instructionscciiiiiii i 9-1

9.1

9.2

9.3

9.4

9.5

Shift Left (SL)o 9-3
9.1.1 Input Parameters for the Shift Left Instruction 9-4
9.1.2 Output Parameters for the Shift Left Instruction 9-5
9.1.3 Example of a Shift Left Instruction 9-6
Circular Rotate Bits Left (ROL) ...t 9-7
9.2.1 Input Parameters for the Circular Rotate Bits Left

Instruction 9-8
9.2.2 Output Parameters for the Circular Rotate Bits Left

Instruction 9-9
9.2.3 Example of a Circular Rotate Bits Left Instruction 9-10
Circular Rotate Bits Left on Transition (RL) 9-11
9.3.1 Input Parameters for the Circular Rotate Bits Left on

Transition Instruction 9-12
9.3.2 Output Parameters for the Circular Rotate Bits Left On

Transition Instruction 9-13
9.3.3 Example of a Circular Rotate Bits Left On

Transition Instruction 9-14
Shift Right (SR) ... 9-15
9.4.1 Input Parameters for the Shift Right Instruction 9-16
9.4.2 Output Parameters for the Shift Right Instruction 9-17
9.4.3 Example of a Shift Right Instruction 9-18
Circular Rotate Bits Right (ROR) 9-19
9.5.1 Input Parameters for the Circular Rotate Bits

Right Instruction o o oo 9-20
9.5.2 Output Parameters for the Circular Rotate Bits Right

Instruction 9-21
9.5.3 Example of a Circular Rotate Bits Right Instruction 9-22

9.6

9.7

Circular Rotate Bits Right on Transition (RR) 9-23
9.6.1 Input Parameters for the Circular Rotate Bits Right on

Transition Instruction 9-24
9.6.2 Output Parameters for the Circular Rotate Bits Right On

Transition Instruction 9-25
9.6.3 Example of a Circular Rotate Bits Right On

Transition Instruction 9-26
Errors Caused by Shift Register Instructions 9-27
9.7.1 Errors Caused by All Shift Register Instructions 9-27

9.7.2 Errors Caused by the Circular Rotate Bits Left,
Circular Rotate Bits Left on Transition,
Circular Rotate Bits Right,
and Circular Rotate Bits Right on Transition Instructions . 9-28

10.0 Array Instructionsccoiiiiiiii ittt 10-1
10.1 Unary Array Instruction (AR1) ...t 10-5
10.1.1 Input Parameters for the Unary Array Instruction 10-6
10.1.2 Output Parameters for the Unary Array Instruction 10-9
10.1.3 Example of an Unary Array Instruction 10-11
10.2 Multi-Array Instruction (AR2) 10-12
10.1.4 Input Parameters for the Multi-Array Instruction 10-14
10.2.2 Output Parameters for the Multi-Array Instruction 10-18
10.2.3 Example of a Multi-Array Instruction 10-19
10.3 Array Compare (ARC)t 10-20
10.3.1 Input Parameters for the Array Compare Instruction 10-22

10.3.2 Output Parameters for the Array Compare Instruction ... 10-26
10.3.3 Example of an Array Compare Instruction 10-27

11.0

10.4 Array Shift Up (ASU) ...t 10-28

10.4.1 Input Parameters for the Array Shift Up Instruction 10-29
10.4.2 Output Parameters for the Array Shift Up Instruction 10-30
10.4.3 Example of an Array Shift Up Instruction 10-31
10.5 Array Shift Down (ASD) 10-32

10.5.1 Input Parameters for the Array Shift Down Instruction ... 10-33
10.5.2 Output Parameters for the Array Shift Down Instruction .. 10-34
10.5.3 Example of an Array Shift Down Instruction 10-35

10.6 About the State of the Unary Array, Multi-Array,
and Array Compare Instruction Outputs under

Various Input Conditions i 10-36
10.7 Errors Caused by Array Instructions 10-37
10.7.1 Errors Caused by the Unary Array Instruction 10-37
10.7.2 Errors Caused by the Multi-Array Instruction 10-39
10.7.3 Errors Caused by the Array Compare Instruction 10-41
10.7.4 Errors Caused by the Array Shift Up and
Array Shift Down Instructions 10-42
Program Control Instructionsccoiiiiineanns 11-1
111 SetEvent (SET) ... 11-2
11.1.1 Input Parameters for the Set Event Instruction 11-3
11.1.2 Output Parameters for the Set Event Instruction 11-3
11.1.3 Example of the SET Instruction 11-4
11.2Jump (UMP) .o 11-5
11.3Label (LBL) ... 11-5
11.4 Example of Using the Jump and Label Instruction 11-6
11.5 The Error Caused by the Jump Instruction 11-7

Xl

12.0

13.0

bl

1/0 Read and Write Instructionsc0u 121
1211/0Read (IOR) ... 12-2
12.1.1 Input Parameters for the I/0 Read Instruction 12-3
12.1.2 Output Parameters for the I/O Read Instruction 12-5
12.1.3 Defining the Amount of I/O DatatoRead 12-6
12.1.4 Example of an I/O Read Instruction 12-7
1221/0Write (IOW) ..o 12-8
12.2.1 Input Parameters for the I/0O Write Instruction 12-9
12.2.2 Output Parameters for the I/O Write Instruction 12-10
12.2.3 Defining the Amount of I/O Data to Write 12-11
12.2.4 Example of an I/O Write Instruction 12-12
12.3 Listing of Base Addresses for Each Supported Slot in the
AutoMax Chassiso 12-13
12.4 Errors Caused by the I/O Read and I/O Write Instructions 12-14
Immediate Input and Output Instructions 13-1
13.1 Immediate Input (IN) i 13-2
13.1.1 Input Parameters for the Immediate Input Instruction 13-3
13.1.2 Output Parameters for the Immediate Input Instruction .. 13-4
13.1.3 Example of an Immediate Input Instruction 13-4
13.2 Immediate Output (OUT) e 13-5

13.2.1 Input Parameters for the Immediate Output Instruction .. 13-5
13.2.2 Output Parameters for the Immediate Output Instruction 13-6
13.2.3 Example of an Immediate Output Instruction 13-6

Appendix A

Using Variables A-1

Al DataTypes A-3
A.1.1 BooleanVariables A-3
A.1.2 Integer and Double Integer Variables A-4
A1.3 TimerVariables L A-6
A.1.4 CounterVariables, A-8
A5 Labels A-9

A.2 Accessing Data Within Variables Via Bit-Indexing and
Element-indexing A-10

A.3 Global and Local Variables (Scope) A-11
A.3.1 Local Variables A-11
A.3.2 Global Variables i A-12

Ad AITAYS . A-13

A5 Constants ... A-15

A.6 About Initializing Variables A-15
A.6.1 About the No Initialization (No Init.) Method A-16
A.6.2 About the User Specified Initialization Method A-18
A.6.3 About the Retained Value Initialization Method A-18
A.6.4 About Initializing Timer and Counter Variables A-19
A.6.5 About Initializing Arrays A-19
A.6.6 Defining the Type of Initialization To Use for a Variable .. A-20
A.6.7 Defining the Initial Value of a Variable A-21

Appendix B
Using Timer Variables in BASIC Programs B-1
Appendix C
Using Counter Variables in BASIC Programs C-1

Xl

XIvV

Appendix D

Using the Pre-Defined (Reserved) Ladder Language Variables D-1

D.1 Using the Pre-Defined Program Scan Variables D-2

D.2 Using the Pre-Defined Error Handling Variables D-3

D.3 Using the Pre-Defined Ladder Execution Time Variables D-4
Appendix E

Ladder Instruction Error Code Cross-Reference E-1

E.1 Error Codes 3001-3010coiiiiiiiiiiiiiinns E-2

E.2 Error Codes 3011-3020c.vviiiiiiiiiaiiinnn, E-3

E.3 Error Codes 3021-3030ciiiiiiiiiiiiiiii E-4

E.4 Error Codes 3031-3035t E-5
Appendix F

AutoMax Enhanced Ladder Language Execution Times

and Memory Usage for AutoMax 7010 & 6011 F-1
Appendix G

AutoMax Enhanced Ladder Language Execution Times

and Memory Usage for AutoMax PC3000 G-1
Appendix H

GlOSSAIY . .o H-1

1.0 Relay Instructions

Use the relay instructions to simulate contacts (input instructions) and coils (output
instructions). Choose from these input relay instructions:

e Normally Open Contact (NOI)

e Normally Closed Contact (NCI)

® Positive Transition Contact (PTI)

® Negative Transition Contact (NTI)

e Always True Contact (ATI)

e Always False Contact (AFI)

Choose from these output relay instructions:
e Coil (CO)

e Set (Latch) Coil (SCO)

® Reset (Unlatch) Coil (RCO)

The thick black bar shown at the right-hand margin of this page will be used throughout
this instruction manual to signify new or revised text or figures.

1-1

1.1

Normally Open Contact (NOI)

Use this input instruction to examine whether a Boolean variable is on (1) or off (0).
When the variable is on, the instruction is true. Otherwise, the instruction is false.

The supported variables are:

® simple Boolean

® Boolean array element

e bit-indexed integer or double integer

e Dit-indexed integer or double integer array element
® timer/counter status bits

Example of a Normally Open Contact (NOI)

This rung shows that when the variable valve.open tankfill
valve.open is true, the variable tank_fill is set .
true.

1.2

Normally Closed Contact (NCI)

Use this input instruction to examine whether a Boolean variable is on (1) or off (0).

When the variable is off, the instruction is true. Otherwise, the instruction is false.
The supported variables are:

® simple Boolean

® Boolean array element

e bit-indexed integer or double integer

e Dit-indexed integer or double integer array element

® timer/counter status bits

Example of a Normally Closed Contact (NCI)

This rung shows that when switch1 is false, the I_IS""“':"' tankfill

variable tank_fill is set true. /A)

1-3

1.3

Positive Transition Contact (PTI)

Use this input instruction to examine a Boolean variable for a rising edge. When the
variable changes from being off to on, the PTl instruction becomes true for one scan;
otherwise, the instruction is false.

The supported variables are:

® simple Boolean

® Boolean array element

e timer/counter status bits

Do not use these variables:

® bit-indexed integer or double integer variables

e bit-indexed integer or double integer array elements

Example of a Positive Transition Contact (PTI)

This rung shows that when switch1 transitions switchl valve.open
from off to on the variable valve.open is set true F——{)
for one scan.

1.4

Negative Transition Contact (NTI)

Use this input instruction to examine a Boolean variable for a falling edge. When this
variable changes from being on to off, the NTI instruction becomes true for one scan;
otherwise, the instruction is false.

The supported variables are:

® simple Boolean

® Boolean array element

® timer/counter status bits

Do not use these variables:

® bit-indexed integer or double integer variables

e bit-indexed integer or double integer array elements

Example of a Negative Transition Contact (NTI)

This rung shows that when switch1 transitions switchl valve.closed
from on to off the variable valve.closed is set Np—)
true for one scan.

1-5

1.5 Using Transition Contacts

This section explains the methods for using transition contacts PTI and NTI and how
the transitions will be interpreted. The methods explained in this section are the
following:

® using a variable only on a transition contact

using a variable on a coil and on a transition contact

using a variable on more than one coil and on a transition contact
forcing or setting variables used on transition contacts

using a variable on a set (SCO) coil and reset coil (RCO) pair and on a transition
contact

® using transition contacts in a program with a Jump and Label construct

1.5.1 Using a Variable Only on a Transition Contact

When you use a variable only on transition contacts and not on any other coil within a
program, the transition contact behaves as follows:

e |[f the variable is local, setting or forcing the variable causes the transition contact to
always evaluate true. Therefore always use a coil for the local variable somewhere
else in the program.

e If the variable is global, another task determines whether a transition is detected by
the transition contact, since only another task can change the variable’s value.

1.5.2

Using a Variable on a Coil and on a Transition Contact

The location of the coil in the program in relation to the transition contact using the
same variable name helps determine when the transition is detected. The coil can
appear before or after the transition contact.

If the transition contact is placed after the coil, any transition is detected on the current
program scan.

W name
[1 '

! 1 I ! L ¥]
name
[1 I
Ipl ' L3]

If the transition contact is placed before coil the, any transition is detected during the
next scan.

name
[1 '
! 1 P I ! L ¥]
W name

]
(]

1-7

1.5.3 Using a Variable on More Than One Coil and On a Transition
Contact

When you use the same variable on more than one coil and on a transition contact, the
state of the variable for the contact is determined by the most recently executed coil.

For example, a transition would be detected in this case:

o name
{ | {)%fa‘lse
® name

| | {] < true
name

1P| {]

However, a transition would not be detected in this case, since the variable name is true
for both coils:

i} {) « true

ks name
1 | i
1 T LY) — true

-
-
[

1.5.4 Forcing or Setting Variables Used on Transition Contacts

When setting or forcing a variable used on a transition contact, you must be aware of

how the transition contact is affected. The transition contact is also affected if the
variable being set or forced is used on a coil as well. This table summarizes the effect

setting or forcing a variable has on transition contacts with and without a coil being in

the program.

tected

Variable Scope Coil Present Normal Execution Variable Is Set Variable Is Forced
local no no effect; nothing changing | transition contact transition is detected
the variable continuously true
one coil before transition is detected transition is not transition is not de-
the transition con- detected tected
tact
one coil after the | transition is detected transition is de- transition is detected
transition contact tected
global no transition is detected transition is de- transition is detected

one coil before
the transition con-
tact

transition is detected

transition is not
detected

transition is not de-
tected

one coil after the
transition contact

transition is detected

transition is de-
tected

transition is detected

1-9

1.5.5 Using a Variable on a Set (SCO) Coil and Reset Coil (RCO) Pair
and on a Transition Contact

When you use the same variable name on an RCO and SCO pair and on a transition
contact, the state of the variable for the contact is determined by the most recently
executed coil.

For example, a PTl instruction would see a transition in this case:

" name
{ | {R) «— false

o rame

|| {5) < true
name

o {)

and, an NTI would see a transition in this case:

% name
| | {5) «— true
" name

{ | {R] — false

name
] L
|PI\’I I

L]
[

1.5.6

Using Transition Contacts in a Program with a Jump and Label
Construct

When using Jump and Label constructs in the same program as transition contacts and
coils using the same variable, keep in mind that the last executed coil determines the
state of a transition contact. Also, by jumping over rungs some coils may not be
executed.

1.6

Always True Contact (ATI)

Use this instruction whenever you need a contact that will always evaluate true. For
example, use it when you are debugging a program and wish to bypass some logic,
but you do not want to delete the original logic.

Using a variable name is optional. However, if one is used, the variable must be a
simple Boolean.

Example of an Always True Contact (ATI)

This rung shows that the state of switch3 has
no affect on the state of motor?1 because of the switchl switch? switch3

motorl
ATl instruction.

—t |_”J O

1.7

Always False Contact (AFI)

Use this input instruction whenever you need a contact that will always evaluate false.
For example, use it when you are debugging a program and wish to disable some
logic, but you do not want to delete the original logic.

Using a variable name is optional. However, if one is used, the variable must be a
simple Boolean.

Example of an Always False Contact (AFI)

This rung is placed in a false state by the AFI . .
instruction. switchl tank fill

1 11 r
AFIf 11 ()

Coil (CO)

Use this output instruction to store the state of the rung in the Boolean variable
specified in this instruction.

When the rung is true, a value of 1 is stored in the Boolean variable specified for this
coil instruction.

When the rung is false, a value of 0 is stored in the Boolean variable specified for this
coil instruction.

The supported variables are:

® simple Boolean

® Boolean array element

e Dit-indexed integer or double integer

e bit-indexed integer or double integer array element

Example of a Coil (CO)

This rung shows that the state of the variable

tank_fill follows the state of the variable switch1. switch1 tank fill

-0

1.9

Set (Latch) Coil (SCO)

Use this output instruction to set the Boolean variable on (1) when the input condition is
true.

The SCO instruction is an instruction that can only turn on a bit (it cannot turn off a bit).
This instruction is usually paired with an RCO (reset unlatch) instruction, with both
instructions addressing the same bit.

When enabled, the latch instruction turns on the addressed bit. After this, the bit
remains on (regardless of the rung condition) until the bit is turned off, typically by an
RCO instruction in another rung.

If the rung is: | Then the instruction turns the bit:
true on

false no change

The supported variables are:

® simple Boolean

® Boolean array element

® bit-indexed integer or double integer

e bit-indexed integer or double integer array element

Example of a Set (Latch) Coil (SCO)

This rung shows that when switch1 is on, the switchl tank fill
variable tank_fill is on until it is reset by an RCO .
instruction. I &)

1.10

Reset (Unlatch) Coil (RCO)

Use this output instruction to reset a Boolean variable to off (0) when the input

condition is true.

The RCO instruction is a retentive output instruction that can only turn off a bit (it cannot
turn on a bit). This instruction is usually paired with an SCO (set latch) instruction, with
both instructions addressing the same bit.

When enabled, the unlatch instruction turns off the addressed bit. After this, the bit
remains off (regardless of the rung condition) until it is turned on, typically by an SCO
instruction in another rung.

If the rung is: | Then the instruction turns the bit:
true off
false no change

The supported variables are:

simple Boolean

Boolean array element

bit-indexed integer or double integer
bit-indexed integer or double integer array

Example of a Reset (Unlatch) Coil (RCO)

This rung shows that when switch2 is on the
variable tank_fill will be off until it is set by an
SCO instruction.

switch?2 tank fill

—®

1.11

Errors Caused by the Relay Instructions

These errors can occur when you are using the relay instructions in a program. They

are logged in the error log.

If this error occurs:

Then:

Do the following:

The bit number is negative.

Bit 0 of the variable will be used for
the instruction’s operation.

Specify a number of 0-15 for integers
and 0-31 for double integers.

The bit number is too large.

The largest bit number of the variable
will be used for the instruction’s
operation.

Specify a number of 0-15 for integers
and 0-31 for double integers.

The array index is negative.

Element 0 of the array variable will be
used for the instruction’s operation.

Specify a valid array element.

The array index is too large.

The largest element number of the
array variable will be used for the
instruction’s operation.

Specify a valid array element.

2.0

Counter Instruction

Use counter instruction (CTUD) to count activities as they occur, like products passing
over a switch on a conveyor belt or pushes of a button. The counter instruction uses the
counter data type to control the counter instruction.

The value in Current can count up past the preset value and down past zero. However,
the value in Current cannot exceed the upper limit or go below the lower limit of a
double integer.

The QU and QD outputs do not change state unless the instruction is executed, even if
the CPreset has been modified to be less than or equal to the current value.

IMPORTANT

Global counters must be entered into the variable configurator as five-element,
double-integer, non-volatile arrays.
Example: COUNTER1!(4).

2-1

2-2

2.1

Count Up Down (CTUD)

CTUD
Count Up Dowen
ERN EnG
=C1 a
=C0 ap
CR MarmeiZurrent f—
LD CPreset |

Use this instruction to increment or decrement a counter.

When EN is true, the instruction:

® increments the double integer value stored in Current for every false-true transition
of the CU input

e decrements the double integer value stored in Current for every false-true transition
of the CD input

The QD output becomes true when the value stored in Current is less than or equal to

zero. The QU output becomes true when the value stored in Current is greater than or

equal to the value stored in CPreset.

211 Input Parameters for the Count Up Down Instruction

This table lists the inputs for the CTUD instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type Data Type/Range
EN When this input is true, the instruction is enabled.
When EN is false, the instruction is not executed and
ENO, QU, and QD are set false.
CuU When the instruction is enabled and CR and LD are false,
a false-true transition of this input causes the value in)
Current to be incremented by one. Connect a Boolean input or output.
This input is false when not connected.
CD When the instruction is enabled and CR and LD are false,
a false-true transition of this input decrements the value in
Current by one.
This input is false when not connected.
CR When this input is true, the value in Current is reset to
zero.
This input is false when it is not connected.
See “Resetting a Counter,” section 2.2.
LD When this input is true and CR is false, the value in

Current is set equal to the value in CPreset.
This input is false when not connected.

2-3

2-4

Parameter

Description

Variable Type

Data Type/Range

Name Enter the name of the counter variable you want to use for

this instruction.

data structure

counter

See also “About
Counter Variables

»

CPreset Enter the value you want the counter to count up to or

count down from. This value is stored in name.CPreset.

See “Changing the Preset Value of a Counter Instruction
by Using Ladder Logic,” section 2.3.

constant

double integer

2.1.2 Output Parameters for the Count Up Down Instruction

This table lists the outputs for the CTUD instruction. To use them, connect them to a
contact, coil, or Boolean input of another instruction.

Parameter Description
ENO Use this output as the input to another instruction for easily chaining
multiple instructions. This output follows the state of EN.
Qu This output is true when the value in Current is greater than or equal to
the preset value (CPreset).
QD This output is true when the value in Current is less than or equal to 0.

213

2.2

Example of a Count Up Down Instruction

This logic shows that counter? counts up to 500
as long as switch1 is on and switch2 transitions
from false to true. When the counter reaches
500, QU is set true, and the variable motor1
becomes true.

swvitch_1

swvitch_2

HA———

H ———

EM

=izl

=CD

CR

LD

CTUD

Count Up Down
ERG

ol

oo

MarnefCurrent

CPreset

— counterd

— 500

motor_1

Resetting a Counter

To reset a counter, attach a Boolean parameter to CR so that when the Boolean
parameter is true, the value stored in Current is reset to 0. Any transitions to CU or CD

are ignored.

2-5

2-6

2.3

Changing the Preset Value of a Counter Instruction by
Using Ladder Logic

You can change the preset value of a counter instruction without having to edit the
instruction in the AutoMax Ladder Editor. This is useful for frequently loading different
preset values into a counter.

To change the preset value by using ladder logic

Step 1. Place a Move Source Data to Destination (MOVE) instruction in the ladder
program.

Step 2. Inthe In input, enter the value you want to use as a new counter preset
value.

Step 3. In the Out output, enter the name of the counter’s preset input
(name.CPreset).

Step 4. Condition the EN input of the MOVE instruction so that the new counter
preset is loaded into the Counter instruction.

Tip

You can also use other instructions that have a double integer output to change a
counter preset. For example, you can use an ADD instruction to calculate a new preset
and place the result in counter’s preset input (name.CPreset).

3.0

Timer Instructions

Use the Timer instruction to enable and disable activities at pre-defined times. For
example, set a timer to turn on a valve or shut off a furnace.

Choose from these timer instructions:

Use this instruction: To:

Retentive Timer On (RTO) track accumulated time

Timer Off Delay (TOF) stop an activity at a preset time interval
Timer On Delay (TON) start an activity at a preset time interval
Timer Pulse (TP) enable an output for a preset time interval

The timer instructions use the timer data type for the variable in the Name parameter.

The maximum time interval is 248.5 days (5965 hours). You can specify time in
increments of 0.01 seconds.

How Timer Instructions Operate

Once the instruction is enabled, the elapsed value is updated at the start of a program’s
scan. For example, if a program is scheduled to run every second, the elapsed value
for a timer in that program is incremented by 100 each time the program runs. Although
the timer is specified in units of 0.01 seconds, the actual duration may be affected by
the program’s scan time. For example, if the scan time is 0.1 seconds and you set a
timer to 0.01 seconds, the actual timer elapsed time will be 0.1seconds, because the
timer output will only be updated when the timer executes at 0.1 seconds intervals (the
program’s scan time).

The T and Q outputs of the timer instructions do not change unless the timer instruction
is executed, even if the correct amount of time has elapsed.

3-1

3-2

Guidelines for Programming Timer Instructions

When inserting timer instructions into a program, assign unique timer variables to
each timer instruction. Do not use the same timer variable on more than one
instruction in a program. However, you can use individual timer elements (name.Q,
name. Elapsed, etc.) as variables on other contacts and instructions.

When you remove a timer instruction while testing your edits on an online, active
program, the Editor considers the timer instruction as being disabled. Therefore,
should you ever re-instate that timer instruction, it is inserted into the program in a
reset state. This means that the timer has lost its accumulated time.

IMPORTANT

Observe the following programming practices when creating ladder programs:

Avoid using timer instructions in programs that are not executed at periodic intervals
because their behavior will be unpredictable.

Avoid skipping timer instructions using a JMP instruction because the timer’s output
will not be set unless the timer instruction is executed.

Do not use timer instructions that use the same global, timer data structure in
multiple programs because the timer will gain time.

You must enter global timers into the variable configurator as five-element, double
integer, non-volatile arrays. Example: TIMER1!(4).

3.1

Retentive Timer On (RTO)

BTG
Time Base=].0l sec
En END
TR Q
—1 MarneElapsed T
] TPres=cst

Use this instruction to set an event at a preset interval. This instruction retains the
Elapsed value after EN goes false and resumes keeping time when EN is true again.
The timer can stop and start without the Elapsed value being reset.

When EN is true, the instruction begins incrementing the value in Elapsed. When the
value in Elapsed equals the value in TPreset, output Q becomes true. Reset this
instruction by setting input TR.

The value in Elapsed is in increments of 0.01 seconds.

3-3

3-4

3.1.1

Input Parameters for the RTO Instruction

This table lists the inputs for the RTO instruction and the variable type and data

type/range that each input supports.

instruction sets output Q. Enter a value in increments of
0.01 seconds up to 248.5 days.

This value is stored in name.TPreset.

Parameter Description Variable Type Data Type/Range
EN While this input is true, the instruction executes. When this
input is false, the instruction is not executed and ENO is
false.
Connect a Boolean input or output.
TR To reset the counter to 0, set this input to true. Output Q
becomes false.
Name Enter the name of the timer variable you want to use for data structure timer
this timer. See also “About
Timer Variables”
TPreset Enter the value that Elapsed must reach before the constant double integer

(0 to 2147483647)

0to 248.5 days in
0.01 second intervals

3.1.2

Output Parameters for the RTO Instruction

This table lists the outputs for the RTO instruction and the variable type and data
type/range that each output supports.

Parameter Description Variable Type Data Type/Range
ENO Use this bit as the input to another instruction for easily Connect a contact, coil, or Boolean input to
chaining multiple instructions. This output follows the another instruction.
state of EN.
Q This output is true when the value in Elapsed equals the
value in TPreset.
Qis false when R is true. Connect a Boolean input or a coil.
T This output is true when all of the following conditions are
met:
® the instruction is enabled
e the value in Elapsed is less than the value in TPreset
e TRis false
T is false when the instruction is disabled or the value in
Elapsed equals the value in TPreset.

Elapsed | This value is specified in increments of 0.01 seconds. This constant double integer
value is incremented when EN is true and until its value (0 to 2147483647)
equals that of TPreset. The value in Elapsed is reset only 0 to 248.5 days in
when TR is true. 0.01s intervals
The value in Elapsed is stored in the element
name.Elapsed and will not exceed the TPreset value when
the instruction is enabled.

3-5

3.1.3 RTO Timing Diagram

The following diagram shows the interaction between the RTO instruction inputs and
outputs at various time intervals.

TPreset —

Elapzed —‘/

RTO Timing Diagram

3.1.4 Example of an RTO Instruction

This logic shows that as long as switch1 is true

and switch2 is false, the timer increments switchil Time BasReTjo.ﬂl sec

toward 1000. When 10 seconds have elapsed, - EN END

Q is set true, causing the variable vat.stir to be

set true. When switch? is true, TR is set true, switch2 Q watt st
which sets the elapsed value to 0 and sets Q — — 7" —{)

false. The variable vat.stir is then set false.

timer! = MameElapzed

1000 — TPreszet

3.2 Timer Off Delay (TOF)

TOF
Time Base={.01 sec
EN EMO
= MarmeElapsed Q
_| TPreset T

Use this instruction to disable an activity at a preset interval. When EN is false, the
instruction increments the value in Elapsed until it reaches the value you defined in
TPreset. When the value in Elapsed equals the value in TPreset, output Q goes false.

The value in Elapsed is in increments of 0.01 seconds.

3-8

3.2.1

Input Parameters for the TOF Instruction

This table lists the inputs for the TOF instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type Data Type/Range
EN While this input is false, the instruction begins the timer Connect a Boolean input or output.
operation. When EN is true, the value in Elapsed is reset
to zero.
Name Enter the name of the timer variable you want to use for data structure timer
this timer. See also “About
Timer Variables”
TPreset Enter the value that Elapsed must reach before the constant double integer
instruction resets output Q. Enter a value in increments of (0t0 2147483647)
0.01 seconds up to 248.5 days. 0 to 248.5 days in
This value is stored in name.TPreset. 0.01 second intervals

3.2.2

Output Parameters for the TOF Instruction

This table lists the outputs for the TOF instruction and the variable type and data
type/range that each output supports.

Parameter

Description

Variable Type

Data Type/Range

ENO

Use this output as the input to another instruction for
easily chaining multiple instructions. ENO follows the state
of EN.

This output is false when the value in Elapsed equals the
value in TPreset.

This output is true while EN is true and Elapsed is less
than TPreset.

This output is true while EN is false and the value in
Elapsed is less than the value in TPreset.

T is false while EN is true or the value in Elapsed equals
the value in TPreset.

Connect a contact, coil, or Boolean input to
another instruction.

Elapsed

This value is specified in increments of 0.01 seconds. This
value is incremented when EN is false, until its value
equals that of TPreset. The value in Elapsed is reset to
zero when EN is true.

The value in Elapsed is stored in the element
name.Elapsed and will not exceed the preset value when
the instruction is enabled.

constant

double integer
(0 to 2147483647)

0 to 248.5 days in
0.01 second intervals

3-9

3.23 TOF Timing Diagram

The following diagram shows the interaction between the TOF instruction inputs and
outputs at various time intervals.

-

TFreset

Elapsed

TOF Timing Diagram

3.24 Example of a TOF Instruction

This logic shows that as long as switch1 is
false, timer2 increments to 5000. When 50
seconds have elapsed, the timer sets Q false,
causing the variable tank_fill to be set false.

swvitchl

H ——

TitNEr 2 m—

3000 —

TOF
Time Base=0.01 sec
EN EMD

MarmeElapsed a

TPreset T

tankfil

—()

3.3 Timer On Delay (TON)

TOM

] MameElapsed

_| TPreset

Time Base=0.01 sec
EM END

Use this instruction to enable an activity at a preset interval. While EN is true, the
instruction increments the value in Elapsed until it reaches the value you defined in
TPreset. When the value in Elapsed equals the value in TPreset, output Q is set.

The value in Elapsed is in increments of 0.01 seconds.

3-12

3.3.1

Input Parameters for the TON Instruction

This table lists the inputs for the TON instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type Data Type/Range
EN While this input is true, the instruction begins the timer
operation. When EN is false, the value in Elapsed is reset Connect a Boolean input or output.
to zero.
Name Enter the name of the timer variable you want to use for data structure timer
this timer. See also “About
Timer Variables”
TPreset Enter the value that Elapsed must reach before the constant double integer
instruction sets the output Q. Enter a value in increments (0t0 2147483647)
of 0.01 seconds up to 248.5 days. 0 to 248.5 days in
This value is stored in name.TPreset. 0.01 second intervals

3.3.2

Output Parameters for the TON Instruction

This table lists the outputs for the TON instruction and the variable type and data
type/range that each output supports.

Parameter

Description

Variable Type

Data Type/Range

ENO

Use this output as the input to another instruction for
easily chaining multiple instructions. ENO follows the state
of EN.

This output is true when the instruction is enabled and
Elapsed is equal to TPreset.

Q is false when EN is false or when Elapsed in less than
TPreset.

This output is true while EN is true and the value in
Elapsed is less than the value in TPreset.

T is false when EN is false or the value in Elapsed is equal
to the value in TPreset.

Connect a contact, coil, or Boolean input to
another instruction.

Elapsed

This value is specified in increments of 0.01 seconds. This
value is incremented when EN is true, until its value
equals that of TPreset. The Elapsed value is reset to zero
when EN is false.

The value in Elapsed is stored in the element
name.Elapsed and will not exceed the TPreset value when
the instruction is enabled.

constant

double integer
(0 to 2147483647)

0 to 248.5 days in
0.01 second intervals

3-13

3-14

3.3.3 TON Timing Diagram

The following diagram shows the interaction between the TON instruction inputs and
outputs at various time intervals.

TON Timing Diagram

3.3.4 Example of a TON Instruction

This logic shows that as long as belt.5 is true o

timer2 increments to 1000. When 10 seconds Time Base=0.01 =ec
: : bet 5 .

have elapsed, the timer sets Q true, causing the EN END

variable box to be set true.
bax

titner2 — NamesiElapzed 0 —{)

1000 — TPreset

3.4 Timer Pulse (TP)

TP
Time Base=0.01 sec
EM

EMD
—{ MameElapsed 4
_| TPreset T

Use this instruction to enable an output for a preset amount of time. This instruction
guarantees that an output remains on for a preset time, regardless of the state of the
EN input.

When EN is true, the instruction sets outputs Q and T and begins counting towards the
preset value. The timer increments regardless of EN’s state until the value in Elapsed
equals that of TPreset. When these values are equal, outputs Q and T become false.
The value in Elapsed is reset when EN is false and the value in Elapsed equals that of
TPreset. The value in Elapsed is in increments of 0.01 seconds.

3-16

3.4.1

Input Parameters for the TP Instruction

This table lists the inputs for the TP instruction and the variable type and data

type/range that each input supports.

instruction resets outputs Q and T. Enter a value in
increments of 0.01 seconds up to 248.5 days.

This value is stored in name.TPreset.

Parameter Description Variable Type Data Type/Range
EN While this input is true, the instruction begins the timer
operation. When EN is false and TPreset is equal to Connect a Boolean input or output.
Elapsed, the value in Elapsed is reset to zero.
Name Enter the name of the timer variable you want to use for data structure timer

this timer. See also “About

Timer Variables”
TPreset Enter the value that Elapsed must reach before the constant

double integer
(0 to 2147483647)

0 to 248.5 days in
0.01 second intervals

3.4.2

Output Parameters for the TP Instruction

This table lists the outputs for the TP instruction and the variable type and data
type/range that each output supports.

Parameter

Description

Variable Type

Data Type/Range

ENO

Use this output as the input to another instruction for
easily chaining multiple instructions. ENO follows the state
of EN.

QT

These outputs are set true when EN is true and the value
in Elapsed is less than that in TPreset. Q and T remain
true while the value in Elapsed is less than the value in
TPreset.

These outputs are set false when the value in Elapsed
equals the value in TPreset.

Connect a contact, coil, or Boolean input to
another instruction.

Elapsed

This value is specified in increments of 0.01 seconds. This
value is incremented when EN is true, until its value
equals that of TPreset. The Elapsed value is reset to zero
when EN is false and Elapsed and TPreset are equal.

The value in Elapsed is stored in the element
name.Elapsed and will not exceed the TPreset value when
the instruction is enabled.

constant

double integer
(0 to 2147483647)

0to 248.5 days in
0.01 second intervals

3-17

3.4.3 TP Timing Diagram

The following diagram shows the interaction between the TP instruction inputs and
outputs at various time intervals.

TPreset _'_> E— [/7
ElapsedJ / : —

TP Timing Diagram

3.44

3.5

Example of a TP Instruction

This logic shows that timer1 begins

incrementing when switch1 is true. The variable P

elapsed, at which time Q is set false. As soon |
as the timer begins to increment, the T and Q —

count until 10 seconds have elapsed, at which timer! = MameElapzed
time T, Q, and the variable tank_fill are set false.

1000 — TPreset

tank_fill will be on until 100 seconds have suwvitch ETNime Base=(.01 SE?-J%

outputs are set true. The timer continues to 0

tank_fill

—()

Changing the Preset Value of a Timer Instruction by
Using Ladder Logic

You can change the preset value of a timer instruction without having to edit the
instruction in the AutoMax Ladder Editor. This is useful for frequently loading different
preset values into a timer. You can change the preset value of a timer by using a ladder
logic instruction with a double integer output for global and local timer presets.

3-19

3-20

To change the preset value by using ladder logic

Step 1. Place a Move Source Data to Destination (MOVE) instruction in the ladder
program.

Step 2. Inthe In input, enter the value you want to use as a new timer preset value.

Step 3. In the Out output, enter the name of the timer’s preset input (name.TPreset).

Step 4. Condition the EN input of the MOVE instruction so that the new timer preset
is loaded into the timer instruction.

Tip

You can also use other instructions that have a double integer output to change a timer

preset. For example, you can use an ADD instruction to calculate a new preset and
place the result in timer’s preset input (name.TPreset).

Compare Instructions

Use the Compare instructions to compare two or three integer or double integer
variables. Choose from these instructions:

Equal To (EQ)

Greater Than or Equal To (GE)

Greater Than (GT)

Less Than or Equal To (LE)

Less Than (LT)

LIMIT (Limit)

Mask Compare (MSK)

Not Equal To (NE)

The supported parameters are:

simple integers and double integers

integer and double integer constants

elements of integer and double integer arrays
Timer variables (name.TPreset and name.Elapsed)
e Counter variables (name.CPreset and name.Current)

See each input and output parameter description for each instruction for specific
information.

When integer and double integer variable types are mixed within a compare instruction,
integer values are converted to signed, double integer values before the compare
operation is performed. An exception is the MSK instruction, which converts integer
values to unsigned double integers.

4.1 Equal To (EQ)

2]
Eﬁ= (Inl=In 2=Ir1EBa£I

Inl i}
InZ

In3

Use this instruction to test whether two or three values are equal. While EN is true, the
instruction determines whether In1, In2, and In3 are equal. If the values are equal, Q
becomes true.

42

411

Input Parameters for the Equal To Instruction

This table lists the inputs for the EQ instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type Data Type/Range

EN When this input is true, the instruction executes. When
this input is false, the instruction is not executed and Connect a Boolean input or output.
ENO is false.

In1 Enter the parameters you want to compare in these ® simple ® integer

In2 inputs. You must specify something for at least In1 e constant e double integer
and In2. In3 is optional. .

In3 e clement of an array timer

(name.TPreset and
name.Elapsed)
counter
(name.CPreset and
name.Current)

4-3

44

4.1.2

Output Parameters for the Equal To Instruction

This table lists the outputs for the EQ instruction. To use these outputs, connect them to

a contact, coil, or Boolean input of another instruction.

Parameter Description
ENO Use this output as the input to another instruction for
easily chaining multiple instructions. This output follows
the state of input EN unless an error occurs.
Q This output is true when all of the following conditions occur:

e the instruction is enabled

® In1is equal to In2

e if In3is used, In2 is equal to In3
Otherwise, Q is false.

4.1.3 Example of an Equal To Instruction

This logic shows that when switch1 is true the
variable bottle_count will be compared to
determine if it is equal to 24,000. If so, Q
becomes true, which sets switch2 true.

syvitchl
I L

hottle_court —

24,000 —

]
Eﬁ=(1n1=ln2=InE3r')m

Inl

Inz

In3

E

switch2

‘0

45

4-6

4.2 Greater Than Or Equal To (GE)

GE
Eﬁ:(Inl:»=In2>=InE£0

Inl 0
InZ

In3

Use this instruction to test whether two or three values are greater than or equal to each
other.

While EN is true, the instruction determines whether In1 is greater than or equal In2. If
In3 is used, the instruction determines whether In2 is greater than or equal to In3. If the
tested values are greater than or equal, Q becomes true.

4.2.1 Input Parameters for the Greater Than Or Equal To Instruction

This table lists the inputs for the GE instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type Data Type/Range

EN When this input is true, the instruction executes. When
this input is false, the instruction is not executed and Connect a Boolean input or output.
ENO is false.

In1 Enter the parameters you want to compare in these in- | ® simple ® integer

In2 puts. You must specify something for at least In1 and | ¢ constant e double integer
In2. In3 is optional. .

In3 e clement of an array timer

(name.TPreset and
name.Elapsed)

counter
(name.CPreset and
name. Current)

47

422 Output Parameters for the Greater Than Or Equal To Instruction

This table lists the outputs for the GE instruction. To use these outputs, connect them to
a contact, coil, or Boolean input of another instruction.

Parameter Description

ENO Use this output as the input to another instruction for easily
chaining multiple instructions. This output follows the state of
EN unless an error occurs.

Q This output is set true when all of the following conditions occur:

e the instruction is enabled

® In1 is greater than or equal to In2

e if In3 is used, In2 is greater than or equal to In3
Otherwise, Q is false.

423

Example of a Greater Than Or Equal To Instruction

This logic shows that when the variable quality

is true, the instruction compares the value of

bottle_countffirst] to the value of qalty

bottle_count[second]. The value of
bottle_count[second] is then compared to
24,000. If each of these values is greater than or
equal to the next, Q is set true, setting the
variable flag true.

battle_countlfirst]]

hottle_count[zecond] —

24,000 —

GE
O=(Inl==lnZ>=In3)

EN

Inl

In2

Ini

END

flag

—()

4-9

4.3 Greater Than (GT)

[4)
={Inl>InZ>In3
ENQ a END

Inl 0
InZ

In3

Use this instruction to test whether two or three values are greater than each other.
While EN is true, the instruction determines whether In1 is greater than In2. If In3 is
used, the instruction determines whether In2 is greater than In3. If the tested values are
greater than each other, Q is true.

4-10

4.3.1

Input Parameters for the Greater Than Instruction

This table lists the inputs for the GT instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type Data Type/Range

EN When this input is true, the instruction executes. When this
input is false, the instruction is not executed, and ENO is Connect a Boolean input or output
false. '

In1 Enter the parameters you want to compare in these ® simple ® integer

In2 inputs. You must specify something for at least In1 and e constant e double integer
In2. In3 is optional. .

In3 ® element of an array timer

(name.TPreset
and
name.Elapsed)
counter

(name.CPreset
and name.Current)

412

4.3.2

Output Parameters for the Greater Than Instruction

This table lists the outputs for the GT instruction. To use these outputs, connect them to

a contact, coil, or Boolean input of another instruction.

Parameter | Description
ENO Use this output as the input to another instruction for easily
chaining multiple instructions. This output follows the state of
EN unless an error occurs.
Q This output is set true when all of the following conditions occur:

e the instruction is enabled

® In1 is greater than In2

e if In3is used, In2 is greater than In3
Otherwise, Q is false.

4.3.3 Example of a Greater Than Instruction

This logic shows that when the variable switch1
is set true, the instruction tests the variable

i ; GT
level[15] to determine if its value is greater than - =
the variable level7. If so, Q is set true, which switch g nleIndInd,
sets lever1 true. LI
lewver
o)

lervell = In

In3

4.4 Less Than Or Equal To (LE)

LE
Eﬁ: (Inle=InZ ‘:=IHE3££I

Inl "}

InZ

In3

Use this instruction to test whether two or three values are less than or equal to each
other. While EN is true, the instruction determines whether In1 is less than or equal to
In2. If In3 is used, the instruction determines whether In2 is less than or equal to In3. If

the tested values are less than or equal, Q is true.

414

4.41 Input Parameters for the Less Than Or Equal To Instruction

This table lists the inputs for the LE instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type Data Type/Range

EN When this input is true, the instruction executes. When this

input is false, the instruction is not executed and ENO is Connect a Boolean input or output.
false.

In1 Enter the parameters you want to compare in these ® simple ® integer

In2 inputs. You must specify something for at least In1 and e constant e double integer

In2. In3 is optional. .

In3 ® element of an array timer (name.TPreset
and name.Elapsed)
counter
(name.CPreset and
name.Current)

4-15

4.4.2 Output Parameters for the Less Than Or Equal To Instruction

This table lists the outputs for the LE instruction. To use these outputs, connect them to
a contact, coil, or Boolean input to another instruction.

Parameter | Description

ENO Use this output as the input to another instruction for easily
chaining multiple instructions. This output follows the state of
EN unless an error occurs.

Q This output is set true when all of the following conditions occur:

e the instruction is enabled

® In1 is less than or equal to In2

e if In3is used, In2 is less than or equl to In3
Otherwise, Q is false.

443

Example of a Less Than Or Equal To Instruction

This logic shows that when switch1 is true, the
instruction compares the variable part[depth]

to 20. If part[depth] is less than or equal to 20,
Q is set true, which sets the variable pass true.

switch]

—

part[depth] —

20 —

LE
={Inlc=InZ<=In3l
ETFJ1 d EWD

Inl Q
In2

In3

pazs

—()

4-17

4.5 Less Than (LT)

LT
={Inl:Inz<In3
ENQ a ENO

Inl o}
InZ

In3

Use this instruction to test whether two or three values are less than each other. While
EN is true, the instruction determines whether In1 is less than In2. If In3 is used, the
instruction determines whether In2 is less than In3. If they are, Q is true.

4-18

4.5.1

Input Parameters for the Less Than Instruction

This table lists the inputs for the LT instruction and the variable type and data
type/range each inputs supports.

Parameter Description Variable Type Data Type/Range
EN When this input is true, the instruction executes. When
this input is false, the instruction is not executed and Connect a Boolean input or output.
ENO is false.

In1 Enter the parameters you want to compare in these ® simple ® integer

In2 inputs. You must specify something for at least In1 e constant e double integer
and In2. In3 is optional. .

In3 ® element of an array timer (name.TPreset
and name.Elapsed)
counter
(name.CPreset and
name.Current)

4-19

4.5.2 Output Parameters for the Less Than Instruction

This table lists the outputs for the LT instruction. To use these outputs, connect them to
a contact, coil, or Boolean input of another instruction.

Parameter Description

ENO Use this output as the input to another instruction for easily
chaining multiple instructions. This output follows the state of
EN unless an error occurs.

Q This output is set true when the following conditions occur:

o the instruction is enabled

® [n1isless than In2

e if In3is used, In2 is less than In3
Otherwise, Q is false.

4-20

453

Example of a Less Than Instruction

This logic shows that when the variable switch1
is true, the variable level[15] is tested to
determine if its value is less than the variable
levell. If so, Q is set true, which sets lever? true.

vitchnl

—

lewel[15] —

levell —

=(Inl«InZ<In3
ENQ a ENO

Inl

InZ

Ini

LT

lenver

—()

4-21

4.6 Limit (LIMIT)

LIMIT
EM ENG
I
A1In Out |
_{tn

Use this instruction to clamp values that are outside a specified range. While EN is true,
the instruction determines whether In falls within the maximum and minimum limits
specified for Mx and Mn. Out contains the value of In unless its value does not fall
within the limits.

If the value of In is: Then Out contains the value of:
greater than Mx Mx
less than Mn Mn

4-22

4.6.1

Input Parameters for the Limit Instruction

This table lists the inputs for the LIMIT instruction and the variable type and data
type/range that each input supports.

Parameter | Description Variable Type Data Type/Range
EN When this input is true, the instruction executes. When
this input is false, the instruction is not executed and Connect a Boolean input or output.
ENO is false.
Mx Enter the upper limit for In. ® simple ® integer
® constant e double integer
In Enter the variable that you want to limit. e clementofanarray | e timer (name.TPreset
and name.Elapsed)
— ® counter
Mn Enter the lower limit for In. (name.CPreset and
name.Current)

4-23

4-24

4.6.2

Output Parameters for the Limit Instruction

This table lists the outputs for the LIMIT instruction and the variable type and data
type/range that each output supports.

in In when In falls within the defined limits.

If the value in In is less than the lower limit, Out contains
the value in Mn. If the value in In is greater than the value
in Mx, Output contains the value in Mx.

Parameter | Description Variable Type Data Type/Range
ENO Use this output as the input to another instruction for Connect a contact, coil, or a Boolean input to
easily chaining multiple instructions. This output follows another instruction.
the state of EN unless an error occurs.
Out When the instruction is enabled, Out contains the value | ® simple ® integer

® clementofanarray | e doubleinteger

® timer (name.TPreset
and name.Elapsed)

® counter
(name.CPreset and
name.Current)

4.6.3

Example of a Limit Instruction

This logic shows that when the variable switch1
is true the variable part_id[20] is checked to
determine if its value falls between 50 and 25.
The variable pass contains the limited value.

wvitchl
L
1T
50 —
part_id[20] —
25 —

EN

M

In

M

LIMIT

ENE

Out

|— paszs

4-25

4-26

4.7

Mask Compare (MSK)

[

EN END
_JInl 0
_|1In2
| Mask

Use this instruction to apply a bit-mask to two variables and then have them compared
to determine if the values are equal.

While EN is true, the value of Mask is logically ANDED with the variables In1 and In2.
After applying the bit-mask, the instruction then compares In1 and In2 to determine if
they are equal. If the variables are equal, Q is true.

In1, In2, and Mask are treated as unsigned integers. If any of these parameters is
converted to double integers, the most significant 16 bits are set to zero.

4.71

Input Parameters for the Mask Compare Instruction

This table lists the inputs for the MSK instruction and the variable type and data
type/range that each input supports.

parameter that you want to use as the bit-mask. The mask
passes bits equal to 1 and blocks bits equal to 0.

e clement of an array

Parameter Description Variable Type Data Type/Range
EN When this input is true, the instruction executes. When this
input is false, the instruction is not executed, and ENO is Connect a Boolean input or output.
false.
In1 Enter the variables to which you want to apply the bit simple ® integer
In2 mask. These variables are treated as unsigned integers. e constant e double integer
® elementofanarray | e timer (name.TPreset
and name.Elapsed)
counter
(name.CPreset and
name.Current)
Mask The Mask specifies which bits to pass or block. Enter the constant e integer (0 to FFFF)

e double integer

(0 to FFFFFFFF)

4-27

4.7.2 Output Parameters for the Mask Compare Instruction

This table lists the outputs for the MSK instruction. To use these outputs, connect them
to a contact, coil, or Boolean input.

Parameter Description

ENO Use this output as the input to another instruction for easily
chaining multiple instructions. This output follows the state
EN unless an error occurs.

Q When the instruction is enabled, this output is true after the
bit mask has been applied to In1 and In2 and the results
were compared and determined to be equal.

Otherwise, Q is false.

4-28

4.7.3

Example of a Mask Compare Instruction

This logic shows that when the

variable measure is true a bit mask Hsk
identified as tolerance is applied to MERELIE EM ENO
the variables part_wt[40] and control. I
The results are then compared to Inl pass
determine if they are equal. If so, Q part_wif40] — -7 a
and the variable are set true.
corrtrol—:[r12
tolerance — Mask
int (Lol [o o ool [l [1fa] o]o] 000000000 000000
N nn00nnn0o00on oS00 00000000000000
! U
resutor [T Ja[s[{[e[1J[{] [FEIT LRI e
In1 logically Arcled with
Anded with The instruction is true. Wk
Mask s

4-29

4.8 Not Equal To (NE)

| i |
EI%:(Inl I1=InZ! =IHEI?ID

Iml Q
InZ

In3

Use this instruction to test whether two or three values are not equal. While EN is true,
the instruction determines whether the values in In1, In2, and In3 are not equal. If the
values are not equal, Q becomes true.

4-30

4.8.1 Input Parameters for the Not Equal To Instruction

This table lists the inputs for the NE instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type Data Type/Range
EN When this input is true, the instruction executes. When
this input is false, the instruction is not executed, and Connect a Boolean input or output.
ENO is false.
In1 Enter the parameters you want to compare in these ® simple ® integer
In2 inputs. You must specify something for at least In1 e constant e double integer
and In2. In3 is optional. .
In3 ® elementofanarray | e timer (name.TPreset
and name.Elapsed)
® counter
(name.CPreset and
name.Current)

4-31

4.8.2 Output Parameters for the Not Equal To Instruction

This table lists the outputs for the NE instruction. To use these outputs, connect them to
a contact, coil, or a Boolean input to another instruction.

Parameter | Description

ENO Use this output as the input to another instruction for easily
chaining multiple instructions. This output follows the state of
EN unless an error occurs.

Q This bit true when all of the following conditions occur:

e the instruction is enabled

® In1is not equal to In2

e if In3 is used, none of the values are equal
Otherwise, Q is false.

4-32

4.8.3 Example of a Not Equal To Instruction

This logic shows that when switch1 is true the
variable bottle_count will be compared to HE
determine if it is not equal to 24,000. If so, Q will switch 0=(Inl!=In2!=In3}
be set true. EM ERD
|—
Fwvitch2
bettle_count —| TrL a —()
24000 — I
_|In3

4.9 Errors Caused by Compare Instructions

This section describes the possible errors for all compare instructions and those
additional errors specific to the LIMIT instruction.

4-33

434

Errors Caused by All Compare Instructions

These errors can occur when you are using the compare instructions in a program.

They are logged in the error log.

If this error occurs:

Then:

Do the following:

The array index is negative.

ENO is set according to ERROR_ENO,
and element zero of the array is used for the
instruction’s operation.

Specify a valid array element.

The array index is too large.

ENO is set according to ERROR_ENO,
and the last element of the array is used for
the instruction’s operation.

Specify a valid array element.

Errors Caused by the Limit Instruction

These errors can occur when you are using the LIMIT instruction in a program. They are

logged in the error log.

If this error occurs:

Then:

Do the following:

The result is larger than what Out’s data
type supports.

ENO is set according to ERROR_ENO,
and Out contains the largest signed value
allowed for the data type being used.

Specify a larger data type for Out. For
example, if you are using integers, specify
the data type as a double integer.

Minimum is greater than Maximum.

ENO is set according to ERROR_ENO,
and the values for Mn and Mx are swapped
before the limit operation is performed.

Make sure the value for Mx is larger than
that for Mn.

5.0

Compute Instructions

Use compute instructions to perform math operations.
Choose from these compute instructions:
Absolute Value (ABS)

Add (ADD)

Divide (DIV)

Modulo (MOD)

Multiply (MUL)

Multiply Divide (MDV)

Negate (NEG)

Square Root (SQRT)

Subtract (SUB)

The supported parameters are:

e simple integers and double integers

e integer and double integer constants

e elements of integer and double integer arrays
[]

[]

Timer variables (name.TPreset and name.Elapsed)
Counter variables (name.CPreset and name.Current)

See each input and output parameter description for each instruction for specific
information.

When integer and double integer variable types are mixed within a compute instruction,
integer values are converted to signed double integer values before the compute
operation is performed.

5-1

5.1 Absolute Value (ABS)

ABS
Qut=|In|

In Out

Use this instruction to calculate the absolute value of a variable or constant.

While EN is true, the instruction calculates the absolute value of In. The result is stored
in Out.

5.1.1

Input Parameters for the Absolute Value Instruction

This table lists the inputs for the ABS instruction and the variable and type and data

type/range that each input supports.

® clement of an array

Parameter Description Variable Type Data Type/Range
EN When this input is true, the instruction executes. When
this input is false, the instruction is not executed, and Connect a Boolean input or output.
ENO is false.
In Enter the variable or constant of which you want the | ® simple ® integer
absolute value. e constant e double integer

timer
(name.TPreset
and
name.Elapsed)
counter
(name.CPreset
and name.Current)

5-3

5-4

5.1.2

5.1.3

Output Parameters for the Absolute Value Instruction

This table lists the outputs for the ABS instruction and the variable type and data
type/range that each output supports.

Parameter Description Variable Type Data Type/Range
ENO Use this output as the input to another instruction | Connect a contact, coil, or a Boolean input to another
for easily chaining multiple instructions. This out- instruction.
put follows the state of the EN input unless an er-
ror occurs.
Out This output contains the absolute value of In. ® simple e integer (0 to 32767)

e clementofanarray | e doubleinteger

(0 to 2147483647)

e timer (name.TPreset
and name.Elapsed)

e counter (name.CPreset
and name.Current)

Example of an Absolute Value Instruction

This logic shows that when the variable pass is
true the instruction calculates the absolute
value of the variable measure and stores it in
the variable tolerance.

pass

MESZLIE —

AR5
Qut=|In]|

l— tolerance

52 Add (ADD)

ALD
Out=Inl+InZ+In3
EM MO

Inl Out
Ind

Ini

Use this instruction to add two or three variables or constants together. While EN is
true, the instruction adds the values of In1, In2, and In3. The result is stored in Out.

5-6

5.2.1

Input Parameters for the Add Instruction

This table lists the inputs for the Add instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type Data Type/Range
EN When this input is true, the instruction executes. When this
input is false, the instruction is not executed, and ENO is Connect a Boolean input or output.
false.
In1 Enter the variables or constants you want to add. You must | @ simple ® integer
In2 specify values for at least In1 and In2. In3 is optional. e constant e double integer
In3 ® clement of an array timer

(name.TPreset
and
name.Elapsed)
counter
(name.CPreset
and name.Current)

5.2.2

Output Parameters for the Add Instruction

This table lists the outputs for the Add instruction and the variable type and data
type/range that each output supports.

Parameter Description Variable Type Data Type/Range
ENO Use this output as the input to another instruction for easily | Connect a contact, coil, or a Boolean input to
chaining multiple instructions. This output follows the state another instruction.
of the EN input unless an error occurs.
Out This output contains the result of adding the values in In1 | ® simple ® integer
and In2 or In1, In2, and In3. e clementofanarray | e double integer
® timer
(name.TPreset
and
name.Elapsed)
® counter
(name.CPreset
and name.Current)

5-7

5-8

5.2.3 Example of the Add Instruction

This logic shows that when the variable pass is
true the instruction adds the variables part1_wt,
part2_wt, and the constant 2. The result is
stored in the variable package_wt.

pass

—

part! it —

part2ant ——

2 -

A0

Out=Inl+InZ+In3
EM ENO

Ou

-+

| package_ i

5.3 Divide (DIV)

01V
Qut=Inl /In2
- EWG

Inl ut

In2

Use this instruction to divide two variables or constants.

While EN is true, the instruction divides In1 by In2. The whole number of the quotient
(truncated quotient) is stored in Out. For example, if the result (quotient) of the division
is 1.6, Out contains a value of 1.

5-10

5.3.1

Input Parameters for the Divide Instruction

This table lists the inputs for the DIV instruction and the variable type and data
type/range that each input supports.

® clement of an array

Parameter Description Variable Type Data Type/Range
EN While this input is true, the instruction executes. When this
input is false, the instruction does not execute and ENO is Connect a Boolean input or output.
false.
In1 Enter the variables or constants you want to divide. In1 is di- | ® simple ® integer
In2 vided by In2. In2 cannot be 0. e constant e double integer

timer
(name.TPreset
and
name.Elapsed)
counter

(name.CPreset
and name.Current)

5.3.2

Output Parameters for the Divide Instruction

This table lists the outputs for the DIV instruction and the variable type and data
type/range that each output supports.

® clement of an array

Parameter Description Variable Type Data Type/Range
ENO Use this output as the input to another instruction for easily | Connect a contact, coil, or a Boolean input to
chaining multiple instructions. This output follows the state another instruction.
of the EN input unless an error occurs.
Out This output contains the truncated quotient. ® simple ® integer
® constant e double integer

timer
(name.TPreset
and
name.Elapsed)
counter

(name.CPreset
and name.Current)

5.3.3

5.4

5-12

Example of a Divide Instruction

This logic shows that when the variable switch1
is true the instruction divides the variable bulk

by 100 and stores the result in the variable =witch

sample_1. — EM
outke — T
100 — 11

Dt%ILIE
Lt=Inl/In
ENG

Out

— =zample_1

Modulo (MOD)

MO0
Qut=Inl modulo InZ
EN ENG
Inl Out

Inz

Use this instruction to calculate the remainder resulting from dividing two variables or

constants.
While EN is true, the instruction calculates the remainder of In1 divided by In2. The

result is stored in Out.

5.4.1

Input Parameters for the Modulo Instruction

This table lists the inputs for the MOD instruction and the variable type and data
type/range that each input supports.

cannot be 0.

® clement of an array

Parameter Description Variable Type Data Type/Range
EN While this input is true, the instruction executes. When
this input is false, the instruction does not execute and Connect a Boolean input or output.
ENO is false.
In1 Enter the variables or constants you want to divide and | ® simple ® integer
In2 have the remainder calculated. In1 is divided by In2. In2 | ¢ constant e double integer

timer (name.TPreset
and name.Elapsed)
counter
(name.CPreset and
name.Current)

5-13

5-14

5.4.2

Output Parameters for the Modulo Instruction

This table lists the outputs for the MOD instruction and the variable type and data
type/range that each output supports.

operation.

Parameter Description Variable Type Data Type/Range
ENO Use this output as the input to another instruction for Connect a contact, coil, or a Boolean input to
easily chaining multiple instructions. This output follows another instruction.
the state of the EN input unless an error occurs.
Out This output contains the remainder of the division | ® simple ® integer

e clementofanarray | e doubleinteger

o timer (name.TPreset
and name.Elapsed)

® counter
(name.CPreset and
name.Current)

5.4.3 Example of the Modulo Instruction

This logic shows that when the variable switch1
is true the instruction divides the constant 38 by
5 and stores the remainder of the division (3) in
the variable answer.

wvitchl

EM

I_
25 Inl
5 | InZ

oD

Qut=InlInZ
EMD

Out

answer

55 Multiply (MUL)

MUL

Inl

In/

Out=In1*InZ
END

Out

Use this instruction to multiply two variables or constants together. While EN is true, the
instruction multiplies the values of In1 and In2. The result is stored in Out.

5-15

5-16

5.5.1

Input Parameters for the Multiply Instruction

This table lists the inputs for the MUL instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type Data Type/Range
EN While this input is true, the instruction executes. When
this input is false, the instruction does not execute, and Connect a Boolean input or output.
ENO is false.
In1 Enter the variables or constants you want to multiply. | ® simple ® integer
In2 ® constant e double integer

® clementofanarray | e timer (name.TPreset
and name.Elapsed)

® counter
(name.CPreset and
name.Current)

5.5.2

Output Parameters for the Multiply Instruction

This table lists the outputs for the MUL instruction and the variable type and data
type/range that each output supports.

inIn1 and In2.

Parameter Description Variable Type Data Type/Range
ENO Use this output as the input to another instruction for Connect a contact, coil, or a Boolean input to
easily chaining multiple instructions. This output follows another instruction.
the state of the EN input unless an error occurs.
Out This output contains the result of multiplying the values | ® simple ® integer

e clementofanarray | e doubleinteger

o timer (name.TPreset
and name.Elapsed)

® counter
(name.CPreset and
name.Current)

5-17

5-18

5.5.3

Example of a Multiply Instruction

This logic shows that when the variable next is
true the instruction multiplies the variable boxes
by 200 and stores the product in the variable
production.

next

EM

—
hoxes — Inl
200 — In

MUL
Out=Inl"In2
R

Out

— production

5.6

Multiply Divide (MDV)

Out=(T Teg 23 /In3
Lt={Inl*In n
EM ERIE

Inl Out

InZ

In3

Use this instruction to multiply two variables or constants together and divide the result
by a third variable or constant. This operation can give you a greater precision than if
you use a MUL instruction and then a DIV instruction, because the product of In1 and
In2 is kept in double precision and then divided by In3 to reduce it to single precision.

While EN is true, the instruction multiplies the values of In1 and In2, then divides the
product by In3. The truncated quotient is stored in Out. For example, if the result was
1.6, Out would contain a value of 1.

5-19

5.6.1 Input Parameters for the Multiply Divide Instruction

This table lists the inputs for the MDV instruction and the variable type and data
type/range that each input supports.

Parameter

Description

Variable Type

Data Type/Range

EN

While this input is true, the instruction executes. When
this input is false, the instruction does not execute and
ENO is false.

Connect a Boolean input or output.

In1
In2

Enter the variables or constants you want to multiply.

In3

Enter the variable or constant by which you want to di-
vide the product of In1 and In2. In3 cannot be 0.

® simple
® constant
® eclement of an array

® integer
® double integer

timer (name.TPreset
and name.Elapsed)

counter
(name.CPreset and
name.Current)

5-20

5.6.2

Output Parameters for the Multiply Divide Instruction

This table lists the outputs for the MDV instruction and the variable type and data
type/range that each output supports.

Parameter Description Variable Type Data Type/Range
ENO Use this output as the input to another instruction for Connect a contact, coil, or a Boolean input to
easily chaining multiple instructions. This output follows another instruction.
the state of the EN input unless an error occurs.
Out This output contains the result of the calculation. ® simple ® integer

e clementofanarray | e doubleinteger

o timer (name.TPreset
and name.Elapsed)

® counter
(name.CPreset and
name.Current)

5-21

5.6.3 Example of a Multiply Divide Instruction

This logic shows that when the variable TIY
parts.made is true the instruction multiplies the Out=(Tn1"In? 3
constant 200 by the variable boxes. The partls.made EM (Int*n jﬂENCI
resulting double precision product is then
divided by the variable box_stock. The single
precision result of the calculation is stored in 200 — Inl ut | hoxes_needed
the variable boxes_needed.
hoxes — In:
hox_stock — In3
5.7 Negate (NEG)
MEG
Qut=-In
WG
11In Out |

Use this instruction to change the sign of a variable or constant. While EN is true, the

instruction changes the sign of the value of In. The result is stored in Out.

5-22

5.7.1

Input Parameters for the Negate Instruction

This table lists the inputs for the NEG instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type Data Type/Range
EN While this input is true, the instruction executes. When
this input is false, the instruction does not execute, and Connect a Boolean input or output.
ENO is false.
In Enter the variable you want to negate. ® simple ® integer
® constant e double integer

® clementofanarray | e timer (name.TPreset
and name.Elapsed)

® counter
(name.CPreset and
name.Current)

5-23

5-24

5.7.2

5.7.3

Output Parameters for the Negate Instruction

This table lists the outputs for the NEG instruction and the variable type and data
type/range that each output supports.

e element of an array

Parameter Description Variable Type Data Type/Range
ENO Use this output as the input to another instruction for Connect a contact, coil, or a Boolean input to
easily chaining multiple instructions. This output follows another instruction.
the state of the EN input unless an error occurs.
Out This output contains the negative value of In. ® simple ® integer

double integer

o timer (name.TPreset

and name.Elapsed)

counter
(name.CPreset and
name.Current)

Example of a Negate Instruction

When switch1 is true, the instruction negates
the value of 20 and stores a value of —20 in the
variable result.

Fwwitchl

| EN

20 —

MEQ
Qut=-In

In

ENG

Out

L result

5.8

Square Root (SQRT)

Dut=SERT (1)
Lik= h
N ENO

In

Out

Use this instruction to calculate the square root of a variable or constant. While EN is
true, the instruction calculates the square root of In. The truncated result is stored in

Out.

5-25

5-26

5.8.1

Input Parameters for the Square Root Instruction

This table lists the inputs for the SQRT instruction and the variable type and data

type/range that each input supports.

® clement of an array

Parameter Description Variable Type Data Type/Range
EN While this input is true, the instruction executes. When
this input is false, the instruction does not execute and Connect a Boolean input or output.
ENO is false.
In Enter the positive variable or constant for which you | ® simple ® integer
want to calculate the square root. e constant (0 to 32767)

e double integer
(0 to 2147483647)
® timer (name.TPreset
and name.Elapsed)
® counter

(name.CPreset and
name.Current)

5.8.2

Output Parameters for the Square Root Instruction

This table lists the outputs for the SQRT instruction and the variable type and data
type/range that each output supports.

Parameter Description Variable Type Data Type/Range
ENO Use this output as the input to another instruction for Connect a contact, coil, or a Boolean input to
easily chaining multiple instructions. This output follows another instruction.
the state of the EN input unless an error occurs.
Out This output contains the truncated result of the square | ® simple ® integer (0 to 32767)
root of In. e elementofanarray | e double integer
(0 to 46340)

® timer (name.TPreset
and name.Elapsed)

® counter
(name.CPreset and
name.Current)

5-27

5.8.3 Example of the Square Root Instruction

When switch1 is true, the instruction calculates
the square root of 4 and stores a value of 2 in

the variable result. p—

Had In contained a value of 8, the result of the —
square root calculation still would have been 2,

because the result is truncated to a whole g In
number.

SORT

Out=SORT
g OEERTA

Out

|— result

5.9 Subtract (SUB)

SUB
OQut=Inl-In2
EMD

Inl Out

InZ

Use this instruction to subtract two variables or constants. While EN is true, the
instruction subtracts In2 from In1. The result is stored in Out.

5-28

5.9.1

Input Parameters for the Subtract Instruction

This table lists the inputs for the SUB instruction and the variable type and data
type/range that each input supports.

® clement of an array

Parameter Description Variable Type Data Type/Range
EN While this input is true, the instruction executes. When
this input is false, the instruction does not execute and Connect a Boolean input or output.
ENO is false.
In1 Enter the variables or constants you want to subtract | ® simple ® integer
In2 (In1 minus In2). e constant e double integer

timer (name.TPreset
and name.Elapsed)
counter
(name.CPreset and
name.Current)

5-29

5-30

5.9.2

Output Parameters for the Subtract Instruction

This table lists the outputs for the SUB instruction and the variable type and data
type/range that each output supports.

Parameter Description Variable Type Data Type/Range
ENO Use this output as the input to another instruction for Connect a contact, coil, or a Boolean input to
easily chaining multiple instructions. This output follows another instruction.
the state of the EN input unless an error occurs.
Out This output contains the result of In1 minus In2. ® simple ® integer

e clementofanarray | e doubleinteger

o timer (name.TPreset
and name.Elapsed)

® counter
(name.CPreset and
name.Current)

5.9.3

5.10

Example of a Subtract Instruction

When the variable switch1 is true, the
instruction subtracts the value of the variable

order from that of the variable part_made and .
stores the result in the variable parts_left. witch BN
partz_mace — Il
order — In:

SUB

Out=Inl-Inz
EMO

out

f—partz_left

Errors Caused by the Compute Instructions

This section describes the possible errors for all compute instructions and those

additional errors specific to each compute instruction.

5-31

5-32

5.10.1

Errors Caused by All Compute Instructions

These errors can occur when you are using compute instructions.
They are logged in the error log.

If this error occurs:

Then:

Do the following:

The array index is negative.

ENO is set according
to ERROR_ENO, and
element zero of the
array is used for the

instruction’s operation.

Specify a valid array element.

The array index is too large.

ENO is set according

to ERROR_ENO, and

the last element of the
array is used for the

instruction’s operation.

Specify a valid array element.

5.10.2

5.10.3

Errors Caused by the Absolute Value Instruction

This error can occur when you are using the ABS instruction in a program. It is logged

in the error log.

If this error occurs:

Then:

Do the following:

The result of the
arithmetic calculation
is too large for Out.

ENO is set according
to ERROR_ENO, and
Out contains the
largest positive value
allowed for its data
type.

Specify a larger data
type for Out. For
example, if you are
using integers, specify
the data type as a
double integer.

Errors Caused by the Addition Instruction

This error can occur when you are using the ADD instruction in a program. It is logged

in the error log.

If this error occurs:

Then:

Do the following:

The result of the
arithmetic calculation
is too large for Out.

ENO is set according
to ERROR_ENO, and
Out contains the
largest signed value
allowed for its data

type.

Specify a larger data
type for Out. For
example, if you are
using integers, specify
the data type as a
double integer.

5-33

5-34

5.10.4

Errors Caused by the Divide, Modulo, and Multiply Divide

Instruction

These errors can occur when you are using the DIV, MOD, or MDV instruction in a

program. They are logged in the error log.

If this error occurs:

Then:

Do the following:

The result of the
arithmetic calculation
is too large for Out.

ENO is set according
to ERROR_ENO, and
Out contains the
largest signed value
allowed for its data
type.

Specify a larger data
type for Out. For
example, if you are
using integers, specify
the data type as a
double integer.

Cannot divide by
zero.

ENO is set according
to ERROR_ENO, and
Out contains the
largest signed value
allowed.

Define In2 (In3 for
MDYV instructions) to
be a value other than
0.

5.10.5

Errors Caused by the Multiply Instruction

This error can occur when you are using the MUL instruction in a program. It is logged

in the error log:

If this error occurs:

Then:

Do the following:

The result of the
arithmetic calculation
is too large for Out.

ENO is set according
to ERROR_ENO, and
Out contains the
largest signed value
allowed for its data
type.

Specify a larger data
type for Out. For
example, if you are
using integers, specify
the data type as a
double integer.

5-35

5.10.6 Errors Caused by the Negate Instruction

This error can occur when you are using the NEG instruction in a program. It is logged
in the error log.

If this error occurs: | Then: Do the following:
The result of the ENO is set according | Make sure that the
arithmetic calculation | to ERROR_ENO, and | negated value of In
is too large for Out. Out contains the falls within the
largest signed value allowable range for
allowed for its data Out.
type.

5-36

5.10.7

Errors Caused by the Square Root Instruction

These errors can occur when you are using the SQRT instruction in a program. They

are logged in the error log.

If this error occurs:

Then:

Do the following:

The result of the
arithmetic calculation
is too large for Out.

ENO is set according
to ERROR_ENO, and
Out contains the
largest positive value
allowed for its data
type.

Specify a larger data
type for Out. For
example, if you are
using integers, specify
the data type as a
double integer.

Cannot take the
square root of a
negative number

ENO is set according
to ERROR_ENO, and
Out contains the
square root of the
absolute value of In.

Make sure the value of
In is positive.

5-37

5.10.8 Errors Caused by the Subtract Instruction

This error can occur when you are using the SUB instruction in a program. It is logged
in the error log.

If this error occurs: Then: Do the following:
The result of the ENO is set according | Make sure that the
arithmetic calculation | to ERROR_ENO, and result falls within the
is too large for Out. Out contains the allowable range for

largest signed value Out.
allowed for its data

type.

5-38

6.0

Logical Instructions

Use logical instructions to perform logic operations on input parameters.

Choose from these logical instructions:

Logical AND (AND)

Logical NOT (NOT)

Logical OR (OR)

Logical Exclusive OR (XOR)

The supported parameters are:

See each input and output parameter description for each instruction for specific

simple integers and double integers

integer and double integer constants

elements of integer and double integer arrays

Timer variables (name.TPreset and name.Elapsed)
Counter variables (name.CPreset and name.Current)

information.

With the logical instructions, you can mix the data types for the inputs and outputs.
When mixing integers and double integers within an instruction, the values are first
converted to unsigned double integers. The result is then converted to the unsigned

data type specified by the output.

6-1

6.1 Logical And (AND)

A0
Out=Inl&Inz
EMD

Inl Out

In2

Use the Logical And instruction to perform a bit-wise logical AND between two
variables. While EN is true, the instruction performs a logical AND operation on In1 and
In2. The result is stored in Out.

The truth table for a bit-wise logical AND operation is as follows:

In1 In2 Out

= |Oo|=|O
alalo|lo
= |Oo|O|O

6.1.1

6.1.2

Input Parameters for the Logical AND Instruction

This table lists the inputs for the AND instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type | Data Type/Range
EN When this input is true, the instruction executes. When this Connect a Boolean input or output.
input is false, the instruction is not executed and ENO is
false.
In1 Enter two variables or constants on which you want to per- | ® simple integer (0-FFFF)
In2 form the logical AND. e constant double integer
Note: Any constants entered are displayed in hexadecimal. | @ element of an array (0-FFFFFFFF)

Output Parameters for the Logical AND Instruction

This table lists the outputs for the AND instruction and the variable type and data
type/range that each output supports.

In1 and In2.

Parameter Description Variable Type | Data/Type Range
ENO Use this output as the input to another instruction for Connect a contact, coil, or Boolean input to
easily chaining multiple instructions. This output follows another instruction.
the state of EN unless and error occurs.
Out This output contains the result of the AND operation on ® simple integer (0-FFFF)

e element of an array ?;‘;E'FGFi'r:"t:eFQF?r

6-3

6-4

6.1.3

Example of a Logical AND Instruction

When switch1 is true, the instruction performs a
logical AND operation on the variables part_1
and part_2, and Out contains the result in the
variable result.

AND

; Out=Inl&In2
Fwitch N END

part_1 — Inl Out —result

InZ

part.2 —

partA [Jo| e[«]+ fafoe]«fafs]ofa]of«]]

part-2[o oo« Jafs] fofo]s[s]efa]afs]]

resut [0 Jo o[+ [a]efofofofof+fafofo]«]t]

Logical Not (NOT)

NOT
Qut=-({In)

In Out

Use the Logical Not instruction to change each bit of a single variable to the opposite
value. While EN is true, the instruction performs a bit-wise logical NOT operation on In.
The result is stored in Out.

The truth table for a bit-wise logical NOT operation is as follows:

In Out
1 0
0 1

6-6

6.2.1

6.2.2

Input Parameters for the Logical NOT Instruction

This table lists the inputs for the NOT instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type | Data Type/Range

EN When this input is true, the instruction executes. When this Connect a Boolean input or output.
input is false, the instruction is not executed and ENO is
false.

In Enter the variable or constant on which you want to ® simple integer (0-FFFF)
perform the logical NOT. e constant double integer

: i i i (0-FFFFFFFF)

Note: Any constants entered are displayed in hexadecimal. | @ element of an array

Output Parameters for the Logical NOT Instruction

This table lists the outputs for the NOT instruction and the variable type and data
type/range that each output supports.

Parameter Description Variable Type | Data Type/Range
ENO Use this output as the input to another instruction for easily | Connect a contact, coil, or Boolean input to
chaining multiple instructions. This output follows the state | another instruction.
of EN unless an error occurs.
Out This output contains the result of the NOT operation on In.

® simple integer (0-FFFF)

e clement of an array ?(?EEEEELGFQFT

6.2.3

Example of a Logical NOT Instruction

While switch1 is true, the instruction performs a
logical NOT on the variable part, and Out
contains the result in the variable result.

_ WaT
swvitchl ” Out=-({In) -
part — In ot | esitt
pat [ofof«[rfafafe]e] e[o]1]ofo]o]o]n]

resut [t [t]ofofr]r]ofaafafafefr]s]r]t]

6-7

Logical Or (OR)

i3]
Out=Inl | In2
M EM

Inl Out

In:

Use the Logical Or instruction to perform a bit-wise logical OR operation between two
variables. While EN is true, the instruction performs a logical OR operation between In1

and In2. The result is stored in Out.
The truth table for a bit-wise logical OR operation is as follows:

In1 In2 Out

2 |lo|=|o
alalo|o
a|alalo

6.3.1

6.3.2

Input Parameters for the Logical OR Instruction

This table lists the inputs for the OR instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type | Data Type/Range
EN When this input is true, the instruction executes. When this Connect a Boolean input or output.
input is false, the instruction is not executed and ENO is
false.
In1 Enter two variables or constants on which you want to ® simple integer (0-FFFF)
In2 perform the logical OR. e constant double integer
. ; ; ; (0-FFFFFFFF)
Note: Any constants entered are displayed in hexadecimal. | @ element of an array

Output Parameters for the Logical OR Instruction

This table lists the outputs for the OR instruction and the variable type and data
type/range that each output supports.

Parameter Description Variable Type | Data Type/Range
ENO Use this output as the input to another instruction for easi- | Connect a contact, coil, or Boolean input to
ly chaining multiple instructions. This output follows the another instruction.
state of EN unless an error occurs.
Out This output contains the result of the OR operation on In1 | ® simple integer (0-FFFF)
and In2. e element of an array double integer
(0-FFFFFFFF)

6-9

6-10

6.3.3

Example of a Logical OR Instruction

While the variable switch1 is true, the instruction
performs a logical OR on the variables part 1
and part_2, and Out contains the result in the
variable result.

R
swvitchl Out=Inl | In2
L EN EMD
I
parta] Inl ut | rezult
part.? — Inz

part Ao]af] Jafa]s[s]afa]s[r]o]+]a]s]

part2 [« |1 [afofaf+]+ fa]fe]afo]s]+]a]e]

resut [+ [tJofroafefefefofofefefe]fe]o]r]

6.4

Logical Exclusive Or (XOR)

A0R,
Qut=Inl & In2
i END

Inl Out

In2

Use the Logical Exclusive Or instruction to perform a bit-wise logical exclusive OR
operation between two variables. While EN is true, the instruction performs a logical
exclusive OR operation between In1 and In2. The result is stored in Out.

The truth table for a bit-wise logical XOR operation is as follows:

In1 In2 Out
0 0 0
1 0 1
0 1 1
1 1 0

6-12

6.4.1

6.4.2

Input Parameters for the Logical Exclusive OR Instruction

This table lists the inputs for the XOR instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type | Data Type/Range
EN When this input is true, the instruction executes. When this Connect a Boolean input or output.
input is false, the instruction is not executed and ENO is
false.
In1 Enter two variables or constants on which you want to ® simple integer (0-FFFF)
In2 perform the logical XOR. e constant double integer
. ; ; ; (0-FFFFFFFF)
Note: Any constants entered are displayed in hexadecimal. | @ element of an array

Output Parameters for the Logical Exclusive OR Instruction

This table lists the outputs for the XOR instruction and the variable type and data
type/range that each output supports.

In1 and In2.

Parameter Description Variable Type | Data Type/Range
ENO Use this output as the input to another instruction for easi- | Connect a contact, coil, or Boolean input to
ly chaining multiple instructions. This output follows the another instruction.
state of EN unless an error occurs.
Out This output contains the result of the XOR operation on ® simple integer (0-FFFF)

e clement of an array ?(?EEEEELGFQFT

6.4.3

Example of a Logical Exclusive OR Instruction

When the variable switch1 is true, the
instruction performs a logical exclusive OR
operation on the variables part_1 and part_2,
and Out contains the result in the variable
result.

AR,
3\.\.;“,3'”1 - Out=Inl 4 IanNCI
11
| part_] — Inl Out |— result
part_2 —] InZ
part 1 (o[v[]ufo]ifefr]ifofo]ifofufo]

par‘t_2|I]|I|I]|I|I]‘I|[I|I]|I]|I]|I|I]‘I|[I|I]|I|

result ||1|||||u|n‘||||||||||||u|u‘n|u|||

6-13

Errors Caused by Logical Instructions

These errors can occur when you are using the logical instructions in a program. They
are logged in the error log.

If this error occurs: Then: Do the following:

The array index is negative. | ENO is set to Specify a valid array element.
ERROR_ENO, and
element zero of the
array is used for the
instruction’s operation.

The array index is too large. | ENO is set to Specify a valid array element.
ERROR_ENO, and the
last element of the
array is used for the
instruction’s operation.

7.0

Data Conversion Instructions

Use data conversion instructions to convert data from integer to binary coded decimal
and vice versa.

Choose from these instructions:

e TO_BCD

e BCD_TO

The supported parameters are:

e simple integer and double integer

® integer and double integer constants

e clements of integer and double integer arrays

® Timer variables (name.TPreset and name.Elapsed)

e Counter variables (name.CPreset and name.Current)

See each input and output parameter description for each instruction for specific
information.

7-1

Convert Integer Data to BCD (TO_BCD)

T0_BLD
Out=TO_BCO (Tn
BN Mg

In Out

Use this instruction to convert integer or double integer data to binary coded decimal
(BCD) data.

While EN is true, the instruction converts the value of In to BCD. The result is stored in
Out.

711

Input Parameters for the Convert Integer Data to BCD Instruction

This table lists the inputs for the TO_BCD instruction and the variable and type and data
type/range that each input supports.

e element of an array

Parameter Description Variable Type Data Type/Range
EN While this input is true, the instruction executes. When this Connect a Boolean input or output.
input is false, the instruction is not executed and ENO is
false.
In Enter the variable that you want converted to binary ® simple ® integer
coded data. e constant (0 to 9999)

double integer
(0 to 99999999)

timer
(name.TPreset
and
name.Elapsed)

counter
(name.CPreset
and
name.Current)

7-3

7-4

7.1.2

Output Parameters for the Convert Integer Data to BCD Instruction

This table lists the outputs for the TO_BCD instruction and the variable type and data
type/range that each output supports.

Parameter Description Variable Type Data Type/Range
ENO Use this output as the input to another instruction for Connect a contact, coil, or Boolean input of
easily chaining multiple instructions. This output follows another instruction.
the state of EN unless an error occurs.
Out This output contains the binary coded decimal equivalent | ® simple BCD value of 0-9999
of the integer value of In. e elementof an array | (integer) or

0-99999999
(double integer)

713

Example of a Convert Integer Data To BCD Instruction

When switch1 is true, the instruction converts
the integer value 109 in the variable part to
binary coded decimal (BCD) and stores it in the
variable result.

TO_BCD
=it ENDUt:TDjCD(In:]ENCl
part — In Out — result
N nnnnnonoonnnnnon

angnnnnonoononoonn

7-5

Convert From BCD to Integer Data (BCD_TO)

BCO_TO
Out=RC0_Td(In
EN @)ENI:I

In Out

Use this instruction to convert binary coded decimal (BCD) data to integer or double
integer data.

When EN is true, the instruction converts the BCD data of In to integer or double integer
data. The result is stored in Out.

7.21

Input Parameters for the Convert From BCD to Integer Data Instruction

This table lists the inputs for the BCD_TO instruction and the data and type and data
type/range that each input supports.

Parameter Description Variable Type Data Type/Range
EN While this input is true, the instruction executes. When this Connect a Boolean input or output.
input is false, the instruction is not executed and ENO is
false.
In Enter the variable that you want converted to integer or ® simple BCD value of 0-9999
double integer data. e constant (integer) or
| t of 0-99999999
¢ element of an array (double integer)

7-7

7-8

7.2.2

Output Parameters for the Convert From BCD to Integer Data Instruction

This table lists the outputs for the BCD_TO instruction and the variable type and data
type/range that each output supports.

of the BCD value of In.

® element of an
array

Parameter Description Variable Type Data Type/Range
ENO Use this output as the input to another instruction for Connect a contact, coil, or Boolean input of
easily chaining multiple instructions. This output follows another instruction.
the state of EN unless an error occurs.
Out This output stores the integer or double integer equivalent | ® simple ® converted integer

or double integer
value

® timer
(name.TPreset and
name.Elapsed)

® count
(name.CPreset
and name.Current)

7.2.3 Example of a Convert From Binary Data to Integer Data Instruction

When switch1 becomes true, the instruction

converts the BCD value 109 in the variable part

to integer and stores the value in the variable BCO_TO

result. it " Qut=BCO_TO (In)ENl:I

I—

In ut | —

part —

part (oo fofofofo]a]ifofafua]a]i]0]0]1]

resut (8]0]ufufufofufufoo] fofefi]o]]

7-10

7.3

7.3.1

Errors Caused by the Data Conversion Instructions
This section describes the possible errors for all data conversion instructions and those
additional errors specific to the TO_BCD and BCD_TO instructions.

Errors Caused by All Data Conversion Instructions

These errors can occur when you are using the data conversion instructions. They are
logged in the error log.

If this error occurs: Then: Do the following:

The array index is negative. | ENO is set according | Specify a valid array element.
to ERROR_ENO, and
element zero of the
array is used for the
instruction’s operation.

The array index is too large. | ENO is set according | Specify a valid array element.
to ERROR_ENO, and
the last element of the
array is used for the
instruction’s operation.

7.3.2 Errors Caused by the Convert Integer Data To BCD Instruction

These errors can occur when you are using the TO_BCD instruction in a program. They
are logged in the error log.

If this error occurs:

Then:

Do the following:

The result is larger
than what Out’s data
type supports.

o Qut contains the
maximum value al-
lowed for the data
type (9999 for inte-
gers and 99999999
for double integers)

e ENO is set accord-
ing to ERROR_ENO

Make sure the value
you want to convert to
BCD is within the
range Out supports.

Tried to convert a
negative value to
BCD.

o Qut contains the
value of 0

e ENO is set accord-
ing to ERROR_ENO

Use a positive value
for In.

7.3.3 Errors Caused by the Convert From Binary Data to Integer Data Instruction

These errors can occur when you are using the BCD_TO instruction in a program. They
are logged in the error log.

7-12

If this error occurs:

Then:

Do the following:

The result is larger
than what Out’s data
type supports.

ENO is set according
to ERROR_ENO, and
Out contains the
largest value allowed
for the data type being
used.

Specify a larger data
type for Out. For
example, use a double
integer data type
instead of a integer.

An illegal BCD digit
was found.

o Qut contains the
value of 0

e ENO s set
according to
ERROR_ENO.

Use a valid BCD value
for In.

8.0

Move Instructions

Use the move instructions to copy data between variables.
Choose from these instructions:

Use this instruction:

To:

Move Source Data (MOVE)

move data from one
variable to another

Move Bits Between
Integers/Double Integers
(MVB)

move a specified number of
bits within the same
variable or between
variables

Masked Move (MVM)

move data from a variable,
through a mask, and into
another variable

The supported parameters are:

simple integers and double integers
integer and double integer constants

Timer variables (name.TPreset and name.Elapsed)

[}
[}
e elements of integer and double integer arrays
[]
[]

Counter variables (name.CPreset and name.Current)

See the input and output parameter description for each instruction for specific

information.

8-1

Defining a Mask
Choose to move the bits from In to Out by setting the bits in the mask that correspond
to the location of the bits in the source (In).

To: Define the corresponding
Mask bit as:
move bits from In into Out 1

not move the bits from In to Out (the |0
bits currently in Out do not change)

8.1 Move Source Data to Destination (MOVE)

MOVE
Qut=In
EN ENO

In Out

Use the Move Source Data to Destination instruction to copy the value of the input
variable or constant to the output variable. You can move data between variables that

use different addressing modes.
When EN is true, the instruction copies the value of In to the variable assigned to Out.

8-2

8.1.1

Input Parameters for the Move Source Data to Destination Instruction

This table lists the inputs for the MOVE instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type Data/Type Range
EN While this input is true, the instruction executes. When Connect a Boolean input or output.
this input is false, the instruction is not executed and
ENO is false.
In Enter a constant or whose value you want to copy to ® simple ® integer
Out. In is the source of the move operation. e constant e double integer

® clementofanarray |e timer
(name.TPreset and
name.Elapsed)

® counter
(name.CPreset
and name.Current)

8-3

8-4

8.1.2

Output Parameters for the Move Source Data to Destination Instruction

This table lists the outputs for the MOVE instruction and the variable type and data
type/range that each output supports.

Parameter Description Variable Type Data/Type Range
ENO Use this output as the input to another instruction for Connect a contact, coil, or Boolean input to
easily chaining multiple instructions. This output follows another instruction.
the state of EN unless an error occurs.
Out Enter the variable within which you want to store the value | ® simple ® integer
copied from In. Out is the destination of the move e clementofanarray | e double integer
operation.)
e timer
(name.TPreeset
and
name.Elapsed)
® counter
(name.CPreset
and name.Current)

8.1.3

Example of a Move Source Data to Destination Instruction

When switch1 is true, the instruction moves the
constant 5 into the variable tolerance.

Fwitch

In

MOVE
Qut=In
EWG

Qut

| tolerance

8-5

8-6

8.2

Move Bits Between Integers/Double Integers (MVB)

WiB
NDut=MI-"B aIn, LEHENG
_11In Qut]
_|InRit
| out Bt
_| Lenath

Use the Move Bits Between Integers/Double Integers instruction to copy up to 16 or 32
bits of data within a variable or between two variables.

While EN is true, the instruction moves from In the number of bits specified in Length
starting at the bit location specified in In_Bit. The bits are moved to Out, starting at the
bit location specified in Out_Bit. The bits of the destination location are overwritten by

those from In.

8.2.1

Input Parameters for the Move Bits Between Integers/Double Integers Instruction

This table lists the inputs for the MVB instruction and the variable type and date
type/range that each input supports.

Parameter Description Variable Type | Data/Type Range
EN While this input is true, the instruction executes. When this Connect a Boolean input or output.
input is false, the instruction is not executed and ENO is
false.
In Enter a constant or variable from which you want to move | ® simple ® integer
bits, the source of the bit move operation. e constant e double integer
® clementofanarray | e timer
(name.TPreset and
name.Elapsed)
® counter
(name.CPreset
and name.Current)
In_Bit Enter the number of the bit within In from which the
copying should start.)
- - - - integer (0-31)
Out_Bit Enter the number of the bit within Out that the instruction
copies the bits to.
Length Enter the quantity of bits to be moved from In to Out.
When defining a length, keep in mind the following:
e Bits written to Out that extend beyond Out’s data type integer (0-32)
boundary are lost.
® Bits you copy from In that extend beyond bit 15 for
integers and bit 31 for double integers are set to 0.

8-7

8-8

8.2.2

Output Parameters for the Move Bits Between Integers/Double Integers Instruction

This table lists the outputs for the MVB instruction and the variable type and data
type/range that each output supports.

Parameter Description Variable Type Data/Type Range
ENO Use this output as the input to another instruction for Connect a contact, coil, or Boolean input to
easily chaining multiple instructions. This output follows another instruction.
the state of EN unless an error occurs.
Out Enter the variable within which to store the moved bits, ® simple e integer
the destination of the bit move operation. This can be the ;
same variable as In. The bits within Out are overwritten by ® elementofanarray | e d.ouble integer
the bits from In. ® timer
(name.TPreset
and
name.Elapsed)
® counter
(name.CPreset
and name.Current)

8.2.3

Examples of a Move Bits Between Integers/Double Integers Instruction

When switch1 is true, the instruction copies six
bits from the variable part starting at bit 3 to the
variable part_id starting at bit 10.

HiB
swvitchl Qut=B (In,Len
— ™ 0
part — In Out — part_id
3_Ir'|J3'|’c
1|:l_lﬂlutjﬂz
B_Length
15 14 13 12 11 W0 3 8 7 B &
Part‘|||||||n|||||n||||
bits copied
ptapgy 1514 13 12 11 0 9 8 7 6 5 4 3 2 1
R N N RN N A B O O

operation

8.3 Masked Move (MVM)

(]
Qut=In & Mask
N END

—4In ut |

_| Mask

Use the Masked Move instruction to copy portions of a variable through a mask and
into an output variable. You can use this instruction to extract data from a variable.

When EN becomes true, the instruction copies In through a defined mask and into the
variable assigned to Out.

8.3.1

Input Parameters for the Masked Move Instruction

This table lists the inputs for the MVM instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type Data/Type Range
EN While this input is true, the instruction executes. When this Connect a Boolean input or output.
input is false, the instruction is not executed and ENO is
false.
In Enter a constant or variable that you want to copy to Out. simple ® integer
In is the source of the masked move operation. e constant e double integer
® clementofanarray |e timer
(name.TPreset and
name.Elapsed)
counter
(name.CPreset
and name.Current)
Mask Enter a variable or hexadecimal constant that specifies simple ® integer
which bits to pass or block. A bit set as 1 in the mask e clementofanarray |e double integer
passes the source bit into the destination. Whereas, a bit)]
set as 0 blocks the source bit from being copied to the ® hexadecimal ® timer
destination. See “Defining a Mask” (section 8.0). constant (name.TPreset and
. . . name.Elapsed)
Note: Any constants entered are displayed in hexadecimal. counter
(name.CPreset
and name.Current)

8-12

8.3.2

Output Parameters for the Masked Move Instruction

This table lists the outputs for the MVM instruction and the variable type and data
type/range that each output supports.

Parameter Description Variable Type Data/Type Range
ENO Use this output as the input to another instruction for Connect a contact, coil, or Boolean input to
easily chaining multiple instructions. This output follows another instruction.
the state of EN unless an error occurs.
Out Enter the variable within which you want to store the value | ® simple ® integer
copied from In. Out is the destination of the masked move | ¢ glement of an array |e double integer
operation. o timer

(name.TPreset and
name.Elapsed)

® counter
(name.CPreset
and name.Current)

8.3.3

Example of a Masked Move Instruction

When switch1 is true, the instruction moves the
data from the variable source through the mask
as defined by the variable mask and stores the

data in the variable result.

swvitchl Dut=IﬂuE Mask

—_ ENO

ZOUFCE — In Qut | resut

— _Hask
s [N AN nNnnnnonnonn
SN NOOnonnooooooon
resutt k) (o | [o | [ofo[ofo[ef o] fo]i]n]
resutt tnew) o [[o [o[[fo[o] o i fafi]o]i]n]

8-13

8-14

8.4

8.4.1

Errors Caused by Move Instructions

This section describes the possible errors for all Move instructions and those additional
errors specific to the MOVE and MVB instructions.

Errors Caused by All Move Instructions

These errors can occur whenyou use any move instruction. They are loged in the error

log.

If this error occurs:

Then:

Do the following:

The array index is negative.

ENO is set according
to ERROR_ENO, and
element zero of the
array is used for the

instruction’s operation.

Specify a valid array element.

The array index is too large.

ENO is set according
to ERROR_ENO, and
the last element of the
array is used for the

instruction’s operation.

Specify a valid array element.

8.4.2 Errors Caused by the Move Source Data to Destination Instruction

This error can occur when you are using the MOVE instruction in a program. It is
logged in the error log.

If this error occurs: | Then: Do the following:
The result is larger ENO is set according | Define the variable in Out to
that what Out’s data | to ERROR_ENO, and | be a double integer.
type supports. Out contains the
largest value allowed
for its data type.

8.4.3 Errors Caused by the Move Bits Between Integers/Double Integers Instruction

This error can occur when you are using the MVB instruction in a program. It is logged
in the error log.

If this error occurs: | Then: Do the following:

® The bit numberis | ENO is set according | Specify a value within
negative to ERROR_ENO, and | the appropriate range

e The bit numberis | Out will not be written | for the input in error.
too large. to.

® The Length input
is negative

e The Length input
is greater than 32.

9.0

Shift Register Instructions

Use the Shift Register instructions to store, extract, and manipulate binary data.

The Shift Register instructions can help you:

® track parts or product
e record bar-code information
e control machinery or processes

e frack and record system diagnostic information

Choose from these instructions:

Use this instruction:

To:

Shift Left (SL)

Shift out to the left the most significant bit and
load either a 1 or 0 into the least significant bit
position.

Circular Rotate Bits Left (ROL)

Rotate a specified number of the most significant
bits into the least significant bit positions while
the instruction is enabled.

Circular Rotate Bits Left on Transition (RL)

Rotate a specified number of the most significant
bits into the least significant bit positions for each
false-true transition of the enable bit.

This instruction performs the same operation as
ROL, but it is edge-triggered.

Shift Right (SR)

Shift out to the right the least significant bit and
load either a 1 or 0 into the most significant bit
position.

9-1

9-2

Use this instruction:

To:

Circular Rotate Bits Right (ROR)

Rotate a specified number of the least significant
bits into the most significant bit positions while
the instruction is enabled.

Circular Rotate Bits Right on Transition
(RR)

Rotate a specified number of the least significant
bits into the most significant bit positions for
each false-true transition of the enable bit.

This instruction performs the same operation as
ROR, but it is edge-triggered.

The supported parameters are:
® Boolean arrays
e simple integer and double integer

® element-indexed integer and double integer arrays

Rotating Bits Within Boolean Arrays

In a Boolean array, you cannot rotate more bits than the array contains. For example, if
a Boolean array has 5 elements, you cannot rotate 6 elements. The maximum number
of bits that can be rotated in one instruction is 8 bits.

9.1

Shift Left (SL)

Qut T 1
Lt = (In <«
EN ¢ E

E il

—In ouT

BIT

Use this instruction to shift all the bits in the variable to the left and load either a 1 or 0
into the least significant bit position for each false-true transition of the enable input.

When EN transitions from false to true, the bits of In are shifted one position to the left.
The most significant bit is moved to OUT, and the value of BIT is shifted into the least
significant bit position of In.

9-3

9-4

9.1.1

Input Parameters for the Shift Left Instruction

This table lists the inputs for the SL instruction and the variable type and data

type/range that each input supports.

Parameter

Description

Variable Type Data/Type Range

EN

While this input is true, the instruction executes. When this
input is false, the instruction is not executed and ENO is
false.

Connect a Boolean input or output.

after the shift occurs.

To place a 1 in the least significant bit location, the
Boolean parameter connected to BIT must be true.

To place a 0 in the least significant bit location, the
Boolean parameter connected to BIT must be false.

If no Boolean parameter is programmed, a 0 is loaded
into the least significant bit location.

In Enter the name of the variable containing the bits you ® Boolean array e 1o0r0
want to shift. e simple integer or | ® integer (0-FFFF)
double integer e double integer
element of an (0-FFFFFFFF)
integer or double
integer array
BIT This input provides the state of the least significant bit Connect a Boolean input or output.

9.1.2

Output Parameters for the Shift Left Instruction

This table lists the outputs for the SL instruction and the variable type and data
type/range that each output supports. To use them, connect them to a contact, coil, or
Boolean input of another instruction.

Parameter

Description

ENO

Use this output as the input to another instruction for easily chaining multiple
instructions. This output follows the state of EN unless an error occurs.

ouT

This output contains the value of most significant bit that is shifted out of the
variable specified for In. This value is retained when EN is set false.

9-5

9-6

9.1.3

Example of a Shift Left Instruction

When switch1 transitions from
false to true, the bits shift left,
moving the original value of bit
15 into OUT. Then, the state of
switch2 is read, and that value is
shifted into bit 0 of the variable
batch. In this example, switch2 is
true, so a value of 1 is shifted
into bit 0.

Out (SIL 1
ut = (In <«
N ENO

swvitchrl
_||_2*E
patt
hateh — 1 ouT —(Y——
yvitch2
| —— T
Mozt
significant kit — 15 141312 11109 & 7 6 5 4 3 2 1 0+—Lesst
o 0 A
Eefore Shift Left
Least
M!DST.) . significant bit
sighificant hit T3
15141312111098?55432
e T e e L O T T T e

After Shift Left

9.2

Circular Rotate Bits Left (ROL)

ROL
Fotate Left
EN ENG
— I ouT
I

Use this instruction to rotate all the bits within a variable a specified number of bit

positions to the left. The bits are rotated out of the most significant bit positions and are

rotated back into the least significant bit positions.

While EN is true, the following occurs:

e the number of the most significant bits of In specified in N are moved from In

® the remaining bits shift left

e the bits rotated from the most significant bits of In are filled into the least significant
bit positions of In.

The specified number of bits are rotated left every program scan while the instruction is

true.

9-7

9-8

9.2.1

Input Parameters for the Circular Rotate Bits Left Instruction

This table lists the inputs for the ROL instruction and the variable type and data
type/range that each input supports.

Parameter

Description

Variable Type

Data/Type Range

EN

While this input is true, the instruction executes. When this
input is false, the instruction is not executed and ENO is
false.

Connect a Boolean input or output.

If you do not want to rotate any bits, enter 0.

integer constant
simple integer or
double integer
element of an

integer or double
integer array

In Enter the name of the variable containing the bits you ® Boolean array e 1or0
want to shift. e simple integer or | ® integer (0-FFFF)
double integer e double integer
element of an (0-FFFFFFFF)
integer or double
integer array
N Enter the number of bit positions you want to rotate left. integer or double Oto8(iflnisa

Boolean array)
0to 15 (ifInis an
integer)

0to 31 (fInisa
double integer,
including timer or
counter elements)

9.2.2 Output Parameters for the Circular Rotate Bits Left Instruction

This table lists the outputs for the ROL instruction and the variable type and data
type/range that each output supports. To use them, connect them to a contact, coil, or
Boolean input of another instruction.

Parameter Description

ENO Use this output as the input to another instruction for
easily chaining multiple instructions. This output follows
the state of EN unless an error occurs.

ouT This output reflects the state of the least significant bit of
In following the rotate operation.

9-10

9.23

Example of a Circular Rotate Bits Left Instruction

While switch1 is true, the two most
significant bits (bits 15 and 14) of the
integer variable diagnostic are shifted

and the former most significant bits
(bits 15 and 14) are placed into bits 1
and 0. The state of the variable status
reflects the value in bit 0; in this case,
the variable status is false.

out, the remaining bits are shifted left,

ROL
switchi Fiotate Left
|} EN ENO
status
diagnostic — 17 ouT f—] p———
a_1MN

15 141312 1109 &8 ¥ 6 5 4 3 2 1 0

gagrostic [[0 Jofoli]oJofolo]o]o]o]i]n]
[(TT0]

15141312 11109 8 7 6 5 4 3 2 1 determings
diagnostic ||||||]||]||||]||]||]|[|||]||]||]||||]||||]|"_stateof
afterROL | out
operdtion bis shitectwo +—] bits shifted

positions to the left fram 15 ancd 14

9.3 Circular Rotate Bits Left on Transition (RL)

FL
Fotate Left
= EN ENG
— 1 ouT
i

Use this instruction to rotate all the bits within a variable a specified number of bit
positions to the left on a false-true transition. The bits are rotated left from the most
significant bit positions and into the least significant bit positions.

When EN transitions from false to true, the following occurs:
e the number of the most significant bits of In specified in N are moved from In
e the remaining bits shift left

e the bits rotated from the most significant bits of In are filled into the least significant
bit positions of In

The specified number of bits are rotated left only when EN transitions from false to true.

9-12

9.3.1

Input Parameters for the Circular Rotate Bits Left on Transition Instruction

This table lists the inputs for the RL instruction and the variable type and data

type/range that each input supports.

Parameter Description Variable Type Data/Type Range
EN While this input is true, the instruction executes. When this Connect a Boolean input or output.
input is false, the instruction is not executed and ENO is
false.
In Enter the name of the variable containing the bits you ® Boolean array e 1or0
want to shift. e simpleintegeror | ® integer (0-FFFF)
double integer e double integer
element of an (0-FFFFFFFF)
integer or double
integer array
N Enter the number of bit positions you want to rotate left. integer ordouble | e® 0to8 (iflnisa
If you do not want to rotate any bits, enter 0. integer constant Boolean array)
simple integer or ® Oto15 (ifInisan
double integer integer)
element of an e 0to31 (iflnisa
integer or double double integer,
integer array including timer or
counter elements)

9.3.2 Output Parameters for the Circular Rotate Bits Left On Transition Instruction

This table lists the outputs for the RL instruction and the variable type and data
type/range that each output supports. To use them, connect them to a contact, coil, or
Boolean input of another instruction.

Parameter Description

ENO Use this output as the input to another instruction for
easily chaining multiple instructions. This output follows
the state of EN unless an error occurs.

ouT This output reflects the state of the least significant bit of
In following the rotate operation. This value is retained
when EN is set false.

9.3.3

Example of a Circular Rotate Bits Left On Transition Instruction

When switch1 transitions from false to
true, the two most significant bits (bits
15 and 14) of the integer variable
diagnostic are shifted out, the
remaining bits are shifted left, and the
former most significant bits (bits 15
and 14) are placed into bits 1 and 0.
The state of the variable status reflects
the value in bit 0. In this case, the
variable status is false.

AL
syitch Rotate Left
11 =EN ERG
11
status
diagnostic —| 17 OUT f—ov()

a__| M

15 141312 11109 8 7 6 5 4 32 1 0
gegnostic [| [O]IJ1jafafifofofofofofofafi]n]

19 141312 11109 8 7 6 5 4 32 1 determines
disgnastic |||||u|u|||u|u|u|u|u|u|u|||u|||u| state of
afterRL | Ll_l ouT
operation bits shifted two qJ hitz shitted

positions to the left from 15 and 14

9.4

Shift Right (SR)

Out (ISR 13
ut=(In =z
=EN ENO

In auT

BIT

Use this instruction to shift all the bits in a variable to the right and load either a 1 or 0
into the most significant bit position for each false-true transition of the enable input.

When EN transitions from false to true, the bits of In are shifted one position to the right.
The value of the least significant bit is moved to OUT, and the value of BIT is shifted into
the most significant bit position of In.

9-15

9-16

9.4.1

Input Parameters for the Shift Right Instruction

This table lists the inputs for the SR instruction and the variable type and data

type/range that each input supports.

Parameter

Description

Variable Type

Data/Type Range

EN

While this input is true, the instruction executes. When this
input is false, the instruction is not executed and ENO is
false.

Connect a Boolean input or output.

after the shift occurs.

To place a 1 in the most significant bit location, the
Boolean parameter connected to BIT must be true.

To place a 0 in the most significant bit location, the
Boolean parameter connected to BIT must be false.

If no Boolean parameter is programmed, a 0 is loaded
into the most significant bit location.

In Enter the name of the variable containing the bits you ® Boolean array e 1or0
want to shift. e simple integer or | ® integer (0-FFFF)
double integer e double integer
element of an (0-FFFFFFFF)
integer or double
integer array
BIT This input provides the state of the most significant bit Connect a Boolean input or output.

9.4.2 Output Parameters for the Shift Right Instruction

This table lists the outputs for the SR instruction and the variable type and data
type/range that each output supports. To use them, connect them to a contact, coil, or
Boolean input of another instruction.

Parameter Description

ENO Use this output as the input to another instruction for
easily chaining multiple instructions. This output follows
the state of EN unless an error occurs.

ouT This output contains the value of the least significant bit
that is shifted out of the variable specified for In. This
value is retained when EN is set false.

9-18

9.4.3

Example of a Shift Right Instruction

When switch1 transitions from false to true,
the bits shift right, moving the original
value of bit 0 into OUT. Then, the state of
switch2 is read, and that value is shifted
into bit 15 of the variable batch. In this
example, switch2 is true, so 1 is shifted
into bit 15.

SR,
salw'rtlcm , NDUt:[:In 23 DEND
11
hatch In hart
— otk ()
awvitch2
|} EIT
1
Mozt
sipificartbt —*15 141312 11109 8 7 6 54 32 1 nd—L.ea?. "
OO e e ™™
Before Shift Right
Least
r::;fificam " sighificant kit
G 15 41312109 B TE 54 3210
I dinnnnnnnnnnnnnn
After Shift Right

9.5

Circular Rotate Bits Right (ROR)

R.OF:
Rotate Right
N RO

— I ouT

Use this instruction to rotate all the bits within a variable a specified number of bit
positions to the right. The bits that are rotated out of the least significant bit positions
are rotated back into the most significant bit positions.

While EN is true, the following occurs:
e the number of least significant bits of In specified in N are moved from In
e the remaining bits shift right

e the bits rotated from the least significant bits of In are filled into the most significant
bit positions of In

The specified number of bits are rotated right every program scan while the instruction
is true.

9-19

9-20

9.5.1

Input Parameters for the Circular Rotate Bits Right Instruction

This table lists the inputs for the ROR instruction and the variable type and data

type/range that each input supports.

Parameter Description Variable Type Data/Type Range
EN While this input is true, the instruction executes. When this | Connect a Boolean input or output.
input is false, the instruction is not executed and ENO is
false.
In Enter the name of the variable containing the bits you ® Boolean array e 1or0
want to shift. e simple integer or | ® integer (O-FFFF)
double integer e double integer
® element of an (0-FFFFFFFF)
integer or double
integer array
N Enter the number of bit positions you want to rotate right. | ® integer ordouble |® 0to8 (iflnisa
If you do not want to rotate any bits, enter 0. integer constant Boolean array)
e simple integer or ® Oto15 (ifInisan
double integer integer)
® clement of an e 0to31 (iflnisa
integer or double double integer,
integer array including timer or
counter elements)

9.5.2 Output Parameters for the Circular Rotate Bits Right Instruction

This table lists the outputs for the ROR instruction and the variable type and data
type/range that each output supports. To use them, connect them to a contact, coil, or
Boolean input of another instruction.

Parameter Description

ENO Use this output as the input to another instruction for
easily chaining multiple instructions. This output follows
the state of EN unless an error occurs.
ouT This output reflects the state of the most significant bit of
In following the rotate operation.

9-21

9-22

9.5.3

Example of a Circular Rotate Bits Right Instruction

While switch1 is true, the three
least-significant bits (bits 0, 1, and 2)
of the variable diagnostic are shifted
out. The remaining bits are shifted
right, and the former least significant
bits (bits 0, 1, and 2) of the integer
variable diagnostic are placed into the
three most-significant bits (bits 15, 14,
and 13, respectively). The state of the
variable status is true.

FOF,
awvitchil - Rotate Right -
|_
I status
disgnostic — f QuT _()_
5 H

19 141312 110 9 8 7 B 5 4 3 2 1 0
gsgrostic | | [O[L[0]OJrJojojojofjo]o]o]r]no]n]

Lﬂ

12 141312 1110 9 8 ¥ & S5 4 3 2 1 0

gagrostic [LJOJo]roli ol r]olololo]olo]n]
after ROR
oeration hitz shifted right

hitz from 0,1 and 2
determines state of QUT

9.6 Circular Rotate Bits Right on Transition (RR)

RF
Fotate Right
»EN ENG
—In ouT
N

Use this instruction to rotate all the bits within a variable a specified number of bit
positions to the right. The bits that are rotated out of the least significant bit positions
are rotated back into the most significant bit positions.

When EN transitions from false to true, the following occurs:
® the number of least significant bits of In specified in N are moved from In
® the remaining bits shift right

e the rotated bits from the least significant bits of In are filled into the most significant
bit positions of In

The specified number of bits are rotated right only when EN transitions from false to
true.

9-23

9-24

9.6.1

Input Parameters for the Circular Rotate Bits Right on Transition Instruction

This table lists the inputs for the RR instruction and the variable type and data

type/range that each input supports.

Parameter Description Variable Type Data/Type Range
EN While this input is true, the instruction executes. When this Connect a Boolean input or output.
input is false, the instruction is not executed and ENO is
false.
In Enter the name of the variable containing the bits you ® Boolean array e 1or0
want to shift. e simple integer or | ® integer (O-FFFF)
double integer e double integer
element of an (0-FFFFFFFF)
integer or double
integer array
N Enter the number of bit positions you want to rotate right. integer ordouble | e® 0to8 (iflnisa
If you do not want to rotate any bits, enter 0. integer constant Boolean array)
simple integer or ® Oto15 (ifInisan
double integer integer)
element of an e 0to31 (iflnisa
integer or double double integer,
integer array including timer or
counter elements)

9.6.2 Output Parameters for the Circular Rotate Bits Right On Transition Instruction

This table lists the outputs for the RR instruction and the variable type and data
type/range that each output supports. To use them, connect them to a contact, coil, or
Boolean input of another instruction.

Parameter Description

ENO Use this output as the input to another instruction for
easily chaining multiple instructions. This output follows
the state of EN unless an error occurs.
ouT This output reflects the state of the most significant bit of
In following the rotate operation.

9-25

9-26

9.6.3

Example of a Circular Rotate Bits Right On Transition Instruction

While switch1 is true, the three least-significant
bits (bits 0, 1, and 2) of the variable diagnostic
are shifted out, the remaining bits are shifted
right, and the former least significant bits (bits 0,
1, and 2) of the integer variable diagnostic are
placed into the three most-significant bits (bits
15, 14, and 13, respectively). The state of the
variable status is true.

RR
awitchi Fotate Right
I 1 = EN ENG
11
| I status
disgnoztic — -7 QauT ()
3 - N

15 141312 110 9 8 ¥ 6 5 4 3 2 1 0
gmgrostic | [O[1[t[ofrf{ofofjofolololofi][ofn]

T—ﬂ

12 141312 M10 9 8§ 7 68 5 4 32 10

gagrostic | L[O0fofioltfrfofr{ofofofololo]n]
after KR
operation hitz shifted right

bits from 0,1 and 2
detertnines state of QUT

9.7

9.7.1

Errors Caused by Shift Register Instructions

This section describes the possible errors for all Shift Register instructions and those
additional errors specific to the ROL, RL, ROR, and RR instructions.

Errors Caused by All Shift Register Instructions

These errors can occur when you are using the Shift Register instructions in a program.
They are logged in the error log.

If this error occurs:

Then:

Do the following:

Array index is negative.

ENO is set according to
ERROR_ENO, and element
zero of the array is used for
the instruction’s operation.

Specify a valid array element.

Array index is too large.

ENO is set according to
ERROR_ENO, and the last
element in the array is used
for the instruction’s
operation.

Specify a valid array element.

9-27

9.7.2 Errors Caused by the Circular Rotate Bits Left, Circular Rotate Bits Left
on Transition, Circular Rotate Bits Right, and Circular Rotate Bits Right
on Transition Instructions

This error can occur when you are using the ROL, RL, ROR, and RR instructions. It is
logged in the error log.

If this error occurs: Then: Do the following:
® The number of bits to ® No bits are rotated | Make sure that N is
rotate is negative. e ENOis setto within the allowable
e The number of bits to ERROR_ENO range for the data type
rotate is too large. e Out reflects least used for In.
significant bit of In

9-28

10.0 Array Instructions

The array instructions perform functions on array variables that are similar to the

functions of compute, compare, logical, shift, and move instructions.

Using array instructions, you can mix simple variable inputs and outputs with array

inputs and outputs for flexible data manipulation.

Choose from these instructions:

To perform these operations:

Choose this instruction:

Logical, arithmetic, and move operations
on one operand:

absolute value

logical NOT

square root

negate

move

Unary Array (AR1)

Logical and arithmetic operations on two
operands:

logical AND

logical OR

logical exclusive OR

addition

subtraction

multiplication

division

Multi-Array (AR2)

10-1

10-2

To perform these operations: Choose this instruction:

Shift array elements up Array Shift Up (ASU)
Shift array elements down Array Shift Down (ASD)
Compare operations on two operands: | Array Compare (ARC)
® equal to

® not equal to

greater than

greater than or equal to
less than

less than or equal to

The supported parameters are:

® integer and double integer

e elements of integer and double integer arrays

® integer and double integer constants

e simple integer and double integer variables

Both the input variable and the output variable must be the same data type.

Overview of How the AR1, AR2, and ARC Instructions Operate

A single false-true transition of the EN input starts the array instruction. You can
program the number of elements on which to operate per program scan. Choosing all
the elements or a portion of them affect the program scan in different ways.

Determining the Number of Elements on Which To Operate

When you are using an array instruction you must specify how many elements to
operate on per program scan. For example, if you want to move 10 elements of an
array to another array, you can move all 10 elements in one program scan or you can
move them 2 elements at a time over 5 program scans.

Having an instruction operate on a large number of elements per program scan can
significantly increase the time required for the program scan to complete. You can
reduce the impact of executing large array operations on a program scan by choosing
to perform the array operation in more than one program scan. This breaks up the large
execution time and spreads the operation over multiple scans.

To break up an array operation over multiple program scans, choose a portion of the
total number of elements to operate on per program scan. Then, during every program
scan in which the instruction is still true, the instruction operates on a portion of the
elements, advancing through the total number (Length) of elements.

For example, if you must operate on the 20th through the 29th element within an array
(10 elements), you can choose to only operate on 5 elements per program scan. The
sequence of events would be:

® Program Scan 1: The instruction prepares this array operation.

® Program Scan 2: Elements 20 through 24 are operated on.

® Program Scan 3: Elements 25 through 29 are operated on.

However, some disadvantages of breaking up an array operation exist. They are:

e The array instruction’s operation is not completed (DN is true) for several program
scans. This could impact the timeliness of other logic execution that requires the
result of an array operation.

® The actual array operation begins on the second program scan. The instruction
uses the first scan to set up the instruction. Whereas, if all the array elements are to
be operated on in one scan, the instruction sets up and performs the operation in
one scan.

10-3

10-4

How Array Instructions Execute
The array instructions execute following this sequence of events:

The array instructions execute when the enable bit for the instruction first transitions
from false to true. If the enable bit is set false before the array operation is
completed, the operation is canceled.

The instruction’s input and output control parameters are latched.

Array variables are not latched. Therefore, be aware that the values may be changed
if another program is writing into some or all of the array elements. This also can
occur when the array operation is to complete in a single scan and a higher priority
program or a program from another Processor is writing data to the array.

However, if a single array element or variable (length=1) is used as a parameter, it is
latched to ensure that the value remains fixed even though the operation may occur
over multiple scans.

Once the control variables are latched and limit checking on the data is complete,
the instruction performs the programmed array operation.

The instruction immediately performs the operation when you specify a 0 for the
Elems/Scan input. If this input is not 0, the actual array operation begins on the
second scan.

When the instruction finishes operating on the last element within the array, the done
(DN) bit becomes true.

Tip

If the instruction’s operation is distributed among two or more program scans, you can
determine how far into the array operation that the instruction is by monitoring Index.
The Index output parameter indicates the last element that was operated on during the
last scan.

10.1

Unary Array Instruction (AR1)

ARl Use this instruction to perform one of these op-
+EN EnQ p————— erations on a single operand:
e calculate the absolute value (ABS)
perform a logical NOT (NOT)
calculate the square root (SQRT)
perform a negate operation (NEG)
move from a source location to a destina-
tion location (MOVE)

Use this instruction to perform arithmetic or

Length_In Out — move operations on: P

DN

— Elems!Scan

In ER

® simple variables
| Length_Out Index | e asingle element of an array
e multiple elements of an array

_| Operation

The In input can be an array variable or a simple variable/constant. You can place the
result in a simple or array variable.

When EN transitions from false to true, the instruction prepares to carry out the function
specified in Operation by latching (buffering) all the parameters. If you have
programmed the array instruction to operate on the array elements over multiple
program scans, the first scan sets up the operation. Then, the operation is performed
over a series of scans until done.

10-5

10-6

10.1.1

As long as EN remains true, the instruction completes the operation by operating on
the number of elements specified in Elems/Scan with each program scan.

A specified number of elements (Length_Out) is stored in Out. Index acts as a marker
indicating the last element of the array that was operated on during the last scan.

Input Parameters for the Unary Array Instruction

This table lists the inputs for the AR1 instruction and the variable type and data
type/range that each input supports.

To operate on all elements during a single scan, enter 0.

To distribute the array operation over multiple program
scans, enter the number of elements you want to oper-
ate on each time the instruction is scanned (after the first
scan).

e element of an array

Parameter Description Variable Type Data/Type Range
EN While this input is true, the instruction executes. When | Connect a Boolean input or output.
this input is false, the instruction does not execute and
is reset.
Elems/ Enter the number of elements to operate on each time | ® simple e integer or double
Scan the instruction is scanned. e constant integer

® timer
(name.TPreset
and
name.Elapsed)

® counter
(name.CPreset
and name.Current)
The range is 0 through
100,000 and must not
exceed the maximum
array index plus 1.

Parameter Description Variable Type Data/Type Range
In Enter the name of the variable or enter a constant value | ® constant integer
that is to be operated on. e array e double integer
® simple ® timer
[]

element of an array

(name.TPreset and
name.Elapsed)

® counter

(name.CPreset
and name.Current)

Length_In

Enter the number of elements of In that this instruction
is to operate on.

If In is a simple variable or a constant, enter 1.
If In is an array variable, enter a number 1 or larger.

simple

e constant
® clement of an array

® integer or double
integer

® timer
(name.TPreset
and
name.Elapsed)

® counter
(name.CPreset
and name.Current)
The range is 0 through
100,000 and must not
exceed the maximum
array index plus 1.

10-7

10-8

Parameter Description Variable Type Data/Type Range
Length_ | Enter the number of elements to store in Out. ® simple ® integer or double
Out If Out is a simple variable, enter 1. ® constant |.nteger
i i e clement of an arra e timer
If Out is an array variable, enter a number 1 or larger. y (name TPreset
When the values in Length_In and Length_Out are and
greater than 1, they must be equal. name.Elapsed)
® counter
(name.CPreset
and name.Current)
The range is 0 through
100,000 and must not
exceed the maximum
array index plus 1.
Operation | Enter the mnemonic of the operation you want to per- | Character string A-Z

form on In. Choose from these operations:

o ABS (absolute value)
MOVE (move)

NEG (negate)

NOT (logical NOT)
SQRT (square root)

10.1.2

Output Parameters for the Unary Array Instruction

This table lists the outputs for the AR1 instruction and the variable type and data
type/range that each output supports.

Parameter Description Variable Type Data/Type Range
ENO Use this output as the input to another instruction for
easily chaining multiple instructions. This output follows
the state of EN unless an error occurs.
DN This output is true when the instruction has operated on .

the last array element or an error was found during the | COMect & contact, coil or Boolean parameter of

fi another instruction.

irst scan.

DN is false when EN is false.

ER This output is set true after the instruction is completed
when an error was encountered during its operation.
This output is set false when EN is false.
Out Enter the name of a variable in which you want to store | ® array ® integer
the result of the Operation. The data type for this vari- e simple e double integer
able must be the same data type as that for In.)
® clementofanarray |e timer
(name.TPreset and
name.Elapsed)
® counter

(name.CPreset
and name.Current)

10-9

10-10

Parameter Description Variable Type Data/Type Range
Index Enter the name of a simple variable in which you want ® simple ® integer
to store the index that was operated on during the last e clementofanarray |e double integer
scan. The range is
When ER is true, this contains the index of the first error 0 to 99999

detected. Note: This number is relative to where the
array operation started.

10.1.3

Example of an Unary Array Instruction

After switch1 becomes true and
remains true, a value of 15 is moved
into the first ten elements of the array
variable loaded_array. The variable
switch2 is set true when the array is
filled. The variable fail is set true if an
error occurs.

AR1
yvitch
} > EM EMO
switch2
Eletns/Scan O
" - —O
tail
15 In ER
- —0
1 _] Llength_In Out | loaded_array
n - Length_Out Index |_ my_incex
MOY | Operation
1 2 5 E 7

laded | B |15 | B |5 | %5]

array

10-11

10.2 Multi-Array Instruction (AR2)

Use this instruction to perform one of these op-

AR erations:
»EN ENQ e logical AND (AND) on bit data
e |ogical OR (OR) on bit data
—] ElemsiScan oH e logical exclusive OR (XOR) on bit data
® addition (ADD)
Inl ER .
— ® subtraction (SUB)
Lenath wt e multiplication (MUL)
— " = e division (DIV)
Use this instruction to perform logical or arith-
| Trctese | metic operations on:
® simple variables
Length? .
- ® asingle element of an array
e multiple elements of an array
_| Length_Qut
_| Operation

10-12

In1 and In2 each can be an array variable or a simple variable/constant. You can place
the result in a simple or array variable.

When EN transitions from false to true, the instruction prepares to carry out the function
specified in Operation by latching (buffering) all parameters. If you have programmed
the array instruction to operate on the array elements over multiple program scans, the
first scan sets up the operation. Then, the operation is performed as programmed over
a series of scans until the operation is done.

As long as EN remains true, the instruction completes the operation on the specific
lengths (Length1 and Lenght?2) of the variables in In1 and In2, operating on the number
of elements specified in Elems/Scan with each program scan.

A specified number of elements (Length_Out) is stored in Out. Index acts as a marker
indicating the last element of the array that was operated on during the last scan.

10-13

10-14

10.1.4

Input Parameters for the Multi-Array Instruction

This table lists the inputs for the AR2 instruction and the variable type and data
type/range that each input supports.

To operate on all the elements, enter 0.

To distribute the array operation over a number of pro-
gram scans, enter the number of elements you want to
operate on each time the instruction is scanned (after
the first scan).

e element of an array

Parameter Description Variable Type Data/Type Range
EN While this input is true, the instruction executes. When Connect a Boolean input or output.
this input is false, the instruction does not execute and
is reset.
Elems/ Enter the number of elements to operate on each time ® simple ® integer or double
Scan the instruction is scanned. e constant integer

® timer
(name.TPreset
and
name.Elapsed)

® counter
(name.CPreset
and name.Current)
The range is 0 through
100,000 and must not
exceed the maximum
array index plus 1.

Parameter Description Variable Type Data/Type Range
In1 Enter the name of the first variable or constant thatisto | ® constant ® integer
be operated on. e array e double integer
® simple ® timer
e element of an array (name.TPreset and
name.Elapsed)
® counter
(name.CPreset
and name.Current)
Length1 Enter the number of elements within In1 that this in- ® simple ® integer or double
struction is to operate on. e constant integer

If In1 is a simple variable or constant, enter 1.
If In1 is an array variable, enter a number 1 or larger.

® clement of an array

® timer
(name.TPreset
and
name.Elapsed)

® counter
(name.CPreset
and name.Current)
The range is 0 through
100,000 and must not
exceed the maximum
array index plus 1.

10-15

10-16

Parameter Description Variable Type Data/Type Range
In2 Enter the name of the second variable or constant that e constant ® integer
is to be operated on. e array e double integer
® simple ® timer
e element of an array (name.TPreset and
name.Elapsed)
® counter
(name.CPreset
and name.Current)
Length2 | Enter the number of elements within In2 that this in- ® simple ® integer or double
struction is to operate on. e constant integer
If In2 is a simple variable or constant, enter 1. e clementofanarray |® timer
. . (name.TPreset
If In2 is an array variable, enter a number 1 or larger. and
When two of either Length 1, Length2, or Length_Out name.Elapsed)
are greater than 1, they must be equal, and the third e counter
parameter must also be equal or be a value of 1. (name.CPreset
Length_ | Enter the number of elements to store in Out. and name.Current)
Out The range is 0 through

If Out is a simple variable, enter 1.
If Out is an array variable, enter a number 1 or larger.

When two of either Length 1, Length2, or Length_Out
are greater than 1, they must be equal, and the third
parameter must also be equal or be a value of 1.

100,000 and must not
exceed the maximum
array index plus 1.

Parameter

Description

Variable Type

Data/Type Range

Operation

Enter the mnemonic of the operation you want to per-
form on In1 and In2. Choose from these operations:

ADD (addition)

AND (bit-wise logical AND)

DIV (division)

MUL (multiplication)

OR (bit-wise logical OR)

SUB (subtraction)

XOR (bit-wise logical exclusive OR)

Character string

A-Z

10-17

10-18

10.2.2

Output Parameters for the Multi-Array Instruction

This table lists the outputs for the AR2 instruction and the variable type and data
type/range that each output supports.

Parameter Description Variable Type Data/Type Range

ENO Use this output as the input to another instruction for easi- | Connect a contact, coil or Boolean parameter
ly chaining multiple instructions. This output follows the of another instruction.
state of EN unless an error occurs.

DN This output is true when the instruction has operated on
the last array element or an error was found during the
first scan.
DN is false when EN is false.

ER This output is set true after the instruction is completed
when an error was encountered during its operation. This
output is set false when EN is false.

Out Enter the name of a variable in which you want to store ® array A-Z
the result of the Operation. The data type for this variable | o simple
must be the same data type as that for In1 and In2.

e element of an
array
Index Enter the name of a simple variable in which you want to ® simple ® integer

store the index that was operated on during the last scan. | ¢ glement of an e double integer
When ER is true, this contains the index of the first error array The range is
detected. Note that this number is relative to where the 0 to 99999
array operation started.

10.2.3 Example of a Multi-Array Instruction

When switch_1 becomes true and remains true,
the parameters are latched and checked. On
subsequent scans, two elements of the array
variables batch_1 and batch_2 are added
together.

The totals are stored in the elements of the
array variable batch_total.

The variable switch2 is set true when all the
elements of batch_1 and batch_2 have been
operated on. The variable fail is set true if an
error occurs.

AR 2
awitchl
=EN END
awitch2
2 __| ElemsfScan On [)
fail
batch_1 —] InL ER %)
4 _| Lengthl Out L btoh_otal
batch_2 —| InZ Index | my_index
4 — Length?
4] Lenath_dut
ADD — Operation
a 1 2 3
bakch_1 |) | a9 | 100 | 102 |
batchz [50 [51 [0 [49|

second scan

third scan

) ——
batch_total | e | 150 | 160 | 151 |

10-19

10.3 Array Compare (ARC)

ARC
SEN

__| Elemz/Zcan
Inl

_| Lengthl
In2

_| length2

_| Uperation

ERG

O

Incle:;

10-20

Use this instruction to perform one of these op-
erations:

equal to (EQ)

not equal to (NE)

greater than (GT)

greater than or equal (GE)

less than (LT)

® |ess than or equal (LE)

Use this instruction to perform comparison op-
erations on:

® simple variables
® asingle elements of an array
e multiple elements of an array

When EN transitions from false to true, the instruction prepares to carry out the function
specified in Operation by latching (buffering) all parameters. If you have programmed
the array instruction to operate on the array elements over multiple program scans, the
first scan sets up the operation. Then, the operation is performed as programmed over
a series of scans until the operation is done.

As long as EN remains true, it completes the operation on the specific lengths (Length1
and Length2) of the variables in In1 and In2, operating on the number of elements
specified in Elems/Scan with each program scan.

Index acts as a marker indicating the last element of the array that was operated on
during the last scan.

10-21

10-22

10.3.1

Input Parameters for the Array Compare Instruction

This table lists the inputs for the ARC instruction and the variable type and data
type/range that each input supports.

To operate on all the elements, enter 0.

To distribute the array operation over a number of pro-
gram scans, enter the number of elements you want to
operate on each time the instruction is scanned (after
the first scan).

Parameter Description Variable Type Data/Type Range
EN While this input is true, the instruction executes. When Connect a Boolean input or output.
this input is false, the instruction does not execute and
is reset.
Elems/ Enter the number of elements to operate on each time ® simple ® integer or double
Scan the instruction is scanned. e constant integer

e clementofanarray |® ti(mer P t
name.TPresel

and
name.Elapsed)

® counter
(name.CPreset
and name.Current)
The range is 0 through
100,000 and must not
exceed the maximum
array index plus 1.

Parameter Description Variable Type Data/Type Range
In1 Enter the name of the first variable or constant thatisto | ® constant ® integer
be operated on. e array e double integer
® simple ® timer
e element of an array (name.TPreset and
name.Elapsed)
® counter
(name.CPreset
and name.Current)
Length1 Enter the number of elements within In1 that this in- ® simple ® integer or double
struction is to operate on. e constant integer

If In1 is a simple variable or constant, enter 1.
If In1 is an array variable, enter a number 1 or larger.

® clement of an array

® timer
(name.TPreset
and
name.Elapsed)

® counter
(name.CPreset
and name.Current)
The range is 0 through
100,000 and must not
exceed the maximum
array index plus 1.

10-23

10-24

Parameter Description Variable Type Data/Type Range
In2 Enter the name of the second variable or constant that e constant ® integer
is to be operated on. e array e double integer
® simple ® timer
e element of an array (name.TPreset and
name.Elapsed)
® counter
(name.CPreset
and name.Current)
Length2 | Enter the number of elements within In2 that this in- ® simple ® integer or double
struction is to operate on. e constant integer

If In2 is a simple variable or constant, enter 1.
If In2 is an array variable, enter a number 1 or larger.

This value must be equal to the value for Length1 if both
are greater than 1.

® clement of an array

® timer
(name.TPreset
and
name.Elapsed)

® counter
(name.CPreset
and name.Current)
The range is 0 through
100,000 and must not
exceed the maximum
array index plus 1.

Parameter

Description

Variable Type

Data/Type Range

Operation

Enter the mnemonic of the operation you want to per-
form on In1 and In2. Choose from these operations:

EQ (equal to)

GT (greater than)

GE (greater than or equal)
LT (less than)

LE (less than or equal)
NE (not equal to)

Character string

A-Z

10-25

10-26

10.3.2

Output Parameters for the Array Compare Instruction

This table lists the outputs for the ARC instruction and the variable type and data
type/range that each output supports.

Parameter Description Variable Type Data/Type Range

ENO Use this output as the input to another instruction for
easily chaining multiple instructions. This output follows
the state of EN unless an error occurs.

DN This output becomes true when:
® The instruction has operated on the last array ele-
ment. Connect a contact, coil or Boolean parameter of
e A comparison operation results in a false condition, another instruction.

even though all elements within each array have not
been evaluated.

® An error is encountered during the first scan.
DN is false when EN is false.

Q This output becomes true when the operation is com-
plete (DN is true) and the result of the comparison is
true.

Otherwise, the Q output is false.

Index Enter the name of a simple variable in which you want ® simple ® integer
to store the index that was operated on during the last e clementofanarray |e double integer
scan. The range is
0 to 99999

10.3.3

Example of an Array Compare Instruction

When switch1 is set true and remains true, the
parameters are latched and checked. On
subsequent scans, the next three elements of
batch_1 are compared to the corresponding
three elements of batch_2. The first comparison
that evaluates false causes the instruction to be
completed, with Q set false. If all twelve
corresponding array elements had been equal,
the instruction would have finished on the fifth
scan with Q set true.

AR
SW"I':M SEN ENO
Elems/Scan OM sich
= —0)
pass_fai
bstch_t — T 0
12 | Lengthl
bateh_2 — In? Index | my_incex
12 Length?2
EQ Operation
0 1 2 3 4 5 5 2 10 1
soon1 [+ [e [[Js [+ [« [e[+ o u]w]
bachz | s [6 Jeo [& [[0 [a 6] 1]sJw]n]
Dib=true
Q=falze
Inclex=4

10-27

10.4 Array Shift Up (ASU)

A 'ﬁ'SiU ft
rra 1
=EN g Fll-:NCI

In Qut

| Array

Use this instruction to shift elements in an array from bottom to top. This instruction can
be useful for tracking parts and/or data.

When EN transitions from false to true, the instruction:

® moves the first element of Array to Out

e shifts the remaining elements up to fill in the empty location
® moves In into the last element of the array

10-28

10.4.1

Input Parameters for the Array Shift Up Instruction

This table lists the inputs for the ASU instruction and the variable type and data

type/range that each input supports.

Parameter

Description

Variable Type Data/Type Range

EN

While this input is true, the instruction executes. When
this input is false, the instruction does not execute.

Connect a Boolean input or output.

In

Enter the name of a variable or a constant that you want
to move into the last element position of the array.

If no value is specified, 0 is used.

® simple e integer
e constant e double integer
® clementofanarray |e timer

(name.TPreset and
name.Elapsed)

® counter
(name.CPreset
and name.Current)

Array

Enter the name of the array variable that you want to
use.

array

® integer
® double integer

10-29

10-30

10.4.2

Output Parameters for the Array Shift Up Instruction

This table lists the outputs for the ASU instruction and the variable type and data

type/range that each output supports.

Parameter Description

Variable Type Data/Type Range

ENO Use this output as the input to another instruction for
easily chaining multiple instructions. This output follows
the state of EN unless an error occurs.

Connect a contact, coil or Boolean parameter of
another instruction.

Out Enter the name of variable in which you want to store
the top-most element that was shifted out of the array.

This variable must be of the same data type as In.

® simple ® integer
e clementofanarray | e doubleinteger
® timer

(name.TPreset and
name.Elapsed)

® counter
(name.CPreset
and name.Current)

10.4.3

Example of an Array Shift Up Instruction

the last element of the array.

Before the 45U instruction executes:

Thiz iz batch befare executing
the ASU instruction,

part_n prior to AU instruction

When switch1 transitions from false to true, the topmost
element shifted from batch will be placed in the variable
part_a, all the elements in the array are moved up one
element, and the data in variable part_n will be moved into

(0] FFFF
11 saan
[2] 3333
[3 coce
[4] FoFO
[3] ooFF

aoon

AsU
vwvitchl ENArray Shift UpENCI
— —’
part_n _| In Out | part_a
batch __| Array

After the ASU instruction executes:

part_s nowe has contents of
Array [0]

Al elements are shifted upwards
in array batch,

part_n iz placed in the last element

FFFF

i

[0] Ammm
[1] 3333
[2] coco
[3] FOFO
[4] DOFF
[3] noon

Tt

aulun]

10-31

10.5 Array Shift Down (ASD)

250
Array Shift Down
=EN END
In Qut

_| Array

Use this instruction to shift elements in an array from top to bottom. This instruction can
be useful for tracking parts and/or data.

When EN transitions from false to true, the instruction:

® moves the last element of Array to Out

e shifts the remaining elements down to fill in the empty location
® moves In into the first element of the array

10-32

10.5.1

Input Parameters for the Array Shift Down Instruction

This table lists the inputs for the ASD instruction and the variable type and data

type/range that each input supports.

Parameter

Description

Variable Type Data/Type Range

EN

While this input is true, the instruction executes. When
this input is false, the instruction does not execute.

Connect a Boolean input or output.

In

Enter the name of a variable or a constant that you want
to move into the first element position of Array.

If no value is specified, a 0 is used.

® simple e integer
e constant e double integer
® clementofanarray |e timer

(name.TPreset and
name.Elapsed)

® counter
(name.CPreset
and name.Current)

Array

Enter the name of the array variable that you want to
use.

array

® integer
® double integer

10-33

10.5.2 Output Parameters for the Array Shift Down Instruction

This table lists the outputs for the ASD instruction and the variable type and data
type/range that each output supports.

Parameter Description Variable Type Data/Type Range
ENO Use this output as the input to another instruction for easi- | Connect a contact, coil or Boolean parameter
ly chaining multiple instructions. This output follows the of another instruction.
state of EN unless an error occurs.
Out Enter the name of variable in which you want to store the | ® simple ® integer
bottom-most element that was shifted out of the array. e element of an e double integer
This variable must be of the same data type as In. array ® timer

(name.TPreset and
name.Elapsed)

® counter
(name.CPreset
and name.Current)

10-34

10.5.3 Example of an Array Shift Down Instruction

When switch1 transitions from false to true, the
bottom-most element shifted from the array
batch will be placed in the variable part_a, all) A0
the elements in the array are moved down one switch I-EE'-rE""afv‘ shift D'Z"-Em
element, and the value in the variable part_n will | | 2
be moved into the array element batch/0].
I In Out | part_a
batch | Array
Before the ASD instruction executes: After the ASD instruction executes:
part_n prior to ASD instructions nooo part_n iz shifted into batch [0] ooag
This is hateh before executing 0] FFFF [0] G000
the ASD instruction. [1] ALLL [1] FFFF
Eg} g?(‘:?gc &l elements are shifted dowrrvard (2] AAAAS
in batch. [3] 3333
[4] FOFD [4] cocco
[3] FFOD [3] FOFO
part_a now has the previous ‘l l
cantents of hatch [3] FFOD

10-35

10-36

10.6

About the State of the Unary Array, Multi-Array, and
Array Compare Instruction Outputs under Various
Input Conditions

The following shows the state of each array instruction output under various input

conditions.
Input Conditions Output Conditions
EN instruction’s state DN ER Q ENO
true | initial scan false | false | false | true
false | disabled false | false | false | false
true | rising edge: error latching the inputs and outputs true true | false | false

true | rising edge: inputs are latched false | false | false | true
true | instruction is executing false | false | false | true
true | the operation is complete with an error true true | false | false
true | the operation is complete and error-free true | false | true true

The AR1 and AR2 instructions do not stop on an arithmetic error. They correct the error,
and the operation continues until it is completed. If multiple errors occur, the first error
is logged and the value pointing to where the error occurred is placed into the Index
output when the instruction has completed.

The ARC instruction does not have an ER output. Errors occur during the initial scan,
setting the DN on.

10.7

10.7.1

Errors Caused by Array Instructions

This section describes the possible errors for the Array instructions.

Errors Caused by the Unary Array Instruction
Errors can occur when parameters are latched and checked. If an error occurs at this
point, no operation occurs.

If an arithmetic error occurs during the instruction’s operation, a default value is
generated and the operation continues.

When an error occurs:

® ENO is set to ERROR_ENO.

® When AR1 is complete,
e the ER output is set true and retains its value until EN goes false
e the Index output points to the first entry that caused the error

10-37

10-38

These errors can occur when you are using the AR1 instruction in a program.

If this error occurs:

Do the following:

The result of the arithmetic calculation
is too large for Out.

Use smaller values or re-arrange the
calculation so that errors do not oc-
cur.

Cannot take the square root of a neg-
ative number.

Do not perform a square root opera-
tion on a negative number.

Array’s length inputs are greater than
1 but are not equal.

Make sure the values are equal.

The Elems/Scan input is less than 0.

Specify a value of 0 or greater.

® Length_Inis larger than the In in-
put.

(This input can exceed the array
size if starting at the first element
or if starting somewhere within the
array.)

® Length_Inis less than or equal to
0.

® The value in Length_Out is less
than or equal to 0.

® The value in Length_Out is too
large for the array block’s Out.

Make sure Length_In and Length_Out
are within the range of the array.

® The array index is negative.
® The array index is too large.

Specify a valid array element.

10.7.2

Errors Caused by the Multi-Array Instruction
Errors can occur when parameters are latched and checked. If an error occurs at this
point, no operation occurs.

If an arithmetic error occurs during the instruction’s operation, a default value is
generated and the operation continues.

When an error occurs:
e ENO is set to ERROR_ENO.
® When AR2 is complete,
e the ER output is set true and retains its value until EN goes false
e the Index output points to the first entry that caused the error
These errors can occur when you are using the AR2 instruction in a program:

If this error occurs: Do the following:

The result of the arithmetic calculation | Use smaller values or re-arrange the

is too large for Out. calculation so that errors do not oc-
cur.

Cannot divide by zero. Make sure that the In2 contains val-

(As a result, Out contains the largest ues greater than 0.

signed value allowed for Out’s data
type.)

Array’s length inputs are greater than | Make sure the values are equal.
1 but are not equal.

The Elems/Scan input is less than 0. Specify a value of 0 or greater.

10-39

10-40

If this error occurs:

Do the following:

® The value in Length1 is too large
for array block’s In1.

e The value in Length2 is too large
for array block’s In2.

(These inputs can exceed the
array size if starting at the first ele-
ment or if starting somewhere with-
in the array.)

® The value in Length1 is less than
or equal to 0.

® The value in Length2 is less than
or equal to 0.

e The value in Length_Out is too
large for array block’s Out.

® The value in Length_Out is less
than or equal to 0.

Make sure the lengths are within the
range of the array.

e The array index is negative.
e The array index is too large.

Specify a valid array element.

10.7.3

Errors Caused by the Array Compare Instruction

Errors only occur when parameters are latched and checked. If an error occurs at this

point, the DN output is set true.

When an error occurs, ENO is set to ERROR_ENO.
These errors can occur when you are using the ARC instruction in a program.

If this error occurs:

Do the following:

Array’s length inputs are greater than
1 but are not equal.

Make sure the values are equal.

The Elems/Scan input is less than 0.

Specify a value of 0 or greater.

® The value in Length1 is too large
for array block’s In1.

® The value in Length2 is too large
for array block’s In2.

(These inputs can exceed the
array size if starting at the first ele-
ment or if starting somewhere with-
in the array.)

® The value in Length1 is less than
or equal to 0.

® The value in Length2 is less than
or equal to 0.

Make sure the lengths are within the
range of the array.

e The array index is negative.
e The array index is too large.

Specify a valid array element.

10-41

10.7.4 Errors Caused by the Array Shift Up and Array Shift Down Instructions

These errors can occur when you are using the ASU and ASD instructions in a
program. They are logged in the error log.

If this error occurs: Then: Do the following:

The array index is negative. | ENO is set according to Specify a valid array element.
ERROR_ENO, and element
zero of the array is used for
the instruction’s operation.

The array index is too large. | ENO is set according to Specify a valid array element.
ERROR_ENO, and the last
element of the array is used
for the instruction’s
operation.

10-42

11.0 Program Control Instructions

Use the Program control instructions to change the sequence of ladder logic execution.

Choose from these instructions:

e SET

e JMP

e |BL

See the input and output parameter for each instruction for specific information.

Using Jump and Label Instructions to Skip or Repeat Portions of Ladder Logic

Use JMP and LBL instructions together to jump forward or backward within a ladder
program. Jumping forward helps you save program scan time by only executing
portions of the program when they are needed. By jumping backwards in a program,
you can repeat iterations of a logic segment.

Follow these rules when using JMP and LBL constructs:

® You can jump to a single LBL instruction from multiple JMP instructions.
® A rung can contain only one JMP instruction.

IMPORTANT

® The JMP instruction must be the last instruction on the rung.

® The LBL instruction must be the first instruction on a rung.

® Any name used in the JMP or LBL instructions must be defined as a Label. The
Editor assigns the type when you first enter a new variable name.

Be aware of the following conditions:

CAUTION: Avoid jumping backwards an excessive number of times since this
can cause a STOP ALL error code 14, which is the Processor Overlap Limit
Exceeded error. Failure to observe this precaution could result in damage to, or
destruction of, the equipment.

CAUTION: Avoid skipping timer instructions using a JMP instruction. The
timer’s Boolean output will not get set if the timer does not execute. Failure to
observe this precaution could result in damage to, or destruction of, the
equipment.

11.1 Set Event (SET)

SET
Set Event
= EN

_| Bvent Name

Use the Set Event instruction to synchronize a ladder program with another program of
any type within the same rack. When EN transitions from off to on (false-to-true), it sets
the name of a software event (Event Name).

11.141

11.1.2

Input Parameters for the Set Event Instruction

Parameter Description
EN While this input is true, the instruction executes. When this
input is false, the instruction is not executed and ENO is
false.
Connect a Boolean input or output.
Event Name | Enter the name of the software event you want to use.

IMPORTANT

Software Events are used only in the Event Name input of
SET instructions. When you specify a new name in the
Event Name input of the Set Event instruction, the Editor
automatically defines it as a Software Event.

Output Parameters for the Set Event Instruction

Parameter

Description

ENO

Use this output as the input to another
instruction for easily chaining multiple
instructions. This output follows the state of
the EN input.

Connect a Boolean input or a coil.

11.1.3 Example of the SET Instruction

When switch1 transitions from false to true, the
event MIX will be set and the program waiting

for MIX to become true will become ready to switchl

run. If the waiting program is of a higher priority 11

than the one that executed this instruction, the LI
higher-priority program executes immediately

following the instruction. Wl

SET
Set Event
= ENl
Event Name

11.2

113

Jump (JMP)
={ MF)

Use the Jump instruction to skip or repeat rungs by jumping to the rung identified by
the Label instruction. Use this output instruction to jump to rungs that fall earlier or later
within the program or to repeat rungs.

When the rung containing the JMP instruction goes true, the Processor jumps to the
rung identified by a Label instruction that has the same name as is used on the JMP
instruction. If the rung containing the JMP instruction is false, the jump is not performed
and program execution continues with the next sequential rung.

Enter the name used on the LBL instruction that identifies the logic to which you want to
jump. The JMP coil must be the last coil on a rung.

Label (LBL)
I LEL I

Use the Label instruction to mark a ladder logic rung as a target for a JMP instruction.
Place the LBL instruction as the first instruction on a rung and enter a unique label
name. This is the same name that you will enter on a JMP instruction.

When a rung containing the JMP instruction becomes true, execution continues at the
rung with the corresponding label.

114

Example of Using the Jump and Label Instruction

This logic shows that when
switch1 is true, the next
rung to execute is the one
identified by the label
fault_routine, which moves
a 0 into the variable part_id.

switchl

fault_routine

smitchi

{)

motor_on

Tun_roukine

—)

fault_routins

] L
II.BLI

{]

EW

In

MOVE
Jut=In
EXO

Jut

part_id

11.5

The Error Caused by the Jump Instruction

If a Label does not exist, an error will be logged and control will pass to the next rung.

12.0 I/O Read and Write Instructions

Use the I/O Read and 1/O Write instructions to send information to and receive
information from 1/0 modules. These instructions are particularly useful for reading data
from and writing data to non-Reliance 1/0 modules that are only byte-accessible or to
any modules that have not been configured.

The supported parameters are:

e simple integers and double integers

® integer and double integer constants

e clement of an integer or double integer array

See the input and output parameter descriptions for each instruction for specific
information.

12-1

12-2

12.1

1/0 Read (IOR)

TR
I/0 Read

Slot Out
_| Register/Address

_| Option

Use the I/O Read instruction to get information from 1/0O modules. This instruction is
useful for reading data from:

e non-Reliance I/0 modules that are only byte-accessible

® any modules that have not been configured in the rack configurator
Use the I/O Read instruction to read a:

® byte - This is used for modules that support only 8-bit addressing.

® double byte - This should only be used for non-Reliance modules that contain 16-bit
data but only support 8-bit Multibus access.

® integer (16-bits)
e double integer (32-bits)

While the enable bit is true, the Processor reads the I/O data you specified from the
location you specified. The data is stored in Out.

1211

Input Parameters for the I/O Read Instruction

This table lists the inputs for the 1/0 Read instruction and the variable type and the data
type/range that each input supports.

Parameter

Description

Variable Type

‘ Data/Type Range

EN

While this input is true, the instruction executes. When this
input is false, the instruction is not executed and ENO is
false.

Connect a Boolean input or output.

Slot Enter the slot number of the AutoMax rack in which the
I/0 module resides. If you are using the Address input,
you cannot enter a slot number.

Register/ | Enter the 16-bit register number to be accessed in the

selected slot within the AutoMax rack. The slot and
register information define the location of the data.

® simple
e constant
® clement of an array

integer (4-15)

integer or double
integer (0 to 32767
[7FFFH])

12-3

12-4

Parameter Description Variable Type Data/Type Range
Address | Enter the address of the location that contains the data ® simple integer or double
you want to read. Use this input when you must read a e constant integer (0240000 to

byte from an “odd” address. If you enter an address, the
slot input is ignored.

You must calculate the address using this information.

o For a module that follows AutoMax conventions,
choose the base address based on the slot that the
module occupies and add an offset equal to the
register * 2. See “Listing of Base Addresses for Each
Slot in the AutoMax Chassis,” section 12.3.

e For a non-Reliance module, choose the address that
corresponds to the location of the information on the
module.

Option

Define the amount of I/O data you want to read by
entering an option number that corresponds to the
amount of data you want. See Defining the Amount of I/O
Data to Read.

e element of an array

2FFFFH)

integer (1 to 4)

12.1.2

Output Parameters for the 1/O Read Instruction

This table lists the outputs for the I/O Read instruction and the variable type and data
type/range that each output supports.

Parameter

Description

Variable Type

Data/Type Range

ENO

Use this output as the input to another instruction for
easily chaining multiple instructions. This output follows
the state of EN unless an error occurs.

Connect a contact, coil, or Boolean input of
another instruction.

Out

This parameter contains the requested data.

® simple
e clement of an array

integer
double integer

e timer

(name.TPreset and
name.Elapsed)

counter
(name.CPreset
and name.Current)

12-5

Defining the Amount of I/O Data to Read

To read: In the Option In the Register/address | Result:

field, enter: field, enter:
byte 1 data’s location a byte is read
double byte 2 data’s location 'I_'he low byte is rea_d
Note: Only use this ftl)rstt and then the high
option to read data yte.
from modules that only
support an 8-bit
Multibus access.
integer (16-bits) 3 data’s location as an A 16-bit word is read
Note: Use this option to even address frg? the designated
read data from modules adaress.
that support AutoMax
addressing and data
conventions.
double integer (32-bits) | 4 data’s location as an A 32-bit word is read

even address

from the designated
address in this order:

e MS 16-bit word
e LS 16-bit word

Example of an I/O Read Instruction

When switch1 is true, the instruction reads one

word of data from register 300 of the 1/0 TOR,
module in slot 4 of the AutoMax rack. This data syitch I/ Read
is placed in the variable pump. | 1
11
4 | Slot Out | pUmR
00—l Fegister Address
3 Option
If you were to use an address instead of a slot
and register location, the example would look TOR.
like the instruction below. The Address of switch I/0 Read
240258H is derived by this formula: 1 1L
11
base register address of slot 4 + 2
X the register number 1ot Out
Consequently, 240000H + 2(300) =240258H. = — PUmp
240258H fegisterAddress
3 Option

12-7

12.2 1/O Write (IOW)

oW
LA Write

In
| 51at

_| Register/Address

_| Optiaon

Use the 1/O Write instruction to send information to I/O modules. This instruction is
particularly useful for writing data to:

e non-Reliance I/0 modules that are only byte-accessible

® any modules that have not been configured

Use the 1/O Write instruction to write a:

® byte — This is used for modules that support only 8-bit addressing

e double byte — This should only be used for non-Reliance modules that contain
16-bit data but only support 8-bit Multibus accesses

e integer (16-bits)
e double integer (32-bits)

When EN becomes true, the Processor writes the amount of I/O data you specified in
the location you specified.

12-8

12.2.1

Input Parameters for the I/O Write Instruction

This table lists the inputs for the IOW instruction and the variable type and data
type/range that each input supports.

Parameter

Description

Variable Type

‘ Data/Type Range

EN

While this input is true, the instruction executes. When this
input is false, the instruction is not executed and ENO is
false.

Connect a Boolean input or an output.

Slot Enter the slot number of the AutoMax rack in which the
I/0O module resides. If you are entering an Address input,
you cannot enter a slot number.

Register/ | Enter the 16-bit register number to be accessed in the

selected slot within the AutoMax rack. The slot and
register information define the location of the data.

® simple
® constant
® element of an array

integer (4-15)

integer or double
integer (0 to 32757
[7FFFH])

12-9

12-10

12.2.2

You must calculate the address using this information:

For a module that follows AutoMax conventions, choose
the base address based on the slot that the module
occupies and add an offset equal to the register * 2. (See
the Listing of Base Addresses for Each Slot in the
AutoMax Chassis)

For a non-Reliance module, choose the address that
corresponds to the location of the information on the
module.

Option

Define the amount of /O data you want to write by
entering an option number that corresponds to the
amount of data you want. See Defining the Amount of I/O
Data to Write.

e element of an array

Parameter Description Variable Type Data/Type Range
Address | Enter the address of the location where you want to write | ® simple integer or double
data. If you enter an address, the slot input is ignored. e constant integer (0240000 to

2FFFFFH)

integer (1-4)

Output Parameters for the 1/O Write Instruction

This table lists the outputs for the IOW instruction and the variable type that each output
supports. To use ENO, connect it to a contact, coil, or Boolean input of another

instruction.
Parameter Description
EN Use this output as the input to another instruction for

easily chaining multiple instructions. This output follows
the state of EN unless an error occurs.

Defining the Amount of I/O Data to Write

address

To write: In the Option In the Register/ Result:
field, enter: address field, enter:
byte 1 data’s location a byte is written
double byte 2 data’s location The low byte is written
Note: Use this option to grst and then the high
write data to modules yte.
that only support an
8-bit Multibus access.
integer (16-bits) 3 data’s location as an even | A 16-bit word is
Note: Use this option to address \évrltt_en f:o(rjn tgg
write data from esignated address.
modules that support
AutoMax addressing
and data conventions.
double integer (32-bits) | 4 data’s location as an even | A 32-bit word is

written from the
designated address in
this order:

o MS 16-bit word
e LS 16-bit word

12-11

12-12

Example of an /O Write Instruction

When switch1 becomes true, the instruction

writes one word of data from the variable pump ToW
to register 300 of the I/O module in slot 4 of the syvitch! LA Write
AutoMax rack. | |
pUmp — In
4] Set
200 — Register/dddress
3 Option
If you were to use an address instead of a slot
and register location, the example would look
like the instruction below. The Address of) IﬂJIaL:ite
240258H is derived by this formula: switch
base register address of slot 4 + 2 v
X the register number T
pump — -
Consequently, 240000H + 2(300)=240258H.
_| 510t
240956 — Register AAddress
3 Option

12.3

Listing of Base Addresses for Each Supported Slot in the AutoMax Chassis

Slot Hex Address Range Slot Hex Address Range
4 240000 to 24FFFF 10 2A0000 to 2AFFFF
5 250000 to 25FFFF 11 2B0000 to 2BFFFF
6 260000 to 26FFFF 12 2C0000 to 2CFFFF
7 270000 to 27FFFF 13 2D0000 to 2DFFFF
8 280000 to 28FFFF 14 2E0000 to 2EFFFF
9 290000 to 29FFFF 15 2F0000 to 2FFFFF

12-13

12-14

12.4

Errors Caused by the I/O Read and
I/0 Write Instructions

This section describes the possible errors for 1/O read and I/O write instructions.

If this error occurs:

Then:

Do the following:

® Anillegal slot number of an
IOR or IOW is selected

e An illegal register of an IOR
or IOW is selected

ENO is set according to
ERROR_ENO, and nothing is
written to Out.

Correct the slot and register or
address parameters used in
the instruction.

An illegal option of an IOR or
IOW instruction is selected.

ENO is set according to
ERROR_ENO, and nothing is
written to Out.

Correct the number in the
option field. The valid range is
1-4.

The array index is negative

ENO is set according to
ERROR_ENO, and element
zero of the variable will be
used for the instruction’s
operation.

Specify a valid array element.

The array index is too large

ENO is set according to
ERROR_ENO, and element
zero of the variable will be
used for the instruction’s
operation.

Specify a valid array element.

(/0 Read Only)
The result is larger than what
Out’s data type supports

ENO is set according to
ERROR_ENO, and Out
contains the largest signed
value allowed for the data type
being used.

Specify the variable in Out to
be a double integer.

13.0 Immediate Input and Output
Instructions

Use the Immediate Input to update the latched value with the most current value of a
global input.

Use the Immediate Output instruction to update a global variable’s physical location
with the current latched value.

These instructions support simple Boolean, integer, or double integer variables.

See the input and output parameter descriptions for each instruction for specific
information.

13-1

13-2

13.1

Immediate Input (IN)

IN
Immediate Input
EM ENG

_|variable

Use the Immediate Input instruction to update the program’s latched value
corresponding to a global variable with that global variable’s current value. Since inputs
are latched at the start of a program scan, the IN instruction is useful for gathering data
that may have changed since the start of a program scan.

While EN is true, the instruction reads the state of a program’s global variable (Variable)
at its physical location and updates the latched value with the new value. The newly
updated latched value is used in subsequent instructions as needed.

13.1.1

Input Parameters for the Immediate Input Instruction

This table lists the inputs for the IN instruction and the variable type and data
type/range that each input supports.

Parameter

Description

Variable Type Data/Type Range

EN

While this input is true, the instruction executes. When this
input is false, the instruction is not executed and ENO is
false.

Connect a Boolean input or output.

Variable

Enter the global variable from which you want to use the Simple ® Boolean
latest value. e integer
e double
integer

13-3

13.1.2 Output Parameters for the Immediate Input Instruction

This table lists the output for the IN instruction and the variable type that it supports. To
use ENO, connect it to a contact, coil, or Boolean input of another instruction.

Parameter Description
EN While this input is true, the instruction executes. When this
input is false, the instruction is not executed and ENO is
false.
Variable | Enter the global variable from which you want to use the
latest value.
ENO Use this output as the input to another instruction for

easily chaining multiple blocks. This output follows the
state of the EN input.

13.1.3 Example of an Immediate Input Instruction

While switch1 is true, the program’s latched

value for the global variable LEVER_1 is IN
updated. sitch] Immediate Input
EM ENG

LEVER 1 = Variahle

13-4

13.2

13.2.1

Immediate Output (OUT)

auT
Immediate Qutput
EM EMD

_| variable

Use the Immediate Output instruction when you need to update a global variable’s
physical location prior to the end of the program scan. Output locations are normally
updated at the end of a program scan. This instruction lets you immediately use the
latest output value for a global variable.

While EN is true, the instruction updates a global variable’s (Variable) actual location
with the value from the program’s latched value.

Input Parameters for the Immediate Output Instruction

This table lists the inputs for the OUT instruction and the variable type and data
type/range that each input supports.

Parameter Description Variable Type Data/Type Range
EN While this input is true, the instruction executes. When this Connect a Boolean input or output
input is false, the instruction is not executed and ENO is
false.
Variable | Enter the global variable that you want to update with the | Simple ® Boolean
value from the program’s latched value. e integer

® double integer

13-5

13.2.2 Output Parameters for the Immediate Output Instruction

This table lists the output for the OUT instruction and the variable type and data
type/range that it supports. To use ENO, connect it to a contact, coil, or Boolean input
of another instruction.

Parameter Description

ENO Use this output as the input to another instruction for
easily chaining multiple blocks. This output follows the
state of the EN input.

13.2.3 Example of an Immediate Output Instruction

While switch1 is true, the global variable

LEVER_1 is updated with its current latched o
value. switchd TImmediate Output
EM EMO

|_

LEVER_1 — ‘Wariahle

13-6

Appendix A

Using Variables

All operations performed in AutoMax programs use symbolic names (variables) to
represent storage locations for inputs, outputs, and other data. You use these variables
to reference ladder instruction input and output parameters.

With the Editor you name variables just as you do in the Variable Configurator. Variable
names can be a maximum of 16 characters. The valid characters are A-Z, a-z, 0-9, and
_ (underscore). Names must begin with a letter.

The type of variable you choose depends upon the type of operation to be performed.
Variables are either:

® simple stores a single piece of data

The data can be Boolean, integer, or double
integer.

® array stores a collection of data of the same data type

The data can be Boolean, integer, or double
integer.

® data structure stores both Boolean and double integer data

Data structures are used for Timer and Counter
data types.

You can use pre-defined keywords to help you
specify the individual timer and counter
elements.

A-1

A-2

Variables also have these properties:

e Variables store data according to the data type they are defined as. The
Editor assigns a default data type to variables you enter and provides a
way for you to change the type, so you need not enter the variable type
indicators @, %, and !. For more information, see section A.1.

e Variables have a scope, either global or local. The case of the first letter
of the variable name indicates the scope of the variable. A variable name
beginning with an upper-case letter is interpreted by the Editor as a
global variable, while a variable name beginning with a lower-case letter
is interpreted by the Editor as a local variable. For more information, see
section A.3.

You cannot have two variables of different data types or scopes with the same
name.

To configure global variables, you must define them in the Variable Configurator.

e Variables must have a name and can have a description.

An additional characteristic of simple and array variables is the option for you to access
(index into) the data within these variables down to the bit level. For example, within a
simple integer variable you can access each bit with a variable or with a constant. For
more information, see section A.2.

A1

A1

Data Types

This section describes Boolean, integer, double integer, timer, and counter variables in
more detail.

Boolean Variables

A Boolean variable stores the status (either 1 or 0) of one bit. When a bit has a value of
1, it is said to be on and logically true. When a bit has a value of 0, it is said to be off
and logically false.

You can reference an individual bit using any of these methods:

Method Example
simple Boolean switch1
bit-indexed integer or double integer vat.15
vat.31
vat fill
Boolean array element panel[20]
bit-indexed integer or double integer array panel[rack2].15
element
timer and counter status bits timer_name.Q
counter_name.QD

See section A.2 for more information.

A-3

This table presents data about the number of bits for some configurations:

A rack with: Contains a maximum of:
one 7010 Processor 16, 384 bits
Common Memory module and 14,496 bits

6011 processor(s)

one 6011 Processor 11,464 bits

These bits are used by ladder programs for simple Boolean variables and Boolean
array variables. These bits can be used by a single program or split among multiple
programs.

You define the size of an array by entering a value in Maximum Array Index located
within the Variable Properties dialog box. For more information about arrays, see
section A.4.

A.1.2 Integer and Double Integer Variables

Integer and double integers have the following data and value ranges:

Data Range Value Range
integer 16 bits -32768 to 32767
double integer 32 bits —2147483648 to 2147483647

You can reference an integer or double integer variable the following ways:

Method Example

simple vat

element of an array panel[rack2]
panel[10]

timer or counter timer_name.Elapsed
counter_name.Current

You can also use decimal and hexadecimal constants. See section A.2 for more
information.

g A13

A-6

Timer Variables

A timer variable is a data structure that combines pre-defined elements into a single

symbol.

This element: Is a:

TPreset double integer element that stores the value at which the
timer expires (where 1=10ms)

Elapsed double integer element that stores the amount of time that
has elapsed (where 1 = 10 ms)
Elapsed is initialized to 0 when a program first begins to
run unless the timer is a global and declared non-volatile
in the Variable Configurator.

Q Boolean output that indicates that the timer timed out

T Boolean output that indicates that the timer is timing

To reference any element of a timer variable in a ladder logic program

® Assign a name to the timer variable and then add the reserved element
name as an index.

For example, to reference a timer’s elapsed value, type this: name.Elapsed. And to
reference the Q status bit, type this: name.Q.

Where name is the name of the timer data structure.
IMPORTANT:
® Timer elements cannot be forced.

® You must enter global timers into the Variable Configurator as
five-element, double integer, non-volatile arrays. Example: TIMER1!(4).

A-7

B A4

A-8

Counter Variables

A counter variable is a data structure that combines pre-defined elements into a single

symbol.

This element:

Is a:

Current

double integer element that contains the current
count

Current is initialized to 0 when a program first begins
to run unless the counter is a global and declared
non-volatile in the Variable Configurator.

CPreset

double integer element that contains the value that
the counter should count to or from

Qu

Boolean output that is true when the value in Current
is greater than or equal to the preset value (CPreset)

QD

Boolean output that is true when the value in Current
is less than or equal to zero

A.15

To reference any element within a counter variable in a ladder logic program

® Assign a name to the counter variable and then add the reserved element
name as an index

For example, to reference a counter’s Current element, type this: name.Current.
where name is the name of the counter data structure.
IMPORTANT

e Counter elements cannot be forced.

® You must enter global counters into the Variable Configurator as
five-element, double integer, non-volatile arrays.
Example: COUNTERT1!(4).

Labels

Labels are used only in JMP and LBL instructions. When you enter a new name for a
JMP or LBL instruction, the Editor automatically defines it as a Label.

A-9

A-10

A.2

Accessing Data Within Variables Via Bit-Indexing and
Element-Indexing

For the ladder instruction parameters, you can specify bits within integer and double
integer variables and elements and bits within an array variable. You can refer to bits or
elements by using constants or variables. For example, you could access bit 17 in the
double integer variable pump by using either pump.17, or any bit within pump using
pump.fill. Notice a period (.) was used to separate pump from the bit. The period (.) is
the bit delimiter.

To specify an element name or number, enclose it in square brackets ([]). For example,
if pump was an array and you want element number 17 within the array, you can access
it by: pump[17]. To access any element within the array pump, you can use pumpfill].
The square brackets ([]) are the element delimiter.

This methodology is called indexing. Using bit-indexed and element-indexed variables
can help reduce the number of unique names required for your application and help
you manage data collection and manipulation. Bit-indexed variables can also help
make referring to 1/0O points easier. Just assign a name for the register corresponding to
the I/O module and reference each I/O point by appending the appropriate bit number.
For example, if one /0 module is controlling all the switches for a conveyor belt, you
can assign the name “conveyor_switch” to the I/O module and reference each 1/O point
by appending a bit’s name or constant, such as “conveyor_switch.2.”

However, use bit-indexing with caution because the program’s execution time increases
with the complexity of the variable.

Only variables assigned to /0 modules can have names assigned to the whole integer
and to each bit.

You can use bit-indexed variables on relay instructions. For specific information about
the supported variable types for an instruction, see the section pertaining to that
instruction.

A.3

A.3.1

Element and bit variable names can each be a maximum of 16 characters (A-Z, 0-9,
and _), not including the delimiter (. or []). Valid ranges for constants used to reference
bits are 0-15 for integers and 0-31 for double integers.

IMPORTANT

You can force only simple variables. You cannot force element-indexed or bit-indexed
variables. For example, you cannot force variables like: vat.13, array_var[11],
array_var[index_name], array_var[11].12 or array_var[index_name].bit_name.

Global and Local Variables (Scope)

A property of a variable is its scope. A variable’s scope can be either local or global.

Local Variables

Local variables are those that can only be used in the program in which they are
defined. No other programs can reference them. If you type in the first letter of a
variable name using lower case, the default scope will be local. The names of local
variables appear in lower case.

A-12

A.3.2

Global Variables

Global variables can be referenced by ladder, Control Block, or BASIC programs in a
rack. These variables can refer to memory locations, physical I/O locations, or network
locations. Global memory variables can be of any data type supported by the Editor. If
you type in the first letter of a variable name using upper case, the default scope will be

global.

Global variables used for physical I/O must be simple variables. They can be either

Boolean, integer, or double integer.

Global I/O variables rep-
resenting this:

Can be:

inputs

read but not written to

outputs

read or written to

Within BASIC or Control Block programs, use the statement COMMON to access global

variables.

A.4

Arrays

Arrays in ladder programs can have only one dimension. An item within an array is
called an element.

This type of array: Can have a maximum of:
integer and double integer 65,536 elements
Boolean 16,000 elements

The maximum size of a local array or global array when no Common Memory module is
present is limited by the amount of available application memory. If a Common Memory
module is present, a global array is limited by the amount of memory available on the
module.

The first element within the array is always 0. Therefore, if an array had 65,536
elements, they would be numbered 0-65,535. You define the size of an array by
entering a value in Maximum Array Index located within the Variable Properties tab.

The maximum array index is the number that represents the last element within an array
variable. When you enter a new array variable in an instruction parameter, the maximum
array index is automatically defined as the element number you entered as part of the
variable. Should you need a larger array, change the Maximum Array Index field of the
variable’s property sheet. Remember array elements are numbered starting at 0.

A-13

A-14

To specify the maximum array index for an array variable using the Variable
Properties

Step 1. Select the instruction that uses the array variable.
Step 2. Access the variable properties by doing either of the following:
® From the File menu, choose Properties and then the Variables tab.

® Press the right mouse button, and choose Properties from the
pop-up menu and then the Variables tab.
Step 3. Select the array variable name from the variable list.

Step 4. Inthe Maximum Array Index field, enter the number of the last element. The
largest number you can enter is 65,535 (65,535 = space reserved for 65,536
elements).

Step 5. Click OK.

Tip

To increase the maximum array index, you can also enter the array variable with a

greater index. For example, the variable A/700] has 101 elements. If you need a larger
index, you can enter A[200]. Variable A now has 100 more elements than before.

A.5

A.6

Constants

Use constants to specify:
® unchanging values within ladder instruction input parameters
® an element of an array (array[2])
® a bit within an integer or double integer variable (pump.15)

® a bit within an element of an integer or double integer array (array[2].31)

You can include the plus (+) and minus (-) signs for constants entered in the ladder
instruction parameters.

IMPORTANT

To enter a hexadecimal value that begins with a letter as a ladder instruction input
parameter, you must enter the value using a leading 0; end the value with an “ h or H.”
For example, enter OA5A5H not ASA5H.

About Initializing Variables

You can choose the value that a variable contains when a program is downloaded to
the Processor or while the program is running. This is useful for loading a pre-defined
value into a variable for calculations, modifying parameters, or changing a timer’s or

counter’s preset value. You can change the value of a variable and/or its initial value by:

® setting or forcing the variable
e changing a preset value for a timer or counter via inline editing

e changing the initial value via the Variable Properties dialog box

A-15

A-16

A.6.1

You can choose from the following initialization methods for a variable from its Variable
Properties tab:

e No Initialization (No Init.)
® User Specified Value
® Retained Value

About the No Initialization (No Init.) Method

When a variable is configured to use no initialization, the value it contains is determined
by the buffering of inputs and outputs and by program execution. For global and local
variables, the default initialization is No Initialization. Local and global variables defined
as using no initialization are set to 0 when the program in downloaded to the Processor.
Global outputs are not cleared at the start of the first scan.

This table explains the value of variables under specific conditions:

Variable Type

Ladder Program Non-volatile Volatile global Local
Condition global
Power fail values retained, values lost and
unless battery set to zero
Stop-All backup fails values retained

Program stopped | values unchanged by operation;
programs that are still running may
cause values to change

Ladder Program
Condition

Variable Type

Non-volatile
global

Volatile global

Local

Program stopped
and individually
restarted

values unchanged by operation;
programs that are still running may
cause values to change

values retained,
unless the logic
within the
program writes to
variables

Program stopped
and the
configuration
individually
reloaded

values are lost; values are zero when
the configuration is installed

values retained

Program stopped
and configuration
and programs
individually
reloaded

values are lost; values are zero when
the configuration is installed

Stop-All occurred
and configuration
and programs
reloaded

values are lost; values are zero when
the configuration is installed

values are lost;
values are zero
when the
program is
installed

A-17

A-18

A.6.2

A.6.3

About the User Specified Initialization Method

When a variable is configured to use a User Specified value, the value defined as the
initial value is written to the variable at the start of the first scan. If the variable’s initial
value is changed via inline editing, forcing, setting, or a program’s execution, this new
value is not retained when the program is stopped and rerun. The value written to the
variable each time the program is placed into run is always that specified in the Initial
Value field of the Variable’s property sheet. Choose User Specified initialization when
you want a variable to use the initial value you defined every time the program is placed
into run.

IMPORTANT
Do not use user-specified initialization for a global I/O variable being used as an input. If
you do, a bus error (error 31) occurs when you try to run the task.

About the Retained Value Initialization Method

When a variable is configured to use a Retained Value, the value defined as the initial
value is written to the variable at the start of the first scan. If the variable’s initial value is
changed via inline editing, forcing, setting, or through the Variable Properties dialog
box, the value the variable contains when program execution stops is the one that is
written to the variable when the program is rerun. Retained Value initialization is the
default initialization type for timers and counters. An initial value of a variable configured
to use Retained Value initialization can be changed by any ladder program. For
example, you can change a timer or counter preset value by using ladder logic. Initial
values changed online can be permanently installed only by saving the program from
the Processor. Choose Retained Value initialization when you want a variable to be
initialized with the value it had at the time the program was stopped. Make sure that you
specify global variables using Retained Value initialization as non-volatile variables.

IMPORTANT
Do not use retained-value initialization for global 1/O variables. Doing so causes an error
when the program is verified.

A.6.4

A.6.5

About Initializing Timer and Counter Variables

You can define the initialization mode for timer and counter preset variables. Choose
between a User Specified Value or Retained Value. The Retained Value is the default
initialization mode. You cannot define an initialization method for the Elapsed timer
element or the Current counter element. These elements are usually reset to 0 at the
start of program scan, unless the timer or counter data structure is defined as global
and non-volatile. If you reference a timer or counter element in a program whose data
structure is not used in a timer or counter instruction within the same program, the
variable uses the No Initialization method. You cannot change it to User Specified Value
or Retained Value. However, if you later add that timer or counter data structure on a
newly added timer or counter instruction, the initialization type of the timer or counter
elements becomes Retained Value. You can then choose either a Retained Value or
User Specified Value initialization. The value contained in the Initial Value field is the
timer’s or counter’s preset value.

About Initializing Arrays

You can define an initial value for individual elements of an array. The list of available
elements and their current values appears in the Array Index list box.

A-19

A-20

A.6.6

Defining the Type of Initialization To Use for a Variable

You can define how a variable is initialized when a program is downloaded to the
Processor and put into run. This is useful for loading a pre-defined value into a variable
for calculations, modifying values for parameters, or changing a timer’s or counter’s
preset value. Use the Variable Properties dialog box for the variable whose initialization
method you want to change.

To define the type of initialization to use for a variable

Step 1.
Step 2.
Step 3.
Step 4.
Step 5.

Step 6.
Step 7.

Tip

In an offline program, select the instruction containing the variable whose
initialization method you want to change.

From the File menu, choose Properties. The Instruction Properties dialog box
is displayed.

Choose the Variable Properties tab, and select the variable whose
initialization method you want to change.

Choose the variable initialization method you want to use. Choose from No
Init. (No Initialization), User Specified Value, or Retained Value.

If you have chosen User Specified Value or Retained Value, define an initial
value.

Accept the change by clicking OK or Apply.
Save the program, and reload it to the Processor.

You can change the initial value while editing the program offline or online.

A.6.7

Defining the Initial Value of a Variable

You can define the value that a variable contains when a program is downloaded to the
Processor or placed into run. You can also define an initial value for individual elements
of an array. The list of available elements and their current values appears in the
variable’s Variable Properties tab.

The initial value applies to User Specified Value or Retained Value initialization.
To define the initial value of a variable

Step 1.

Step 2.

Step 3

Step 4.

In an offline or online program, select the instruction containing the variable
whose initial value you want to change.

From the File menu, choose Properties. The Instruction Properties dialog box
is displayed.

Choose the Variable Properties tab, and select the variable whose initial
value you want to change.

Make sure that the selected initialization method is the one you want to use.

A-21

A-22

Step 5.

Step 6.

Use the following table to determine your next step:

If the variable is:

Do the following:

not an element of an array

e In the Initial Value field, enter a
value that you want to use as the
initial value. A value of 0 is the
default value.

In the case of a timer or counter data
structure, the value in the Initial Value
field is the timer’s or counter’s preset
value. A preset value cannot be a
negative number.

an element of an array

Step A.

Step B.

In the Array Index list box,
select the element whose
initial value you want to
change. The element’s
current value is displayed
next to the array element.

In the Initial Value field,
enter a value that you want
to use as the initial value.
Zero is the default value.

To accept the change, click OK or Apply.
When changing the initial value of a variable using Retained Value initialization during

an online editing session, a dialog box prompts you to decide if the changed value

should be sent to the rack. Choosing Yes immediately sends the change to the rack.
The variable’s value is immediately changed. When you save the program from the
Processor, the newly changed initial value replaces the original value. Choosing No

cancels the change.

Any change made to the value of a variable using User Specified Value initialization
during an online editing session does not take effect until the program is stopped and
re-run.

Tip

You can enter initial values in hexadecimal. To enter a hexadecimal value that begins
with a letter, you must enter the value using a leading 0; end the value with an “ h or H.”
For example, enter 0A5A5H, not ASA5H.

A-23

Appendix B
Using Timer Variables in BASIC Programs

You can use timer elements in BASIC programs. To do this, you must declare the timer
as a global, double integer array. For example, COMMON TIMER! (4). The elements of
the timer data structure can be accessed as follows:

Element: Description:
0 Elapsed
1 Reserved for system
2 TPreset
3 bit 15 Q
bit 23 T
bit 31 TR
4 Reserved for system

WARNING

DO NOT MODIFY TIMER ELEMENTS 0, 1, 3, AND 4 FROM A BASIC PROGRAM.
THIS WILL CAUSE THE TIMER TO OPERATE INCORRECTLY, RESULTING IN
UNPREDICTABLE MACHINE OPERATION.

B-1

B-2

Within a BASIC program, you may want to:
e determine if a timer has expired

® change a timer’s preset

To change the preset value by using a BASIC statement
e Enter a statement in this format:
NAME!(2) =new_preset_value

where NAME! is the name of the global timer variable whose preset you want to
change

The value of 2 is the location of the element TPreset within a Timer data type.
Example:

TIMER1!(2)=2000

This statement sets the preset value for the variable TIMER1! to 2000.

To determine if a timer has expired by monitoring element Q in a BASIC program
e Use the BASIC function BIT_SET@ to test the value of Q.

Example:

IF BIT_SET@(TIMER1!(3),15) THEN 250

This statement examined bit 15 of element 3 in the global variable TIMERT.

Appendix C

Using Counter Variables in BASIC Programs

You can use counter elements in BASIC programs. To do this, you must declare the
counter as a global, double integer array. For example, COMMON COUNTER!(4). The
elements of the counter data structure can be accessed as follows:

Element: Description:
0 Current
1 CPreset
2 Reserved for system
3 bit 7 LD
bit 15 CR
bit 23 QD
bit 31 Qu
4 Reserved for system

WARNING

DO NOT MODIFY TIMER ELEMENTS 0, 1, 3, AND 4 FROM A BASIC PROGRAM.
THIS WILL CAUSE THE TIMER TO OPERATE INCORRECTLY, RESULTING IN
UNPREDICTABLE MACHINE OPERATION.

C-1

C-2

Within a BASIC program you may want to:
® change a counter’s preset
e use the Current element of a counter for data display, logic sequencing, or other purposes

® monitor the status of a counter

To change the preset value by using a BASIC statement
e Enter a statement in this format:
name!(1)=new_preset_value
where NAME! is the name of the counter variable
The value of 1 is the location of the element CPreset within a Counter data type.
Example:
COUNTERT1!(1)=50
This statement is setting the preset value for the global variable COUNTER1 to 50.

To specify the Current element of a counter in a BASIC statement
e Enter the variable in this format:
NAME!(0)
where NAME is the name of the counter variable
The value of 0 is the location of the element Current within a Counter data type.

To determine if a counter has reached its preset by monitoring element QU in a
BASIC program

e Use the BASIC function BIT_SET@ to test the value of QU.
Example:
IF BIT_SET@(COUNTER1!(3),31) THEN 250
This statement examined bit 31 of element 3 in the global variable COUNTER1.

C-3

Appendix D
Using the Pre-Defined (Reserved) Ladder Language Variables

The Editor contains pre-defined variables that you can use in an individual ladder
program to:

e execute logic based on a Processor scan
e specify how to handle error conditions
® check scan time execution

The pre-defined ladder language variables are local variables, which you can use for
ladder instruction parameters. Their names are reserved and appear in the choices
offered by the Variable Smart Matching option.

D-1

D-2

D.1

Using the Pre-Defined Program Scan Variables

Use the following Boolean variables to execute logic based on the Processor’s scan.
Only use these variables for input parameters (read only):

e first_scan

Use this variable to execute logic during a program’s first scan. This variable is
true during the initial scan of the ladder rung and false during all other scans.

® second_scan

Use this variable to execute logic during a program’s second scan. This
variable is true during the second scan of the ladder rung and false during all
others.

® |ast_scan

Use this variable to execute logic during a program’s last scan. This variable is
true on the final pass of the ladder rung after you have selected TASK STOP.
This variable is not set when a STOP-ALL error occurs.

To use the last_scan variable, your program scan must be less than 0.5 s.

IMPORTANT:

Do not use the last_scan variable in an event-driven program. Because these
programs are based on the occurrence of an event, the last_scan variable may
never be executed when used in an event-driven program.

D.2

Using the Pre-Defined Error Handling Variables

Use the following Boolean variables to help you handle error conditions. Use error_eno
and no_error_log for output (read and write) parameters. You can use task_error as
either an input (read only) or output (read and write) parameter:

® task error

This variable is set true whenever an error is found. Monitor the bit to see if an
error occurs during execution and clear it by using the ladder logic. This bit is
set true even if errors are not being logged.

® error_eno

Use this bit to determine the value ENO outputs will have if the instruction has
an error. The default value is false, which disables any instructions that are
connected to the ENO output, possibly making math expressions incomplete.
When you set error_eno true, you can continue the execution of the logic
connected to the ENO output even if the instruction block had an error.

This variable can be changed during ladder logic program execution.

® no_error_log

Set this variable true to prevent errors from being entered into the program
error log or being seen by the rung monitor. Only one error is logged for each
instruction per program scan; however, you may want to prevent the errors
encountered on certain instructions from being entered into the error log.

The default state for the no_error_log is false. You can suppress error
messages for a group of rungs by changing this variable during program
execution. STOP-ALL errors and parameter limit errors for AR1, AR2, and ARC
instructions are still inserted into the error log when the no_error_log variable is
true.

D-3

D-4

D.3

Using the Pre-Defined Ladder Execution Time
Variables

Use the following double integer parameters to help you check and monitor the
program’s execution time. Only use these variables as input parameters.

® task usec_max Use this variable to monitor the maximum execution time (in ps) for the
current program. When this variable is defined in a ladder program.

® task usec_now Use this variable to monitor the latest execution time (in ps) of the current
program.

When this variable is defined in a ladder program. The execution time is
the real “clock” time it took the program to run from start to finish. It in-
cludes the execution time for higher priority programs and interrupt ser-
vice routines if they run while your program is running.

To reset these times, write a value of 0 into the variable.

Appendix E

Ladder Instruction Error Code Cross-Reference

Run-time errors are reported as follows:

® For block instruction errors, the error code is displayed to the right of the
ENO parameter, while the error code and accompanying text message
appears in the Error Log.

® For relay instructions, the error code and the text message appears in the
Error Log.

You can access the Error Log from Program Properties.

E-1

E-2

E.1 Error Codes 3001-3010
Error Code: | Text Description: How To Correct the Error:

3001 Cannot divide by zero Define the divisor of the DIV, MDV, or
MOD instruction to be a value other
than zero.

3002 The result of the arithmetic Use smaller values or re-arrange the

calculation is too large for Out calculation so that errors do not
occur.

3003 The result is larger than what Specify a larger data type for Out. For

Out’s data type supports example, if you are using integers,
specify the data type as a double
integer.

3004 Minimum was greater than For the LIMIT instruction, make sure

Maximum the value for Mx is larger than that for
Mn.

3005 An illegal BCD digit was found In the BCD_TO instruction, use a valid
BCD value for In.

3006 Tried to convert a negative value | In the TO_BCD instruction, use a

to BCD positive value for In.
3007 Label does not exist Add a LABEL instruction that uses the

same name as referenced on a JMP
instruction.

Error Code: | Text Description: How To Correct the Error:
3008 The number of bits to rotate is For the rotate instructions, make sure
negative that N is within the allowable range for
the data type used for In.
3009 The number of bits to rotate is For the rotate instructions, make sure
too large that N is within the allowable range for
the data type used for In.
3010 The bit number is negative Make sure the bit number is positive.

E.2 Error Codes 3011-3020

large for array block’s Out

Error Code: | Text Description: How To Correct the Error:

3011 The bit number is too large Make sure the bit is within the
appropriate range.

3012 The array index is negative For parameters that accept array
variables, specify a valid array
element.

3016 The array index is too large For parameters that accept array
variables, specify a valid array
element.

3020 The value in Length_Out is too Make sure Length_In and Length_Out

are within the range of the array.

E-3

E-4

E.3 Error Codes 3021-3030

Error Code: | Text Description: How to Correct the Error:

3021 The value in Length1 is too large | Make sure the lengths are within the
for array block’s In1 range of the array.

3022 The value in Length2 is too large | Make sure the lengths are within the
for array block’s In2 range of the array.

3023 The value in Length_Out is less Make sure Length_In and Length_Out
than or equal to 0 are within the range of the array.

3024 The value in Length1 is less than | Make sure the lengths are within the
or equal to 0 range of the array.

3025 The value in Length2 is less than | Make sure the lengths are within the
or equal to 0 range of the array.

3026 Array’s length inputs are greater | For the AR1 instruction, make sure
than 1 but are not equal Length_In and Length_Out are within

the range of the array.

3027 The Elems/Scan input is less Make sure the value is at least 0.
than 0

3028 lllegal slot number of an IOR or | Correct the slot and register or

IOW instruction is selected

address parameters used in the
instruction.

Error Code:

Text Description:

How to Correct the Error:

IOW instruction is selected

3029 An illegal register of an IOR or Correct the slot and register or
IOW instruction is selected address parameters used in the
instruction.
3030 An illegal option of an IOR or Correct the number in the option field.

The valid range is 1 to 4.

E.4 Error Codes 3031-3035

Error Code: | Text Description: How To Correct the Error:
3031 Cannot take the square root of a | Make sure the input for the SQRT
negative number operation is not a negative number.
3032 The Length input is negative For the MVB instruction, specify a
value within the appropriate range for
the input in error.
3033 The Length input is greater than | For the MVB instruction, specify a
32 value within the appropriate range for
the input in error.
3034 Length_In is larger than the In Make sure Length_In and Length_Out
input are within the range of the array.
3035 Length_In is less than or equal Make sure Length_In and Length_Out

to0

are within the range of the array.

E-5

Appendix F

AutoMax Enhanced Ladder Language Execution Times
and Memory Usage for AutoMax 7010 & 6011

Unless otherwise noted in the table or implied by the instruction itself, all block instruction execution times are based on non-indexed, 16-bit

variables. Relay instruction execution times are based on simple Boolean variables. Using arrays increases the execution time of the instruction.

7010 Execution Time

(us)

6011 Execution Time

(1s)

Bytes of
Category Code Title True False True False Memory
Relay NOI Normally Open Contact 0.4 0.4 1.5 1.5 6
NCI Normally Closed Contact 0.4 0.4 1.5 1.5 6
PTI Positive Transition Contact 0.8 0.8 3.0 3.0 6
NTI Negative Transition Contact 0.8 0.8 3.0 3.0 6
ATI Always True Contact 0.2 0.2 0.5 0.5 5
AFI Always False Contact 0.2 0.2 0.5 0.5 5
CO Coil 45 4.5 18.0 18.0 8
SCO Set (Latch) Coll 4.5 1.6 18.0 6.8 10
RCO Reset (Unlatch) Coll 4.5 1.6 18.0 6.8 10

F-1

Appendix F

(continued)
7010 Execution Time 6011 Execution Time
(ks) (ks) Bytes of
Category Code Title True False True False Memory
Branch LNET Start of Ladder Network 1.3 1.3 5.3 5.3 16
BST Branch Start 0.3 0.4 0.8 1.3 2
(with ABND) 0.6 0.6 2.0 2.0 4
NXB Next Branch 0.3 0.4 0.8 1.3 2
(with ABND) 0.8 0.8 25 25 4
BND Branch End 0.0 0.0 0.0 0.0 0
ABND Always Branch End 0.6 0.6 2.0 2.0 5
Counter CTUD Count Up 8.2 3.1 36.0 125 12
Count Down 8.2 - 36.0 - -
Reset 6.7 - 29.3 - -
Load 7.2 - 32.0 - -
Timers TON Timer On Delay 7.6 3.6 36.8 17.0 10
TOF Timer Off Delay 3.8 7.6 18.0 36.8 --
TP Timer Pulse 7.0 4.2 35.5 19.3 -
RTO Retentive Timer On 7.5 3.9 36.8 175 --
Reset 41 - 19.3 - -

F-2

Appendix F

(continued)
7010 Execution Time 6011 Execution Time
(ks) (ks) Bytes of
Category Code Title True False True False Memory
Compare EQ2 2-Input Equal 5.4 1.9 21.0 7.3 17
GE2 2-Input Greater or Equal 5.4 1.9 21.0 7.3 17
GT2 2-Input Greater 5.4 1.9 21.0 7.3 17
LE2 2-Input Less or Equal 5.4 1.9 21.0 7.3 17
LT2 2-Input Less 5.4 1.9 21.0 7.3 17
NE2 2-Input Not Equal 5.4 1.9 21.0 7.3 17
EQ3 3-Input Equal 8.2 4.4 31.3 16.5 24
GE3 3-Input Greater or Equal 8.2 4.4 31.3 16.5 24
GT3 3-Input Greater 8.2 4.4 31.3 16.5 24
LE3 3-Input Less or Equal 8.2 4.4 31.3 16.5 24
LT3 3-Input Less 8.2 4.4 31.3 16.5 24
NE3 3-Input Not Equal 8.5 4.4 325 16.5 24
LIMIT Clamp at Limits 9.7 4.4 36.5 16.5 28
MSK Mask Compare 8.0 4.4 31.0 16.5 24

F-3

F-4

Appendix F
(continued)

7010 Execution Time

6011 Execution Time

(us) (us) Bytes of
Category Code Title True False True False Memory
Compute ABS Absolute Value 5.7 1.9 22.0 7.3 17
ADD2 2-Input Add 5.7 1.9 21.8 7.3 19
ADD3 3-Input Add 10.0 4.4 38.3 16.5 26
(32-bit) 14.3 - 59.5 - -
DIV Divide 9.5 1.9 435 7.3 21
(82-bit / 32-bit) 10.8 - 230.0 - --
MOD Modulo 9.8 1.9 45.0 7.3 21
MUL Multiply 6.8 1.9 27.0 7.3 21
(82-bit * 32-bit) 8.3 - 101.8 - -
MDV Multiply Divide 13.0 4.4 57.3 16.5 26
((32 * 32 = 64-bit) / 32-bit) 15.4 - 674.5 - -
NEG Negate 55 1.9 21.3 7.3 17
SQRT Square Root 31.8 1.9 113.5 7.3 17
(32-bit) 53.2 - 233.8 - -
SUB Subtract 5.8 1.9 22.3 7.3 19

Appendix F
(continued)

7010 Execution Time

6011 Execution Time

(Hs) s) Bytes of
Category Code Title True False True False Memory
Logical AND And 5.6 1.9 21.0 7.3 19
NOT Not 5.2 1.9 20.0 7.3 17
OR Or 5.6 1.9 21.0 7.3 19
XOR Exclusive Or 5.6 1.9 21.0 7.3 19
Convert BCD_TO Binary to BCD 13.5 1.9 64.5 7.3 17
(32-bit to 8-digit) 20.9 - 115.0 - -
TO_BCD BCD to Binary 13.6 1.9 76.3 7.3 17
(8-digit to 32-bit) 23.4 - 147.0 - -
Bit Move MVB Move Bits 379 29.2 157.8 114.8 40
MOVE Move Source to Destination 5.1 1.9 19.5 7.3 17
MVM Masked Move 6.8 1.9 26.3 7.3 21
Array AR1 Unary Array Operation - 55 - 21.8 183
Single Scan (Length < 32768) (AR?lf;r;ion) - (Aisgp'ga:m) - -
Single Scan (Length > 32767) (AR811o.§er:tion) -- (Assfp'ga:m) -- --

F5

F-6

Appendix F
(continued)

7010 Execution Time

6011 Execution Time

(us) (us) Bytes of
Category Code Title True False True False Memory
Array AR1 1st Scan Initialization (Length <
(Continued) | (Continued) | 32768) 67.6 - 295.0 - -
1st Scan Initialization (Length >
32767) 67.6 - 500.0 - -
20.0 + (AR1 81.5 + (ART
2nd through Nth Scan operation) - operation) - -
(AR1 Operation)
NOT Scan 1.7 * words - 8.5 * words - -
ABS Scan 2.0 * words - 10.0 * words - -
NEG Scan 1.9 * words - 9.3 * words - -
107.3 *
* - - -
SQRT Scan 29.3 * words words
MOV Scan 1.6 * words - 8.0 * words - -
AR2 Binary Array Operation - 55 - 21.8 223
; 100.9 + 435.0 +
Single Scan
"9 (AR2 opera- - (AR2 opera- - -
(Length < 32768) tion) tion)

Appendix F

(continued)
7010 Execution Time 6011 Execution Time
(us) (us) Bytes of
Category Code Title True False True False Memory
Array AR2 Single Scan 100.9 + 635.0 +
(Continued) (Continued) 9 (AR2 opera- - (AR2 opera- - -
(Length > 32767) tion) tion)
1st Scan Initialization
(Length < 32768) 85.0 - 366.5 - -
1st Scan Initialization
(Length > 32767) 85.0 - 5703 - -
22.3 + (AR2 89.8 + (AR2
2nd through Nth Scan operation) - operation) -
(AR2 operation)
AND,OR,XOR Scan 2.0 * words - 9.5 * words - -
ADD,SUB Scan 2.2 * words - 10.3 * words - -
MUL Scan 3.4 * words - 16.8 * words - -
DIV Scan 4.6 * words - 26.8 * words - -
ARC Array Compare - 5.5 - 21.8 186
Single Scan ((379-1 + (gﬁgﬁ);e
ompare - - -
(Length < 32768) Scan) Scan)

F-7

Appendix F

(continued)
7010 Execution Time 6011 Execution Time
(us) (us) Bytes of
Category Code Title True False True False Memory
Array AR2 Single S 791 + 545.0 +
(Continued) (Continued) ingle scan (Compare - (Compare - -
(Length > 32767) Scan) Scan)
1st Scan Initialization
(Length < 32768) 67.8 - 290.3 - -
1st Scan Initialization
(Length > 32767) 67.8 - 494.0 - -
2nd through Nth Scan 17.7+ - 72.8+ - -
Compare Scan 0.8 * words - 3.3 * words - -
ASU . 1734+ 0.7 * 68.8 + 3.3 *
Array Shift Up words 12.7 words 49.3 33
ASD . 1734+ 0.7 * 68.8 +35*
Array Shift Down words 12.7 words 49.3 33
Shift SL Shift Left 7.5 2.6 27.3 10.0 19
6.2+ 13* 243 +43*
(Boolean Array) bytes 3.0 bytes 11.8 23

Appendix F

(continued)
7010 Execution Time 6011 Execution Time
(us) (us) Bytes of
Category Code Title True False True False Memory
Shift SR Shift Right 7.5 2.6 27.3 10.0 19
(Continued) 77 +13* 313 +45*
(Boolean Array) bytes 3.0 bytes 11.8 23
ROL Circular Rotate Bits Left 8.3 2.6 325 10.0 21
(Boolean Array) 113+16* 3.0 473 +98* 11.8 29
bytes bytes
RL Circular Rotate Bits Left 9.0 2.6 35.3 10.0 21
105+ 16* 445 +98*
(Boolean Array) bytes 3.0 bytes 11.8 29
ROR Circular Rotate Bits Right 8.3 2.6 32.5 10.0 21
106+ 15* 46.0 + 9.3 *
(Boolean Array) bytes 3.0 bytes 11.8 29
RR Circular Rotate Bits Right 9.0 2.6 35.3 10.0 21
114 +15* 48.8 + 9.3 *
(Boolean Array) bytes 3.0 bytes 11.8 29
Control SET Set Event 76.0 2.8 311.0 11.5 11
JMP Jump 2.3 1.4 9.0 5.5 9
LBL Label 0.0 0.0 0.0 0.0 8+name

F9

F-10

Appendix F
(continued)

7010 Execution Time

6011 Execution Time

(Hs) s) Bytes of
Category Code Title True False True False Memory
I/0 IOR Input Read 18.1 4.4 71.5 16.5 28
oW Output Write 31.4 243 124.5 95.8 34
IN Immediate Input 7.0 3.0 28.0 12.8 12
ouT Immediate Output 4.3 2.9 16.8 115 12
Program Fixed System Overhead - 117.0 - 479.0 8,650
Variable Local Boolean 0.0 - 0.0 - 6+name
Local Boolean Array 0.0 - 0.0 - 46+name
Local Integer 0.0 - 0.0 - 12+name
Local Integer Array 0.0 - 0.0 -- 46;2;?96 +
Local Double Integer 0.0 - 0.0 - 16+name
Local Double Integer Array 0.0 - 0.0 - 46:2;;? +
Local Counter or Timer 0.0 - 0.0 - 80+name
Global Boolean - - - 10+name
(Within Another Variable) 0.0 - 0.0 - 6+name

Appendix F
(continued)

7010 Execution Time

6011 Execution Time

(us) (us) Bytes of

Category Code Title True False True False Memory
(CPgr?tgiJr:?JZd) (C\(/)arlwrtﬁtﬂzd) Global Boolean Array e ’ - s) - 50+name
Global Integer 2.6 - 12.3 - 16+name

(Containing a Boolean) 3.5 - 16.0 - 14+name

Global Integer Array 0.0 - 0.0 - 54+name

Global Double Integer 2.6 - 15.5 - 18+name

(Containing a Boolean) 3.5 - 20.5 - 14+name

Global Double Integer Array 0.0 - 0.0 - 54+name

Global Counter or Timer 9.0 - 50.8 - 74+name

Appendix G

AutoMax Enhanced Ladder Language Execution Times and
Memory Usage for AutoMax PC3000

Unless otherwise noted in the table or implied by the instruction itself, all block instruction execution times are based on non-indexed, 16-bit
variables. Relay instruction execution times are based on simple Boolean variables. Using arrays increases the execution time of the instruction.

PC3000 Execution Time (us)
Category Code Title True False Bytes of Memory
Relay NOI Normally Open Contact 0.3 0.3 6
NCI Normally Closed Contact 0.3 0.3 6
PTI Positive Transition Contact 0.6 0.6 6
NTI Negative Transition Contact 0.6 0.6 6
ATI Always True Contact 0.1 0.1 5
AFI Always False Contact 0.1 0.1 5
CO Coil 3.6 3.6 8
SCO Set (Latch) Coil 3.6 1.3 10
RCO Reset (Unlatch) Coil 3.6 1.3 10

Appendix G

(Continued)
PC3000 Execution Time (us)
Category Code Title True False Bytes of Memory
Branch LNET Start of Ladder Network 1.1 1.1 16
BST Branch Start 0.3 0.2 2
(with ABND) 0.5 0.5 4
NXB Next Branch 0.3 0.2 2
(with ABND) 0.6 0.6 4
BND Branch End 0.0 0.0 0
ABND Always Branch End 0.5 0.5 5
Counter CTUD Count Up 6.8 25 12
Count Down 6.8 - -
Reset 5.2 - -
Load 5.6 - -
Timers TON Timer On Delay 6.3 3.0 10
TOF Timer Off Delay 3.1 6.3 -
TP Timer Pulse 5.7 3.3 -
RTO Retentive Timer On 6.1 3.1 -
Reset 3.3 - -

G-2

Appendix G

(Continued)

PC3000 Execution Time (us)

Category Code Title True False Bytes of Memory
Compare EQ2 2-Input Equal 4.4 1.6 17
GE2 2-Input Greater or Equal 4.4 1.6 17
GT2 2-Input Greater 4.4 1.6 17
LE2 2-Input Less or Equal 4.4 1.6 17
LT2 2-Input Less 4.4 1.6 17
NE2 2-Input Not Equal 4.4 1.6 17
EQ3 3-Input Equal 6.7 3.6 24
GE3 3-Input Greater or Equal 6.7 3.6 24
GT3 3-Input Greater 6.7 3.6 24
LE3 3-Input Less or Equal 6.7 3.6 24
LT3 3-Input Less 6.7 3.6 24
NE3 3-Input Not Equal 6.9 3.6 24
LIMIT Clamp at Limits 7.8 3.6 28
MSK Mask Compare 6.6 3.6 24

G-3

G-4

Appendix G

(Continued)

PC3000 Execution Time (us)

Category Code Title True False Bytes of Memory
Compute ABS Absolute Value 4.7 1.6 17
ADD2 2-Input Add 4.7 1.6 19
ADD3 3-Input Add 8.0 3.6 26
(32-bit) 11.6 - -
DIV Divide 7.4 1.6 21
(32-bit / 32-bit) 8.0 - -
MOD Modulo 7.6 1.6 21
MUL Multiply 5.4 1.6 21
(82-bit * 32-bit) 6.2 - -
MDV Multiply Divide 9.9 3.6 26
((32 * 32 = 64-bit) / 32-bit) 11.2 - -
NEG Negate 4.5 1.6 17
SQRT Square Root 21.7 1.6 17
(32-bit) 34.4 - -
SuUB Subtract 4.8 1.6 19

Appendix G
(Continued)

PC3000 Execution Time (us)

Category Code Title True False Bytes of Memory
Logical AND And 4.6 1.6 19
NOT Not 4.3 1.6 17
OR Or 4.6 1.6 19
XOR Exclusive Or 4.6 1.6 19
Convert BCD_TO Binary to BCD 10.2 1.6 17
(82-bit to 8-digit) 15.3 - --
TO_BCD BCD to Binary 10.7 1.6 17
(8-digit to 32-bit) 18.0 - -
Bit Move MVB Move Bits 31.2 241 40
MOVE Move Source to Destination 4.2 1.6 17
MVM Masked Move 5.6 1.6 21
Array AR1 Unary Array Operation - 45 183
Single Scan (Length < 32768) 66.4+ - -
(AR1 operation)
Single Scan (Length > 32767) 66.4+ - -
(AR1 operation)
1st Scan Initialization (Length < 32768) 54.6 - -
1st Scan Initialization (Length > 32767) 54.6 - -

G-5

G-6

Appendix G
(Continued)

PC3000 Execution Time (us)

Category Code Title True False Bytes of Memory
Logical AR1 2nd through Nth Scan 17.1+ (AR1 op- - -
(Continued) (Continued) eration)
(AR1 Operation)
NOT Scan 1.4 * words -
ABS Scan 1.7 * words -
NEG Scan 1.6 * words -
SQRT Scan 19.7 * words -
MOV Scan 1.4 * words -
AR2 Binary Array Operation - 45 223
Single Scan 81.8+ -- -
(Length < 32768) (AR2 operation)
Single Scan 81.8+ -- -
(Length > 32767) (AR2 operation)
1st Scan Initialization (Length < 32768) 68.5 - -
1st Scan Initialization (Length > 32767) 68.5 - --
2nd through Nth Scan 18.6+ -

(AR2 operation)

Appendix G

(Continued)

PC3000 Execution Time (us)

Category Code Title True False Bytes of Memory
Logical AR2 (AR2 operation) -
(Continued) AND,OR,XOR Scan 1.7 * words - -
ADD,SUB Scan 1.8 * words - -
MUL Scan 2.6 * words - -
DIV Scan 3.4 * words - -
ARC Array Compare - 4.5 186
Single Scan 64.1+ -- -
(Length < 32768)
Single Scan 64.1+ - -
(Length > 32767)
1st Scan Initialization (Length < 32768) 54.8 - -
1st Scan Initialization (Length > 32767) 54.8 - -
2nd through Nth Scan 14.6+ -- -
Compare Scan 0.8 * words -
ASU Array Shift Up 140+ 0.7 * 10.3 33
words
ASD Array Shift Down 14.0 + 0.7 * 10.3 33
words

G-7

G-8

Appendix G
(Continued)

PC3000 Execution Time (us)

Category Code Title True False Bytes of Memory
Shift SL Shift Left 5.8 2.2 19
(Boolean Array) 5.0 + 1.2 * bytes 25 23
SR Shift Right 5.8 22 19
(Boolean Array) 6.2 + 1.2 * bytes 2.5 23
ROL Circular Rotate Bits Left 6.6 21 21
(Boolean Array) 8.8 + 1.5 * bytes 2.4 29
RL Circular Rotate Bits Left 7.1 2.1 21
(Boolean Array) 8.1 + 1.5 * bytes 2.4 29
ROR Circular Rotate Bits Right 6.6 2.1 21
(Boolean Array) 8.2 + 1.4 * bytes 2.4 29
RR Circular Rotate Bits Right 71 21 21
(Boolean Array) 8.8 + 1.4 * bytes 2.4 29

Appendix G

(Continued)

PC3000 Execution Time (us)

Category Code Title True False Bytes of Memory
Control SET Set Event - 2.4 11
JMP Jump 1.9 1.2 9
LBL Label 0.0 0.0 8+name
I/O IOR Input Read 14.8 3.6 28
IOW Output Write 25.6 20.1 34
IN Immediate Input 5.6 2.5 12
ouT Immediate Output 3.5 2.4 12
Program Fixed System Overhead - 80 8,650
Variable Local Boolean 0.0 - 6+name
Local Boolean Array 0.0 - 46+name
Local Integer 0.0 - 124+name
Local Integer Array 0.0 - 46+name + 2*size
Local Double Integer 0.0 - 16+name
Local Double Integer Array 0.0 - 46+name + 4*size
Local Counter or Timer 0.0 - 80+name
Global Boolean - -- 10+name

G-9

Appendix G
(Continued)

PC3000 Execution Time (us)

Category Code Title True False Bytes of Memory
Program Variable (Within Another Variable) 0.0 - 6+name
(Continued) (Continued) ['Gjobal Boolean Array 1.8 + 2.2 * words - 50+name
Global Integer 2.1 - 16+name
(Containing a Boolean) 2.8 - 14+name
Global Integer Array 0.0 - 54+name
Global Double Integer 2.1 - 18+name
(Containing a Boolean) 2.8 - 14+name
Global Double Integer Array 0.0 - 54+name
Global Counter or Timer 7.4 - 74+name

Appendix H

Glossary

Accept: To approve the edit made to an online program. Rungs that have been
added, deleted, or modified must be accepted and verified before they can
be downloaded to a Processor.

Bit-indexed variable: A variable referencing a bit within an integer or double integer
variable. For example, pump.15 references bit 15 within the integer variable
"pump.”

Commit: To allow the Editor to verify and download changes made to an online
program. You must accept online changes before you can commit them. You

can commit online changes immediately after you accept them or while the
program is in Test Mode.

Data Structure: Data structures contain a collection of Boolean and double integer
data and are used for the timer and counter data types.

Element-indexed variable: A variable referencing an element within an array variable.
For example, panel[11] references an element 11 within the array variable
"panel.” An element can be a Boolean, integer, or double integer.

Global Variables: Global variables can be referenced by ladder, Control Block, or
BASIC programs in a rack. Global variables can refer to memory locations,
physical I/O locations, or network locations. Global memory variables can be
of any data type supported by the Editor. If you type in the first letter of a
variable using upper case, the default scope will be global. The names of
global variables appear in upper case.

Local Variables: Local variables are those that can only be used in the program in
which they are defined. No other programs can reference them. If you type in
the first letter of a variable name using lower case, the default scope will be
local. The names of local variables appear in lower case.

H-1

H-2

Match:

Path:

Pause:

As applied to the Resolve Variable Descriptions command, a global variable
in a ladder program that uses the same name as one in the Variable
Configurator.

For example, the Editor would determine that a global variable called
PUMP_STATUS used in a ladder program is a match to a global variable
called PUMP_STATUS present in the Variable Configurator.

The data type of a variable is not a factor when determining whether the
global variables match.

The directory structure used by the AutoMax Executive is:
drive:\library\system\rack

where:
drive is the personal computer hard drive where the Executive is stored
library | is the base directory under which all the AutoMax systems are
stored
system | is the subdirectory where the system database files are stored
rack is the subdirectory where all the rack database files and all
programs for the rack are stored

The default drive and library name are specified as part of the Setup
procedure for the AutoMax Programming Executive software. If you want to
create a new library or change the default (selected) library or drive, you
must use the Setup procedure.

Places the Editor in the Paused state so that you can use the Online Task
Manager. The programs continue to run in the Processor, but their display in
a program window is not updated.

Program: Task. In the Editor, the terms “program” and “task” are synonymous.

Rung status area: The gray-shaded area left of the power rail. When rung numbers,
revision marks, or set triggers are displayed, they are located here.

Test Mode: Lets you actively execute rungs, but the changes made to the online
program are not permanently installed in the Processor.

Trigger: A trigger is a way to capture or freeze a rung’s status while monitoring the
program. Once a trigger is set, the rung’s status stays frozen on the
programming terminal, but the rung continues to run on the CPU.

H-3

A

About the State of the Unary Array, Multi-Array, and Array Compare
Instruction Outputs Under Various Input Conditions, 10-36

ABS
Absolute (ABS) Instruction
Defined, 5-2
Errors, 5-32, 5-33
Example, 5-4
Inputs, 5-3
Outputs, 5-4
ADD, 5-5
Add Instruction
Defined, 5-5
Errors, 5-32, 5-33
Example, 5-8
Inputs, 5-6
Outputs, 5-7
AFl, 1-12
Always False (AFl)Instruction
Defined, 1-12
Errors, 1-16
Example, 1-12
Always True (ATI) Instruction
Defined, 1-12
Errors, 1-16
Example, 1-11
AND, 4-21
AR1, 10-5
AR2, 10-12

ARC, 10-20

Array, A-13
Initialization, A-19
Array Compare (ARC) Instruction
Defined, 10-20
Errors, 10-41
Example. 10-27
Inputs. 10-22
Outputs, 10-26

Array Instructions, 10-1

Array Shift Down (ASD) Instruction
Defined, 10-32
Errors, 10-42
Example, 10-35
Inputs, 10-33
Outputs, 10-34

Array Shift Up (ASU) Instruction
Defined, 10-28
Error, 10-42
Example, 10-31
Inputs, 10-29
Outputs, 10-30

ASD, 10-32

ASU, 10-28
AT, 1-11

Index-1

BASIC programs, B-1, C-1
BCD_TO, 17-6
Bit-indexing, A-10
Boolean, A-2

C

Changing a Preset by Using Ladder Logic
Counter, 2-6
Timer, 3-19

Circular Rotate Bits Left (ROL) Instruction
Defined, 9-7
Errors, 9-27, 9-28
Example, 9-10
Inputs, 9-8
Outputs, 19-9

Circular Rotate Bits Left on Transition (RL) Instruction
Defined, 9-11
Errors, 9-27, 9-28
Example, 9-14
Inputs, 9-12
Outputs, 9-13

Circular Rotate Bits Right (ROR) Instruction
Defined, 9-19
Errors, 9-27, 9-28
Example, 9-22
Inputs, 9-20
Outputs, 9-21

Circular Rotate Bits Right on Transition (RR) Instruction
Defined, 9-23
Errors, 9-27, 9-28
Example, 9-26
Inputs, 9-24
Outputs, 9-25
Coil (CO) Instruction
Defined, 1-13
Errors, 1-16
Example, 1-13
Common Variables, See Global Variables
Compare Instructions, 4-1
Compute Instructions, 5-1
Constants, A-15
Convert From BCD to Integer Data (BCD_TO) Instruction
Defined, 7-6
Errors, 7-10, 7-12
Example, 7-9
Inputs, 7-7
Outputs, 7-8
Convert Integer Data to BCD (TO_BCD) Instruction
Defined, 7-2
Errors, 7-10, 7-11
Example, 7-5
Inputs, 7-3
Outputs, 7-4

CO, 1-13
Counter Instruction, 2-1

Counter Variables, A-8 E
Initialization, A-19
Using in BASIC programs, C-1

Count Up Down Instruction

Element-indexing, A-10
Error Code Cross-Reference, E-1

Defined, 2-2 .)
Example, 2-5 Error Handling Varlablles, D—2.
Inputs, 2-3 Errors, caused by an instruction
Outputs, 2-4 ABS, 5-32, 5-33
ADD, 5-32, 5-33
AFI, 1-16
CTUD, 2-2 AND. 6-14
AR1, 10-37
D AR2, 10-39
ARC, 10-41
Data Conversion Instructions, 7-1 ﬁga 110(;4422
Data Structure, A-1 ATI, 116
Defining a Mask, 8-2 BCD_TO, 7-10, 7-12
Defining the amount of I/O Data to CO, 1-16
Read, 12-6 DIV, 5-32, 5-34
Write, 12-11 gg :3:
Determining the Number of Elements on Which To Operate, 10-3 GT,’4-34
DIV, 5-9 IOR, 12-14
Divide (DIV) Instruction IOW, 12-14
Defined, 5-9 JMP, 11-7
Errors, 5-32, 5-34 LBL, 11-7
Example, 5-12 LE, 4-34
Inputs, 5-10 LIMIT, 4-34
Outputs, 5-11 LT, 4-34
Double | A MDV, 5-32, 5-34
ouble Integer, A-4 MOD, 5-32, 5.34

MOVE, 8-14, 8-15

Index-3

Index-4

MSK, 8-14
MVB, 8-14, 8-16
MVM, 8-14

NCI, 1-16

NE, 4-34

NEG, 5-32, 5-36
NOI, 1-16

NOT, 6-14

NTI. 1-16

PTI, 1-16

OR, 6-14

PTI, 1-16

RCO. 1-16

RL, 9-27, 9-28
ROL, 9-27, 9-28
ROR, 9-27, 9-28
RR, 9-27, 9-28
SCO, 1-16

SL, 9-27

SR, 9-27

SQRT, 5-32, 5-37
SUB, 5-32, 5-38
TO_BCD, 7-10, 7-11
XOR, 6-14

EQ, 4-2

Equal To (EQ) Instruction

Defined, 4-2
Errors, 4-34
Example, 4-5
Inputs, 4-3
Outputs, 4-4

Example, instruction
ABS, 5-4
ADD, 5-8
AFI, 1-12
AND, 6-4
AR1. 10-11
AR2, 10-19
ARC, 10-27
ASD, 10-35
ASU, 10-31
ATI, 1-11
BCD_TO, 7-9
CO, 10-13
CTUD, 2-5
DIV, 5-12
EQ, 4-5
GE, 4-9
GT, 4-13
IN, 13-4
IOR, 12-7
I0OW, 12-12
JMP, 11-6
LBL, 11-6
LE, 4-17
LIMIT, 4-25
LT, 4-21
MDV, 5-22
MOD, 5-15
MOVE, 8-5
MSK, 4-29
MUL, 5-18
MVB, 8-9
MVM, 8-13

NCI, 1-3
NE, 4-33
NEG, 5-24
NOI, 5-24
NOT, 1-2
NTI, 6-7
OR, 6-10
OUT, 13-6
PTI, 1-4
RCO, 1-15
RL, 9-14
ROL, 9-10
ROR, 9-22
RR, 9-26
RTO, 3-7
SCO,1-14
SET, 11-4
SL, 9-6
SR, 9-18
SQRT, 5-28
SUB, 5-31
TO_BCD, 7-5
TOF, 3-7
TON, 3-15
TR 3-19
XOR, 6-13

Execution Time,

Per Instruction, F-1
Variables, D-4

G

GE,4-6
Global variables, A-12

Greater Than (GT) Instruction
Defined, 4-10
Errors. 4-34
Example, 4-13
Inputs, 4-11
Outputs, 4-12
Greater Than or Equal To (GE) Instruction
Defined, 4-6
Errors, 4-34
Example, 4-9
Inputs, 4-7
Outputs, 4-8
GT, 4-10
Guidelines for Programming Timer Instructions, 3-2

H

Hexadecimal constants, entering, A-15
How Array Instructions Execute, 10-4
How the AR1, AR2, and ARC Instructions Operate, 10-2

Index-5

Index-6

How Timer Instructions Operate, 3-1

Immediate Input and Output Instructions, 13-1

Immediate Input (IN) Instruction
Defined, 13-2
Example, 13-4
Inputs, 13-3
Outputs, 13-4
Immediate Output (OUT) Instruction
Defined, 13-5
Example, 13-6
Inputs, 13-5
Outputs, 13-6
IN, 13-2
Initialization, A-15
Defining Type, A-20
Initial Value, defining, A-21
Instruction Memory Usage, F-1
Integer, A-4
I/0 Read and Write Instructions, 12-1

I/0 Read (IOR) Instruction
Defined, 12-2
Errors, 12-14
Example, 12-7
Inputs, 12-3
Outputs, 12-4

I/O Write (IOW) Instruction

Defined, 12-8

Errors, 12-14

Example, 12-12

Inputs, 12-9

Outputs, 12-10
IOR, 12-2

IOW, 12-8

J

JMP, 11-5

Jump (JMP) Instruction
Defined, 11-5
Errors, 11-7
Example, 11-6

K

L

Label (Instruction)
Defined, 11-5
Errors, 11-7
Example, 11-6

LBL, 11-5
LE, 14-4
Leading zeros, A-15

Less Than (LT) Instruction
Defined, 4-18
Errors, 4-34
Example, 4-21
Inputs, 4-19
Outputs, 4-20

Less Than or Equal (LE) Instruction
Defined, 4-14
Errors, 4-34
Example, 4-17
Inputs. 4-15
Outputs, 4-16

LIMIT, 4-22

Limit (LIMIT) Instruction,
Defined, 4-21
Errors, 4-34
Example, 4-25
Inputs. 4-23
Outputs, 4-24

Listing of Base Addresses for Each Supported Slot in the AutoMax
Chassis, 12-13

Local variables, A-11

Logical AND Instruction
Defined, 6-2
Errors, 6-14
Example, 6-4
Inputs, 6-3
Outputs, 6-3

Logical Instructions, 6-1

Logical Exclusive OR (XOR) Instruction
Defined, 6-11
Errors, 6-14
Example, 6-13
Inputs, 6-12
Outputs, 6-12

Logical NOT (NOT) Instruction
Defined, 6-5
Errors, 6-4
Example, 6-7
Inputs, 6-6
Outputs, 6-6

Logical Or (OR) Instruction
Defined, 6-8
Errors, 6-14
Example, 6-10
Inputs, 6-9
Outputs, 6-9

Index-7

Index-8

LT, 4-18

Mask Compare (MSK) Instruction
Defined, 4-26
Errors, 8-14
Example, 4-29
Inputs, 4-27
Outputs, 4-28

Mask Move (MVM) Instruction
Defined, 8-10
Errors, 8-14
Example, 8-13
Inputs, 8-11
Outputs, 8-12

MDV, 5-19

MOD, 5-12

Modulo (MOD) Instruction
Defined, 5-12
Errors. 5-32, 5-34
Example. 5-15
Inputs, 5-13
Outputs, 5-104

MOVE, 8-2

Move Bits Between Integers/Double Integers (MVB) Instruction
Defined, 8-6
Errors, 8-14, 8-16
Example, 8-9

Inputs, 8-7
Outputs, 8-8

Move Instructions, 8-1

Move Source Data to Destination Data (MOVE) Instruction
Defined, 8-2
Errors, 8-14, 8-15
Example, 8-5
Inputs, 8-3
Outputs, 8-4

MSK, 4-26
MUL, 5-15

Multi-Array (AR2) Instruction
Defined, 10-12
Errors, 10-39
Example, 10-19
Inputs, 10-14
Outputs, 10-18

Multiply Divide (MDV) Instruction
Defined, 5-19
Errors, 5-32, 5-34
Example, 5-22
Inputs, 5-20
Outputs, 5-21

Multiply (MUL) Instruction
Defined, 5-15
Errors, 5-32, 5-35
Example, 5-18
Inputs, 5-16
Outputs, 5-17

MVB, 8-6
MVM, 8-10

N

NE, 4-30
NEG, 5-22

Negate (NEG) Instruction
Defined, 5-22
Errors, 5-32, 5-36
Example, 5-24
Inputs, 5-23
Outputs, 5-24
Negative Transition (NTI) Contact
Defined, 1-5
Errors, 1-16
Example, 1-5
See Using Transition Contacts
NOI, 1-1
No Initialization Method, A-16

Normally Closed (NCI) Contact
Defined, 1-3
Errors, 1-16
Example, 1-3

Normally Open (NOI) Contact
Defined, 1-2
Errors, 1-16
Example, 1-2

NOT
Not Equal To (NE) Instruction
Defined, 9-30
Errors. 4-34
Example, 4-33
Inputs, 4-31
Outputs, 4-32
NTI, 1-5
OR, 6-8
OUT, 13-5

P

Pre-defined (Reserved) Ladder Language Variables, D-1

Positive Transition (PTI) Contact
Defined, 1-4
Errors, 1-16
Example, 1-4
See Using Transition Contacts

Program Control Instructions, 11-1
PTI, 1-4

Index-9

Q

quotient, 5-9, 5-19

R

RCO, 1-15
Relay Instructions, 1-1

Reset (Unlatch) Coil (RCO)
Defined, 1-15
Errors, 1-16
Example, 1-15

Resetting a counter, 2-5
Retained Value Initialization, A-18
Retentive Timer On (RTO) Instruction
Defined, 3-3
Example, 3-7
Inputs, 3-4
Outputs, 3-5
Timing Diagram, 3—6
RL, 9-11
ROL, 9-7
ROR, 9-19
Rotating Bits Within Boolean Arrays, 9-2
RR, 9-23
RTO, 3-3

S

Scan Variables, D-2

SCO, 1-14

Scope, A-11

SET, 11-2

Set Event (SET) Instruction
Defined, 11-2
Example, 11-4
Inputs, 11-3
Outputs, 11-3

Set (Latch) Coil (SCO)
Defined, 1-14
Errors, 1-16
Example, 1-14

Shift Instructions, 9-1

Shift Left (SL) Instruction
Defined, 9-3
Errors, 9-27
Example, 9-6
Inputs, 9-4
Outputs, 9-5

Shift Right (SR) Instruction
Defined, 9-15
Errors, 9-27
Example, 9-18
Inputs, 9-16
Outputs, 9-17

Simple Variables, A-1

SL, 9-3
SR, 9-15
SQRT, 5-25

Square Root (SQRT) Instruction
Defined, 5-25
Errors, 5-32, 5-37
Example, 5-28
Inputs, 5-26
Outputs, 5-27

SUB, 5-28

Subtract (SUB) Instruction
Defined, 5-28
Errors, 5-32, 5-38
Example, 5-31
Inputs, 5-29
Outputs, 5-30

—~

Timer Instructions, 3-1

Timer Off Delay (TOF) Instruction
Defined, 3-7
Example, 3-11
Inputs. 3-8
Outputs, 3-9
Timing Diagram, 3-10

Timer On Delay (TON) Instruction
Defined, 3-7
Example, 3-11

Inputs, 3-8
Outputs, 3-9
Timing Diagram, 3-10
Timer Pulse (TP) Instruction
Defined, 3-15
Example, 3-19
Inputs, 3-16
Outputs, 3-17
Timing Diagram, 3-18
Timer Variables, A-6
Initialization, A-19
Using in BASIC programs, B-1
TO_BCD, 7-2
TOF, 3-7
TON, 3-11
TR 3-15

U

Unary Array (AR1) Instruction
Defined, 10-5
Errors, 10-37
Example, 10-11
Inputs, 10-6
Outputs, 10-9
User Specified Initialization, A-18
Using a Variable on a Set (SCO) and Reset Coil (RCO) Pair and on a
Transition Contact, 1-9

Using JMP and LBL Instructions To Skip Portions of Ladder Logic, 11-1

Index-11

Using Transition Contacts, 1-6
in a Program with a Jump and Label Construct, 1-10

'}

Variables, A-1
Pre-defined, D-1

w
X

XOR, 6-11

Y
Z

Index-12

For additional information

1 Allen-Bradley Drive

Mayfield Heights, Ohio 44124 USA
Tel: (800) 241-2886 or (440) 646-3599
http://www.reliance.com/automax

www.rockwellautomation.com

Corporate Headquarters
Rockwell Automation, 777 East Wisconsin Avenue, Suite 1400, Milwaukee, WI, 53202-5302 USA, Tel: (1) 414.212.5200, Fax: (1) 414.212.5201

Headgquarters for Allen-Bradley Products, Rockwell Software Products and Global Manufacturing Solutions

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, W1 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444

Europe/Middle East/Africa: Rockwell Automation SA/NV, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640
Asia Pacific: Rockwell Automation, 27/F Citicorp Centre, 18 Whitfield Road, Causeway Bay, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Headquarters for Dodge and Reliance Electric Products

Americas: Rockwell Automation, 6040 Ponders Court, Greenville, SC 29615-4617 USA, Tel: (1) 864.297.4800, Fax: (1) 864.281.2433
Europe/Middle East/Africa: Rockwell Automation, BriihlstraRe 22, D-74834 Elztal-Dallau, Germany, Tel: (49) 6261 9410, Fax: (49) 6261 17741
Asia Pacific: Rockwell Automation, 55 Newton Road, #11-01/02 Revenue House, Singapore 307987, Tel: (65) 6356-9077, Fax: (65) 6356-9011

Publication J2-3094-4 - April 1998 Copyright © 2002 Rockwell Automation, Inc.. All rights reserved. Printed in U.S.A.

	J2-3094-4, AutoMax Enhanced Ladder Language Installation Instructions
	Table of Contents
	1.0 - Relay Instructions
	1.1 Normally Open Contact (NOI)
	1.2 Normally Closed Contact (NCI)
	1.3 Positive Transition Contact (PTI)
	1.4 Negative Transition Contact (NTI)
	1.5 Using Transition Contacts
	1.6 Always True Contact (ATI)
	1.7 Always False Contact (AFI
	1.8 Coil (CO)
	1.9 Set (Latch) Coil (SCO)
	1.10 Reset (Unlatch) Coil (RCO)
	1.11 Errors Caused by the Relay Instructions

	2.0 - Counter Instruction
	2.1 Count Up Down (CTUD)
	2.2 Resetting a Counter
	2.3 Changing the Preset Value of a Customer Instruction by Using Ladder Logic

	3.0 - Timer Instructions
	3.1 Retentive Timer On (RTO)
	3.2 Timer Off Delay (TOF)
	3.3 Timer On Delay (TON)
	3.4 Timer Pulse (TP)
	3.5 Changing the Preset Value of a Timer Instruction by Using Ladder Logic

	4.0 - Compare Instructions
	4.1 Euqal To (EQ)
	4.2 Greater Than Or Equal To (GE)
	4.3 Greater Than (GT)
	4.4 Less Than or Equal To (LE)
	4.5 Less Than (LT)
	4.6 Limit (LIMIT)
	4.7 Mask Compare (MSK)
	4.8 Not Equal To (NE)
	4.9 Errors Caused by Compare Instructions

	5.0 - Compute Instructions
	5.1 Absolute Value (ABS)
	5.2 Add (ADD)
	5.3 Divide (DIV)
	5.4 Modulo (MOD)
	5.5 Multiply (MUL)
	5.6 Multiply Divide (MDV)
	5.7 Negate (NEG)
	5.8 Square Root (SQRT)
	5.9 Subtract (SUB)
	5.10 Errors Caused by the Compute Instructions

	6.0 - Logical Instructions
	6.1 Logical And (AND)
	6.2 Logical Not (NOT)
	6.3 Logical Or (OR)
	6.4 Logical Exclusive Or (XOR)
	6.5 Errors Caused by Logical Instructions

	7.0 - Data Conversion Instructions
	7.1 Convert Integer Data to BCD (TO_BCD)
	7.2 Convert From BCD to Integer Data (BCD_TO)
	7.3 Errors Caused by the Data Conversion Instructions

	8.0 - Move Instructions
	8.1 Move Source Data to Destination (MOVE)
	8.2 Move Bits Between Integers/Double Integers (MVB)
	8.3 Masked Move (MVM)
	8.4 Errors Caused by Move Instructions

	9.0 - Shift Register Instructions
	9.1 Shift Left (SL)
	9.2 Circular Rotate Bits Left (ROL)
	9.3 Circular Rotate Bits Left on Transition (RL)
	9.4 Shift Right (SR)
	9.5 Circular Rotate Bits Right (ROR)
	9.6 Circular Rotate Bits Right on Transition (RR)
	9.7 Errors Caused by Shift Register Instructions

	10.0 - Array Instructions
	10.1 Unary Array Instruction (AR1)
	10.2 Multi-Array Instruction (AR2)
	10.3 Array Compare (ARC)
	10.4 Array Shift Up (ASU)
	10.5 Array Shift Down (ASD)
	10.6 About the State of the Unary Array, Multi-Array, and Array Compare Instruction Outputs
	10.7 Errors Caused by Array Instructions

	11.0 - Program Control Instructions
	11.1 Set Event (SET)
	11.2 Jump (JMP)
	11.3 Label (LBL)
	11.4 Example of Using the Jump and Label Instruction
	11.5 The Error Caused by the Jump Instruction

	12.0 - I/O Read and Write Instructions
	12.1 I/O Read (IOR)
	12.2 I/O Write (IOW)
	12.3 Listing of Base Addresses for Each Supported Slot in the AutoMax Chassis
	12.4 Errors Caused by the I/O Read and I/O Write Instructions

	13.0 - Immediate Input and Output Instructions
	13.1 Immediate Input (IN)
	13.2 Immediate Output (OUT)

	A - Using Variables
	A.1 Data Types
	A.2 Accessing Data Within Variables Via Bit-Indexing and Element-Indexing
	A.3 Global and Local Variables (Scope)
	A.4 Arrays
	A.5 Constants
	A.6 About Initializing Variables

	B - Using Timer Variables in BASIC Programs
	C - Using Counter Variables in BASIC Programs
	D - Using the Pre-Defined (Reserved) Ladder Language Variables
	D.1 Using the Pre-Defined Program Scan Variables
	D.2 Using the Pre-Defined Error Handling Variables
	D.3 Using the Pre-Defined Ladder Execution Time Variables

	E - Ladder Instruction Error Code Cross-Reference
	E.1 Error Codes 3001-3010
	E.2 Error Codes 3011-3020
	E.3 Error Codes 3021-3030
	E.4 Error Codes 3031-3035

	F - AutoMax Enhanced Ladder Language Execution Times
	G - AutoMax Ladder Language Execution Times
	H - Glossary
	Index
	Back Cover

