Ethernet Network
Interface Module

M/N 57C440A

Instruction Manual J-3696-2

RELIANCE'.
ELECTRICH[]

The information in this user's manual is subject to change without notice.

ONLY QUALIFIED ELECTRICAL PERSONNEL FAMILIAR WITH THE
CONSTRUCTION AND OPERATION OF THIS EQUIPMENT AND THE HAZARDS
INVOLVED SHOULD INSTALL, ADJUST, OPERATE AND/OR SERVICE THIS
EQUIPMENT. READ AND UNDERSTAND THIS MANUAL AND OTHER
APPLICABLE MANUALS IN ITS ENTIRETY BEFORE PROCEEDING. FAILURETO
OBSERVE THIS PRECAUTION COULD RESULT IN BODILY INJURY.

CAUTION: This module contains static-sensitive components. Careless handling can
cause severe damage. Do not touch the connectors on the back of the module. When
not in use, the module should be stored in an anti-static bag. Failure to observe these
precautions could result in damage to or destruction of the equipment.

Motorola™ 68010 is a trademark of Motorola, Inc.

IBM PC™ is a trademark of International Business Machines, Inc.

VAX™ and DECnet™ are trademarks of Digital Equipment Corporation.

Xerox™ and Ethernet™ are trademarks of Xerox Corporation.

UNIX™ is a trademark of AT&T Bell Laboratories.

ReSource™ is a trademark of Reliance Electric Company or its subsidiaries.

Reliance® and AutoMax® are registered trademarks of Reliance Electric Company or its
subsidiaries.

Portions of this work are derived from a copyrighted work of Rockwell International, CMC
subsidiary.

1.0

2.0

3.0

4.0

Table of Contents

Introductiono e i aaaenn
R T = o =
1.1.1 Application Task Interface
1.1.2 Communication Protocolsco....
1.1.21 TCPProtocol ...
1.1.22 UDPProtocol.......cooiivi i
1.1.2.3 Raw Ethernet Protocol
1.1.3 |EEE 802.3/EthernetProtocol
1.1.4 [EEE 802.3/Ethernet Physical Layer...................
1.2 Additional Information il
1.3 Related Hardwareand Software

Mechanical/Electrical Descriptionke.
2.1 Mechanical Description ...
2.2 Electrical Description i
2.3 TransceiverInterface ...

Installationccoimiii e
3.1 Hardware Configuration,
3.2 Rack Configurationcooiiiiiiiiii i
3.3 ENllInstallation o i
3.4 Module Replacement..........,

Programmingcciiiiiinnnnnariaaanannerannnannns
41 Introduction
4.2 Programming OVerviewc.coiiiiiiiineninnennnn.
4.21 Card Initializationc i
4.2.2 Creation and Binding of Sockets
4.3.3 Establishinga Connection
424 DataTransfer ...t
4241 SendingDataciiiiiiiian

4.24.2 ReceivingDataol

4.25 SupportFunctions
426 ClosingSockets i
4.2.7 Sample Programsot
4271 TCP Sample Program

4.2.7.2 UDP Sample Program

4.2.7.3 Raw Ethernet Sample Program

4.3 RawEthermnetNotes it
4.3.1 EthernetFrame Format,

44 DataFormats............iiiii
441 Booleansi i
442 Integersot
4.43 Doublelntegers............oooiiiiiiiiiii i
444 Realso
445 SUINGS ... s

4.5 Use of Hardware Interrupts in Racks Containing Ethernet

orNetwork Modulest 4-14
4.5.1 Examples of Interrupt Line Allocation 4-15
4.5.2 Examples of Interrupt Allocation with Ethernet
or Network Modulesinthe Rack 417
4.6 FUNCHONSoiii i et ettt iinans 4-19
4.6.1 ENLINIT% Function ...t 4-20
46.2SOCKET% Function oo, 4-21
463 BIND%Function i 4-22
4.6.4 CONNECT% Functioncciiiineinnnn.. 4-23
4.6.5 ACCEPT% Functioncoiiiiiiiinennnnn.. 4-24
46.6 SEND% Function ..., 4-25
4.6.7 SENDL% Functionccoiiiiiiiiiiaennn.. 4-26
46.8 RECV% Functionccoiiiiiiiiiiinennnnn.s 4-28
46.9RECVL% Function ...ttt 4-29
4.6.10SETSOCKOPT% Functionc.coovunan.. 4-31
4.6.11 GETSOCKOPT% Function...............ccccvvann.. 4-32
4.6.12SHUTDOWN% Functioncccievinnn.. 4-33
46.13READVAR% Functionccoiiineiinan.. 4-34
4.6.14WRITEVAR% Functiono, 4-35
46.16FINDVAR! Functionot 4-36
4.6.16 CONVERT% Functionccciieiiieennnnn.. 4-37

5.0 Diagnostics and Troubleshootingccvvitt 5-1

Appendices

Appendix A
Technical Specifications
Appendix B
Connecting the ENI to the Transceiver
Appendix C
ErrorCode Summaryo e
Appendix D
Glossary

List of Figures

Figure 1.1 - ENIModelccoiiiiii e 1-2
Figure 2.1 - ModuleFaceplatet 22
Figure 2.2 - Block Diagram ...t 2-3
Figure 2.3 - Transceiver Connectionscooiiiinn, 2-4
Figure 3.1 - Setting Jumper for Logical Slot Location 3-2
Figure B-1 - Transceiver Cable Pin Connections B-1

1.0

1.1

INTRODUCTION

The products described in this manual are manufactured or
distributed by Reliance Electric Industrial Company.

This manual describes the Reliance AutoMax TCP/IP Ethernet
networking package. It gives AutoMax™ processors access to TCP/IP
Ethernet™ local area networks. The package consists of the AutoMax
Ethernet Network Interface (ENI) module and software. Cabling is
provided by the user.

The ENI module is a high performance communication processor
which provides the physical interface and communication intelligence
necessary to connect AutoMax processors to TCP/IP Ethernet local
area networks (LANs). The physical interface complies with Ethernet
2.0 and IEEE 802.3 standards. Communication is implemented with
the TCP/IP network protocol, which is an internationally-recognized
industry standard for computer networking.

The ENI software is incorporated in the AutoMax Programming
Executive (Version 2.1 and later). It provides the application task
interface to the ENI module. The interface is implemented as a set of
functions in AutoMax BASIC that are modeled after the UNIX
SOCKETS library.

The ENI module can be used only in racks on which the AutoMax
operating system with the Ethernet option has been loaded. See the
AutoMax Programming Executive instruction manual (J-3684) for
information on loading the AutoMax operating system with the
Ethernet option.

This manual describes the ENI module, ENI software, ENI module
installation, diagnostics, and troubleshooting instructions. A glossary
of terms is provided in Appendix D.

Overview

The AutoMax TCP/IP Ethernet interface provides a reliable and
powerful network interface supporting communication between
application tasks residing in remote AutoMax processors and/or host
computers. A model of the interface is shown in figure 1.1. The
components of the model are described below.

1-1

AutoMax
or

AutoMax Host Computer
Application Task Application Task
Application Task Application Task
Interface Interface
Tcp | upbp Tce | uop
Protocols Protocols
Y { i {

|EEE 802.3/Ethernet IEEE 802.3/Ethernet
Protocol and Protocol and
Physical Layer Physical Layer

Y Y

Medium Attachment Medium Attachment
Unit (transceiver, Unit (transceiver,
modem) modem)
[[
cable

1.1.1

Figure 1.1 - ENI Model

The network interface is modeled as a set of communication protocol
layers located one above the other.

Application Task Interface

The Application Task Interface (ATI) is a set of function calls in
AutoMax BASIC that support the remote task-to-task communication
function. The ATI provides a choice of three types of communication
services to implement this function. These services are called TCR,
UDR and raw Ethernet. Up to 64 sockets can be created on each
ENI, and any one of the three services can be assigned to a socket.
Multiple tasks can be handled by the ENI, but the tasks must all
reside in the left-most processor in the rack since the ENI
communicates only with the left-most processor.

1.1.2.1

1.1.2.2

The ENI module transmits and receives at 10 Mbits per second. The
actual speed at which data can be moved from one station to another
is a function of the protocol used, how fast the AutoMax processor
can give a message to the ENI module, and the speed of the host at
the other station. Of the three protocols supported, TCP has the most
overhead and raw Ethernet has the least overhead.

Communication Protocols

Three communication protocols are available. Transmission Control
Protocol (TCP) provides a reliable communication channel between
two tasks. User Datagram Protocol (UDP) is less reliable than TCR,
but it is faster. Raw Ethernet does not use upper layer protocols. It
provides the least features, but the fastest data throughput.

TCP Protocol

The Transmission Control Protocol (TCP) provides a reliable
communication channel (also called a virtual circuit) between two
tasks, allowing bidirectional data streams. TCP handles making,
controlling, and closing virtual connections between remote
application tasks. It guarantees that data is ordered correctly, detects
missing data and directs its retransmission, and provides flow control
to ensure that the AutoMax processor receives no more data than it
can process.

The maximum size of a data packet in the TCP protocol is 1460
bytes. When continuously sending a message of this length from one
AutoMax rack to another, the average rate at which data is moved is
586 KBits/sec. The CPU utilization of the AutoMax Processor (M/N
57C430A) is 31% on the sending end and 10% on the receiving end.

The TCP protocol provides a means of slowing down the sending
Processor if the receiving Processor cannot keep up. Therefors, it is
possible to do a SEND% with a length greater than 1460 bytes. The
data to be sent is broken down into multiple packets by the ENI
module. This requires less overhead in the AutoMax processor per
SEND%. If an array of 14600 bytes is sent, the average rate at which
data is moved is 1.08 MBits/sec. The CPU utilization of the AutoMax
Processor (M/N 57C430A) is 62% on the sending end and 25% on
the receiving end.

UDP Protocol

The UDP service is based on the User Datagram Protocol (UDP).
This is a simple Internet Protocol-based datagram protocol whose
reliability depends on the network integrity. The UDP service is much
less reliable than the TCP and can be used when speed rather than
accuracy is paramount.

The maximum size of a packet in the UDP protocol is 1472 data
bytes. When continuously sending a message of this length from one
AutoMax rack to another, the average rate at which data is moved is
878 KBits/sec. The CPU utilization of the AutoMax Processor (M/N
57C430A) is 54% on the sending end and 21% on the receiving end.

1-3

1.1.23

11.4

1.2

Raw Ethernet Protocol

The Raw Ethernet service provides communication over an Ethernet
or |EEE 802.3 network without any use of the upper layer protocols. It
can be used when maximum throughput and minimum reliability are
required. When raw Ethernet is used, the ENI can transmit broadcast
messages to other stations as well as receive messages that were
broadcast from other stations.

The maximum size of a packet in the raw Ethernet protocol is 1500
data bytes. When continuously sending a message of this length
from one AutoMax rack to another, the average rate at which data is
moved is 1.08 MBits/sec. The CPU utilization of the AutoMax
Processor (M/N 57C430A) is 69% on the sending end and 28% on
the receiving end.

IEEE 802.3/Ethernet Protocol

The IEEE 802.3/Ethernet Protocol controls the access to the
communication medium. The protocol supports the media access
method called CSMA/CD, which stands for Carrier Sense Multiple
Access with Collision Detection.

IEEE 802.3/Ethernet Physical Layer

The IEEE 802.3/Ethernet Physical Layer supports a data
transmission rate of 10 Mbps. The ENI module supports what is
called the Medium Attachment Unit interface specified in the IEEE
802.3/Ethernet standard. (The ANSI/IEEE 802.3 standard is the same
as the international standard SO 8802-3.)

The ENI module will work with various IEEE 802.3 and Ethernet
compatible medium attachment units including thick and thin wire
Ethernet transceivers and fiber optic and broadband modems.
Selection of medium attachment units and the corresponding
communication medium is left to the system integrator.

Additional Information

You must be familiar with all the instruction manuals that describe
your system configuration. This may include, but is not [imited to, the
following:

e J-3618 NORTON EDITOR INSTRUCTION MANUAL

e J-3630 ReSource AutoMax PROGRAMMING EXECUTIVE
INSTRUCTION MANUAL

e J-3649 AutoMax CONFIGURATION TASK MANUAL

e J-3650 AutoMax PROCESSOR MODULE
INSTRUCTION MANUAL

e J-3670 AutoMax POWER SUPPLY MODULE and RACKS
INSTRUCTION MANUAL

e J-3675 AutoMax ENHANCED BASIC LANGUAGE
INSTRUCTION MANUAL

o J-3682 ReSource AutoMax SOFTWARE LOADING
INSTRUCTIONS VERSION 2.0

1.3

J-3683 ReSource AutoMax UPDATE LOADING
INSTRUCTIONS VERSION 2.0

J-3684 ReSource AutoMax PROGRAMMING EXECUTIVE
INSTRUCTION MANUAL VERSION 2.0

J-3750 ReSource AutoMax PROGRAMMING EXECUTIVE
INSTRUCTION MANUAL VERSION 3.0

For a detailed discussion of 4.2/4.3BSD UNIX interprocess
communications, refer to the following documents:

An Introductory 4.3BSD Interprocess Communication Tutorial,
Stuart Sechrest, Department of Electrical Engineering and
Computer Science, University of California, Berkeley.

An Advanced 4.3BSD Interprocess Communication Tutorial, Leffler,
Fabry, Joy, and Lapsley, Department of Electrical Engineering and
Computer Science, University of California Berkeley.

ANSI/IEEE Std 802.3, The Institute of Electrical and Electronics
Engineers, Inc, New York, 1989.

Related Hardware and Software

M/N 57C440A contains one Ethernet Network Interface Module. The
module is used with the following hardware and software.

The following equipment, purchased separately, can be used with
the Ethernet module:

1.
2.

M/N 57C385 - DCS5000/AutoMax Power Supply Module

M/N 57C430A, - AutoMax Processor Module
57C431, 57C435

Various Model - ReSource AutoMax Programming Executive
Numbers Version 2.1 or later

1-5

2.0

2.1

MECHANICAL/ELECTRICAL
DESCRIPTION

The following is a description of the mechanical and electrical
characteristics of the Ethernet Network Interface module.

Mechanical Description

The Ethernet Network Interface (ENI) module is a printed circuit
board assembly that plugs into the backplane of the DCS/AutoMax
rack. It consists of the printed circuit board, a faceplate, and a
protective enclosure. The faceplate contains tabs at the top and
bottom to simplify removing the module from the rack. The enclosure
has an opening through which a jumper can be set during
installation. On the back of the module are two edge connectors that
connect to the system backplane. Module dimensions are listed in
Appendix A.

The faceplate of the module contains a 15-pin D-type connector that
is used to connect the ENI to the transceiver cable. The connector is
female, with a slide latch assembly. It conforms to the IEEE Standard
802.3 electrical interface requirements. Refer to section 2.3 and
Appendix B for additional information. A green status LED is located
just below the connector. Upon power-up or system reset, a series of
ROM-based tests are performed to verify proper function of the
printed circuit board. When the tests are completed, the LED should
light, indicating that the board is operational.

2-1

(|

Ethernet
Interface
57C440A

0000000

-]
o
o
o
o
o
o
-]

Dok

AELIANCE]
ELECTRICE]]

2

2-2

Figure 2.1- Module Faceplate

2.2 Electrical Description
The ENI module contains a 10 Mhz MC68010 microprocessor that
performs supervisory functions using a VLSI local area network
controller for Ethernet. Memory consists of a 512 X 4-bit PROM which
contains a unique 48-bit Ethernet address, two 64K X 8 EPROMs
which control and monitor the hardware features of the ENI, and
512K bytes of Dynamic Random Access Memory (DRAM). 128K
bytes of this memory is accessible from Multibus. The module has a
Multibus interface and the signaling and timing utilities required to
maintain communications. If loss of power occurs, communications
will be lost. The ENI must be re-initialized to restore communications.
MC68010
10Mhz MPU Transceiver
Connector
Network
Parameters <:>
PROM
<:> LANCE SIA
FX —
2 Sockets
512KB
AV —
System Control
Decode Clock <:>
Interrupt

MULTIBUS Interface
BiDirectional Mapped Access
24Bit Address 16Bit Data

Figure 2.2- Block Diagram

2-3

2.3

Transceiver Interface

A transceiver is an interface device used for attaching the ENl module
to the Ethernet cable. A transceiver cable is used to connect the ENI
module and the transceiver. The transceiver cable consists of four
shielded twisted-pair wires and two 15-pin D-connectors (see figure
2.3). The maximum cable length is 50 meters (164 feet). See
Appendix B for additional information.

ENI Module

e
s 15-pin D-shell connector

:| transceiver
cable

Ethernet

transceiver

\

| =1
15-pin/ tap

D-shell connector

24

Figure 2.3- Transceiver Connections

3.0

INSTALLATION

This section describes how to install and replace the ENI module.
See Appendix B for instructions on connecting the ENI to the
transceiver. Consult your Ethernet supplier for specific information
regarding installation of cables, transceivers, and other network
equipment.

THE USER IS RESPONSIBLE FOR CONFORMING TO APPLICABLE LOCAL,
NATIONAL AND INTERNATIONAL CODES. WIRING GROUNDING,
DISCONNECTS, AND OVER-CURRENT PROTECTION ARE PARTICULARLY
IMPORTANT. FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN
SEVERE BODILY HARM OR LOSS OF LIFE.

3.1

3.2

Hardware Configuration

The ENI module is factory-configured for [EEE 802.3/Ethernet 2.0. If
you are connecting to an existing network that uses Ethernet 1.0,
consult your authorized Reliance representative.

Rack Configuration

All application tasks that access an ENI module must reside in the
left-most processor in the rack.

There can be a maximum of two ENI modules in a rack. Each ENI
module uses two slots of address space (128K). An ENI module may
be installed in any physical slot of the rack. However, the slot address
range that the module responds to is selected with a jumper. This
jumper must select either logical slot 2 or logical slot 4. If logical slot 2
is selected, then no other card, with the exception of a Processor
(M/N 57C430A), may be in slot 2 or slot 3. If logical slot 4 is selected
then no other card, with the exception of a Processor, may be in slots
4 and 5. Processors are allowed because they have no
Multibus-addressable memory.

In the following example the ENI is in physical slot 5, but it is
jumpered to respond to logical slots 2 and 3. The important rule is
that two cards can not be in the same logical slot. Because the
Processor does not have MultiBus memory, there is no conflict.

Slot
P/S

cuo |-
cuo N
CcCo0 |w
cuo |+

0
M
E
M

nN—2Zm [;

3-1

The second example shows two ENI modules jumpered to respond
to logical slots 2 and 4. ENI2 takes up logical slots 2 and 3, ENI4
takes up logical slots 4 and 5.

St 0 1 2 3 4 5
mlclclclE[E
PSIEIP|P|PIN[N
mjufu| U] T
2|4

3.3 ENI Installation

Use the following procedure to install the module:

Step 1. Turn off power to the rack and all connections.

Step 2. Take the module out of its shipping container. Take it out of
the anti-static bag, being careful not to touch the
connectors on the back of the module.

Step 3. Set the jumper (visible through the cutout in the
enclosure) for the appropriate logical slot. Refer to figure
3.1 and section 3.2.

Front ENI D-Shell Connector
/ N
JP0O8
/
1 1 —
14]13[12[11] 10| 9| 8 14]13| 12/ 11]10] 9| 8
1| 2| 3| 45|67 1] 2| 3| 4 5| 8] 7
Setting for Logical Slot 2 Setting for Logical Slot 4

Figure 3.1- Setting Jumper for Logical Slot Location

Step 4.
Step 5.

Step 6.
Step 7.

3-2

Insert the module into the desired slot in the rack. Use a
screwdriver to secure the module into the slot.

Connect the transceiver cable to the ENI according to the
manufacturer’s instructions.

Turn on power to the rack.

Verify the installation. After the power-up diagnostics are
completed, the green status LED will go on.

3.4

Module Replacement

Step 1.
Step 2.
Step 3.
Step 4.

Step 5.

Step 6.

Step 7.
Step 8.

Step 9.
Step 10.
Step 11.

Stop all tasks that are running.
Turn off power to the rack.
Disconnect the transceiver cable from the module.

Use a screwdriver to loosen the screws that hold the
module in the rack. Remove the module from the slot in
the rack.

Place the module in the anti-static bag it came in, being
careful not to touch the connectors on the back of the
module. Place the module in the cardboard shipping
container.

Take the replacement module out of its shipping container.
Take it out of the anti-static bag, being careful not to touch
the connectors on the back of the module.

Set the jumper for the appropriate slot.

Insert the module into the desired slot in the rack. Use a
screwdriver to secure the module into the slot.

Connect the transceiver cable to the module.
Turn on power to the rack.

Verify the installation. After the power-up diagnostics are
completed, the green status LED will go on.

3-3

4.0

4.1

PROGRAMMING

This section provides an overview of the BASIC functions that are
used to access the ENI module. Programming examples for TCP,
UDP, and raw Ethernet communications are provided in section 4.2.7.
A detailed listing of the BASIC functions used in ENI application
software is in section 4.6. For more detailed information on the BASIC
language refer to the AutoMax Enhanced BASIC Language
Instruction Manual (J-3675).

Introduction

Establishing communication between two points on a network is
analogous to establishing a telephone connection between two
points, A and B.

The first step is for both A and B to initialize their respective ENI
modules by executing the ENI_INIT% function. This is like asking the
phone company to install phone service in an office. The ENI_INIT%
function assigns a drop number to the card, referred to as the
InterNet address. This is like assigning a main phone number for an
office.

The next step would be to assign an extension number to every
phone in the office. For the ENI this is done with two functions,
SOCKET% and BIND%. The SOCKET% function selects the type of
service the connection is to provide. The choices are TCP, UDP, or
Raw EtherNet. This is somewhat like choosing between touch tone
and pulse dial phone service. The value that is returned from the
SOCKET% function is called the socket number. This is used in all
subsequent function calls to specify where to communicate. The
BIND% function then assigns a port number to the socket. The port
number is like the phone extension number.

After the phones are installed, the next step is to place a call. This is
done with the CONNECT% function. This function specifies the
address to connect to, like a phone number to dial. For TCP sockets
only, if point A is initiating the message (placing the call), it must
execute a CONNECT% function and point B (waiting for messages)
must execute an ACCEPT% function.

Messages can then be sent or received by either end by executing a
SEND% or RECV% function. For example, in a phone conversation, if
you wanted some information, you would start by telling the other
person what you wanted. The other person would need to hear your
request, understand it, and then respond with the answer. To do this
with an ENI you would start with a SEND% that tells the other station
what you wanted. The other station would need to do a RECV% to
hear the message and then a SEND% to respond with the answer. In
the meantime, you would be doing a RECV% to hear the response.
When you are done talking on the phone, you say good bye and
hang up the phone. In the ENI, when you want to end a session, you
would execute the SHUTDOWN?% function.

4-1

4.2

4.2.1

422

4-2

Programming Overview

This section gives an overview of the functions in BASIC that are
used to access the ENI module. The functions are broken down into
six categories:

e Card Initialization

e Creation and binding of sockets
e Establishing a connection

e Transfer of data

e Support functions

e Shutting down sockets
The individual functions are described in detail in section 4.6.

Card Initialization

The ENI module is initialized with the ENI_INIT% function. This tells
the AutoMax operating system what slot the card is in. It also assigns
an InterNet address to the module and it selects how many sockets
to allow for each of the three protocols supported. The value returned
tells if the operation was successful or not.

STATUS% = ENI_INIT%(SLOT%, ADDR$, TCP%, UDP%, ETHER%)

Creation and Binding of Sockets

A socket (channel of communication) is created with the SOCKET%
function. A socket is bidirectional, i.e., it can be used to send and
receive. The parameters of the SOCKET function select on which ENI
module to create the socket and what protocol the socket is to use.
The value returned from the SOCKET function is called the socket
number. This number is used in all subsequent functions to select
which socket is being worked with.

SOCKET_NUM% = SOCKET%(SLOT%, TYPE%)

After a socket is created, the application program must do a BIND%
to assign a port number to the socket. The parameters of the function
select which socket to bind and the value for the port number. An ENI
module can have a total of up to 64 sockets open at the same time.
The port number acts as an extension to the Internet address in
assigning a unique address to each socket. The value returned in
STATUS tells if the operation was successful or not.

STATUS% = BIND%(SN%, PORT%)

If the BIND% is not successful (STATUS% = -4), you must shut down
the socket, wait 10 seconds, then recreate the socket and bind it with
a different port number.

4.3.3

4.2.4

4.2.41

Establishing a Connection

For TCP sockets only, a connection must be established before
communication can begin. There are two sides to each connection,
the active side and the passive side. The active station does a
CONNECT% function and the passive station does an ACCEPT%
function. The ACCEPT% function must be executed by the passive
side prior to the active side executing a CONNECT% function. The
parameters of the CONNECT% select which socket to connect, as
well as the destination address and port number. The value returned
in STATUS indicates whether the operation was successful or not.

STATUS% = CONNECT%(SOCKET_NUM%, DEST_ADDRS,
DEST_PORT%)

The first parameter of the ACCEPT% function selects which socket
should begin waiting for a connection to come. The second
parameter is the name of the variable where this function will return
the value of a new socket number that is created. The value returned
in STATUS indicates whether the operation was successful or not.
The original socket that was waiting for a connection remains open.
The application program may loop back to the ACCEPT% function to
wait for another client to connect, or the socket may be shut down if
nothing else is expected. The new socket is accessed through the
value in NEW_SOCKET_NUM. This is the socket through which the
passive station will send and receive.

STATUS% = ACCEPT%(SOCKET_NUM%, NEW_SOCKET_NUM%)

If the TCP protocol is selected, a connection must be established
before data can be transferred. If the UDP or raw Ethernet protocols
are used, a connection is not established. However, a CONNECT%
must be executed by the station that will be sending the message to
select where to send it to. The ACCEPT% function is not used for
UDP or raw Ethernet sockets.

Data Transfer

Data transfers can begin once a socket is created and connected.
The SEND%, SENDL%, RECV% and RECVL% functions are used to
send and receive messages.

Sending Data

To send data to another station, use the SEND% or SENDL%
function. The parameters of the SEND% select which socket to work
with, the variable to send, and the number of bytes to send. The
variable to send may be any data type. The data can be contained
within an array. Both local and common variables can be sent, as well
as I/O variables. The value returned is either the total number of
bytes sent successfully, or an error code.

BYTES_SENT% = SEND%(SOCKET_NUM%, DATA%, LENGTH%)
The parameters of the SENDL select which socket to work with and
select a list of pointers and byte counts. This allows for building a

message from various places in memory. The value returned is either
the total number of bytes sent successfully, or an error code.

BYTES_SENT% = SENDL%(SOCKET_NUM%, LIST!)

43

4.2.4.2

4.2.5

4.2.6

44

Receiving Data

To receive data from another station, use the RECV% or RECVL%
function. The parameters of the RECV% function select which socket
to work with, the variable to receive into, and the number of bytes to
receive. The variable to receive into may be any data type. The data
can be contained within an array. It can also be scalar. Both local and
common variables can be sent, as well as 1/0 variables. The value
returned is either the number of bytes received successfully, or an
error code.

BYTES_RECVD% = RECV%{ SOCKET_NUM%, DATA%, LENGTH%)
The parameters of the RECVL% select which socket to work with, and
include a list of pointers and byte counts. This allows for receiving a

message into various places in memory. The value returned is either
the total number of bytes received successfully, or an error code.

BYTES_RECVD% = RECVL%(SOCKET_NUM%, LIST!)

Support Functions
There are six functions that provide support for communications:
SETSOCKOPT% is used to set options for a socket.

GETSOCKOPT% is used to read the status and options selected
for a socket.

READVAR% is used to read the value of a variable
expressed as a string.

WRITEVAR% is used to write a value into a variable
expressed as a string.

FINDVAR! is used to find a pointer to variable expressed
as a string. This is used in conjunction with the
SENDL% and RECVL% functions.

CONVERT% is used to convert between Motorola and IEEE
floating point formats. It also takes care of byte
swapping when needed.

Closing Sockets

The SHUTDOWN% function closes a socket’s connection and
releases all of its associated resources. TCP sockets only need to be
shut down at one end. Either the active or passive side may close the
connection. The other side will automatically shut down. UDP and
raw Ethernet sockets need to be shut down at both ends.

STATUS% = SHUTDOWNY%(socket_num%)

42,7

4.2.71

Sample Programs

The BASIC programs that follow provide examples of sending and
receiving data using TCF, UDP, and raw Ethernet sockets.

TCP Sample Program

In TCP communication, one station is active and the other station is
passive. The first step on both ends is to initialize the ENI and assign
an Internet address to the module. This is followed by creating a
socket and binding a port number to the socket. The active side does
a CONNECT% and the passive side does an ACCEPT%. The
parameters of the CONNECT% specify the Internet address and the
port number of the destination. These are the same values used in
the ENI_INIT% and BIND% on the passive side. The parameters of
the ACCEPT% specify where to write the value of a new socket that
will be created when a connection is made. The example shows that
if the CONNECT% is not successful, it goes back to create a new
socket to try again. After the connection is established, both sides
can send and receive data. For this example, the active side is
sending to the passive side. It could have been the other way, or they
could take turns sending and receiving. In TCP, for every message
sent, there is an acknowledgement returned to control the flow of
information. After the data has been sent, doing a SHUTDOWN% on
either side closes the sockets on both sides.

The following are examples of tasks that perform an active
connection and a passive connection for a TCP socket. The example
tasks show a STOP being executed when an error is returned. This is
done only to show that some action should be taken when an error is
detected. It is up to the application programmer to decide the
appropriate response to an error.

4-5

100 REM Sample program to perform an active connection and
101 REM send data over a TCP socket

200 REM Local symbolic constants

210 LOCAL MY_ADDRS$, MY_PORT%, DEST_ADDR$, DEST_PORT%
220 MY_ADDRS$ = “128.10.3.89"

230 MY_PORT% = 5000

240 DEST_ADDR$ = “128.10.4.17"

250 DEST_PORT% = 5100

300 REM Local variables

310 LOCAL STATUS%, SOCKET_NUM%
320 LOCAL BYTES_SENT%

330 LOCAL MESSAGE%({99), 1%, J%

1000 REM Initialize the ENI
1010 STATUS% = ENI_INIT%(4, MY_ADDRS , 10, 1, 6)
1020 IF (STATUS% < 0) THEN STOP

1030 REM Create a socket
1040 SOCKET_NUM% = SOCKET%(4, 1)
1050 IF { SOCKET_NUM% < 0) THEN STOP

1060 REM Bind a port number to the socket
1070 STATUS% = BIND%{ SOCKET_NUM%, MY_PORT%)
1080 IF { STATUS% < 0) THEN STOP

1090 REM Try to connect, if didn't connect try again

1100 STATUS% = CONNECT%({ SOCKET_NUM%, DEST_ADDR$, DEST_PORT%)
1110 IF (STATUS% = -102) THEN DELAY 2 SECONDS \ GOTO 1040

1120 IF (STATUS% < 0) THEN STOP

1130 REM Send data 100 times, if connection lost, try to
1131 REM connect again
1140 FORI% =0TO 99

1150 FOR J% = 0TO 99

1160 MESSAGE%{J%) = J% + 1%

1170 NEXT J%

1180 BYTES_SENT% = SEND%({ SOCKET_NUM%, MESSAGE%, 0}

1180 IF { BYTES_SENT% = -102) THEN DELAY 10 SECONDS \ &

GOTO 1040
1200 NEXT 1%

1210 REM Shut down the connection

1220 STATUS% = SHUTDOWN%({ SOCKET_NUM% }
1230 IF { STATUS% < 0) THEN STOP

32767 END

100 REM Sample program to perform a passive connection and
101 REM receive data over a TCP socket
200 REM Local symbolic constants
210 LOCAL MY_ADDRS$, MY_PORT%
220 MY_ADDR$ = “128.10.4.17”
230 MY_PORT% = 5100
300 REM Local variables
310 LOCAL STATUS%, SOCKET_NUM%
320 LOCAL NEW_SOCKET_NUM%, BYTES_RECVD%
330 LOCAL MESSAGE%(99), 1%, J%, ERROR%
400 REM Initialize to no error found
410 ERROR% = -1
1000 REM Initialize the ENI
1010 STATUS% = ENI_INIT%{ 4, MY_ADDRS$, 14, 3, 2)
1020 IF (STATUS% < 0) THEN STOP
1030 REM Create a socket
1040 SOCKET_NUM% = SOCKET%(4, 1)
1050 IF (SOCKET_NUM% < 0) THEN STOP
1060 REM Bind a port number to the socket
1070 STATUS% = BIND%({ SOCKET_NUM9%, MY_PORT%)
1080 IF { BIND_STATUS% < 0) THEN STOP
1090 REM Wait for connection to come in
1100 STATUS% = ACCEPT%{ SOCKET_NUM%, NEW_SOCKET_NUM%)
1110 IF {STATUS% < 0) THEN STOP
1150 REM Recv data 100 times, If connection lost, try to
1151 REM connect again
1160 FORI% =0TO99
1170 BYTES_RECVD% = RECV%(NEW_SOCKET_NUM%, MESSAGE%, 0 }
1180 IF (BYTES_RECVD% = -102) THEN DELAY 10 SECONDS \
GOTO 1100
1190 IF (BYTES_RECVD < 0) THEN STOP
1200 FOR J% = 0TO 99
1210 IF { MESSAGE%{J%) <> {J% + 1%})
THEN ERROR% = 1% * 100 + J% \ STOP
1220 NEXT J%
1230 NEXT 1%
32767 END

47

4.2.7.2

4-8

UDP Sample Program

In UDP communication, no connection is made. Like TCP, the
destination address of a message is an Internet address and port
number. However, unlike TCP, the receiving station does not send an
acknowledgement to the sender. Both the sending and receiving
station start by assigning an Internet address to the module and,
after creating a socket, bind a port number to the socket. The station
that will be sending the data then does a CONNECT% to specify the
destination Internet address and port number. The station that will be
receiving the data does not do an ACCEPT%; it does a RECV%. After
the data has been sent, both sides must do a SHUTDOWN% to close
the sockets.

100 REM Sample program to send data over a UDP socket

200 REM Local symbolic constants

210 LOCAL MY_ADDR$, MY_PORT%, DEST_ADDRS$, DEST_PORT%
220 MY_ADDRS$ = “128.10.3.89”

230 MY_PORT% = 5000

240 DEST_ADDR$ = “128.10.4.17"

250 DEST_PORT% = 5100

300 REM Local variables

310 LOCAL STATUS%, SOCKET_NUM9%
320 LOCAL BYTES_SENT%

330 LOCAL MESSAGE%(99), 1%, J%

1000 REM Initialize the ENI
1010 STATUS% = ENI_INIT%(4, MY_ADDRS , 3, 12, 1)
1020 IF (STATUS% < 0) THEN STOP

1030 REM Create a UDP socket
1040 SOCKET_NUM% = SOCKET%(4, 2}
1050 IF { SOCKET_NUM% < 0) THEN STOP

1060 REM Bind a port number to the socket
1070 STATUS% = BIND%{ SOCKET_NUM%, MY_PORT%)
1080 IF { STATUS% < 0) THEN STOP

1090 REM Fill in destination parameters
1100 STATUS% = CONNECT%{ SOCKET_NUM%, DEST_ADDR$, DEST_PORT%)
1110 IF { STATUS% < 0) THEN STOP

1120 REM Send data 100 times
1130 FORI% =0TO 99

1140 FORJ% = 0TO 99

1150 MESSAGE%{J%) = J% + 1%

1160 NEXT J%

1170 BYTES_SENT% = SEND%(SOCKET_NUM%, MESSAGE%, 0)

1180 NEXT 1%

1190 REM Shut down the socket

1200 STATUS% = SHUTDOWN%{ SOCKET_NUM%)}
1210 IF (STATUS% < 0) THEN STOP

32767 END

100 REM Sample program to receive data over a UDP socket

200 REM Local symbolic constants

210 LOCAL MY_ADDR$, MY_PORT%

220 MY_ADDR$ = “128.10.4.17"

230 MY_PORT% = 5100

300 REM Local variables

310 LOCAL STATUS%, SOCKET_NUM%

320 LOCAL BYTES_RECVD%

330 LOCAL MESSAGE%(99), 1%, J%, ERROR_CNT%

400 REM Initialize error counter

410 ERROR_CNT% =0

1000 REM Initialize the ENI

1010 STATUS% = ENL_INIT%{ 4, MY_ADDR$, 4, 13, 2)

1020 IF { STATUS% < 0) THEN STOP

1030 REM Create a UDP socket

1040 SOCKET_NUM% = SOCKET%(4, 2)

1050 IF (SOCKET_NUM% < 0) THEN STOP

1060 REM Bind a port number to the socket

1070 STATUS% = BIND%{ SOCKET_NUM%, MY_PORT%)

1080 IF (STATUS% < 0) THEN STOP

1090 REM Recv data 100 times

1100 FORI% =0TO 99

1110 BYTES_RECVD% = RECV%(SOCKET_NUM%, MESSAGE%, 0)

1120 FOR J% = 0TO 99

1130 IF { MESSAGE%{J%) <> (J% + 1%})
THEN ERROR_CNT% = ERROR_CNT% + 1

1140 NEXT J%

1150 NEXT 1%

1160 REM Shut down the socket

1170 STATUS% = SHUTDOWN%(SOCKET_NUM%)

1180 IF { STATUS% < 0) THEN STOP

32767 END

49

4.2.7.3

4-10

Raw Ethernet Sample Program

In raw Ethernet communication, no connection is made. When a
message is sent, every station on the network listens to see if the
message is intended for it. Every Ethernet module has a unique
address. To send a message to a particular station, you need to
know the Ethernet address of that module. It is also possible to send
or receive broadcast data. This is done in the following example. In
TCP and UDRP all you need to know is the Internet address and port
number of a station over which you have control.

As in TCP and UDP, the first step on both ends is to initialize the
module with ENI_INIT%. An Internet address must still be given to the
module, even though this protocol does not use it. After a socket is
created and a bind is done, the sending station does a CONNECT%
to specify where to send the message. The value for addr$ in the
connect must be the Ethernet address or a broadcast address that
the destination will recognize. The only broadcast address the ENI
recognizes is FFFFFFFFFFFF. The value for port% in the connect
must be the same value used in the bind on the receiving station.
The value for port% is also used to select the ‘packet type’ in the
message. See section 4.3 for more information on frame format. A
station can have more than one Ethernet socket open; the packet
type is used to select which socket an incoming message will be
given to.

100 REM Sample program to send data over a raw Ethernet
101 REM socket

200 REM Local symbolic constants

210 LOCAL MY_ADDR$, MY_TYPE%, DEST_ADDR$, FRAME_TYPE%
220 MY_ADDR$ = “128.10.3.89”

230 MY_TYPE% = 5100

240 DEST_ADDR$ = “FFFFFFFFFFFF”

250 FRAME_TYPE% = 5200

300 REM Local variables

310 LOCAL STATUS%, SOCKET_NUM%

320 LOCAL BYTES_SENT%

330 LOCAL MESSAGE%(99), 1%, J%

1000 REM Initialize the ENI

1010 STATUS% = ENI_INIT%{ 4, MY_ADDRS$, 3, 1, 10)

1020 IF (STATUS% < 0) THEN STOP

1030 REM Create a raw Ethernet socket

1040 SOCKET_NUM% = SOCKET%(4, 3)

1050 IF (SOCKET_NUM% < 0) THEN STOP

1060 REM Bind a port number to the socket

1070 STATUS% = BIND%{ SOCKET_NUM%, MY_TYPE%)
1080 IF { STATUS% < 0) THEN STOP

1080 REM Fill in destination parameters

1100 STATUS% = CONNECT%(SOCKET_NUM9%, DEST_ADDRS$, FRAME_TYPE%)
1110 IF { STATUS% < 0) THEN STOP

1120 REM Send data 100 times

1130 FORI% =0TO99

1140 FORJ% =0TO 99

1150 MESSAGE%(J%) = J% + 1%

1160 NEXT J%

1170 BYTES_SENT% = SEND%(SOCKET_NUM%, MESSAGE%, 0)
1180 NEXT 1%

1180 REM Shut down the socket

1200 STATUS% = SHUTDOWN%(SOCKET_NUM%)

1210 IF { STATUS% < 0) THEN STOP

32767 END

100 REM Sample program to receive data over a raw Ethernet
101 REM socket

200 REM Local symbolic constants

210 LOCAL MY_ADDR$, FRAME_TYPE%

220 MY_ADDRS$ = “128.10.4.17"

230 FRAME_TYPE% = 5200

300 REM Local variables

310 LOCAL STATUS%, SOCKET_NUM%

320 LOCAL BYTES_RECVD%

330 LOCAL MESSAGE%{99}, %, J%, ERROR_CNT%

400 REM Initialize error counter
410 ERROR_CNT% =0

1000 REM Initialize the ENI
1010 STATUS% = ENI_INIT%(4, MY_ADDRS , 4, 1, 12)
1020 IF (STATUS% < 0) THEN STOP

1030 REM Create a raw Ethernet socket
1040 SOCKET_NUM% = SOCKET%(4,3)
1050 IF (SOCKET_NUM% < 0) THEN STOP

1060 REM Bind a port number to the socket
1070 STATUS% = BIND%{ SOCKET_NUM%, FRAME_TYPE%)
1080 IF (STATUS% < 0) THEN STOP

1090 REM Recv data 100 times
1100 FORI% =0TO 99

1110 BYTES_RECVD% = RECV%(SOCKET_NUM%%, MESSAGE%, 0)
1120 FOR J% = 0 TO 99
1130 IF (MESSAGE%(J%) <> (J% + 1%))
THEN ERROR_CNT% = ERROR_CNT% + 1
1140 NEXT J%

1150 NEXT %

1210 REM Shut down the socket

1220 STATUS% = SHUTDOWN%(SOCKET_NUM% }
1230 IF (STATUS% < 0) THEN STOP

32767 END

4.3

4.3.1

Raw Ethernet Notes

Every ENI module has a unique factory-assigned Ethernet address
stored in ROM memory. After the ENI has been installed in the rack
and initialized by the ENI_INIT% function, the value of this 6-byte
number can be read by the programming terminal using the Monitor
1/0 utility in the AutoMax Programming Executive software. This utility
is used to read and write selected addresses across Multibus. See
J-3750 for more information on Monitor I/O. The Ethernet address is
required only if you want to communicate using raw Ethernet. For
TCP or UDP communction, the Internet address is user-defined via
the ENL_INIT function.

In a network which utilizes raw Ethernet communication, replacing a
faulty ENI module will change the address of that Ethernet node.
Application programs which communicate with that node will require
changes to specify the new Ethernet node address.

To read the Ethernet address, display the following three registers in
the logical slot selected for the card: 2316, 2317, 2318. Display these
registers in hexadecimal format. The address is composed of the
contents of each of the three registers strung together. For example,
the sample display values shown below indicate the Ethernet
address 02CF1F305599.

Slot Register Value
2 2316 02CF
2 2317 1F30
2 2318 5599

Ethernet Frame Format

A raw Ethernet frame consists of a 6-byte destination address, a
6-byte source address, a 2-byte type field, 48 to 1500 data bytes, and
a CRC (Cyclical Redundancy Check) as shown below.

6 Bytes 6 Bytes 2 Bytes 48 to 1500 Bytes

| Dest Addr | SrcAddr | Type | Data... | crec

The destination address is the number assigned to the socket with
the CONNECT% function. For raw Ethernet sockets, the CONNECT%
function doesn’t send a message to the destination as it does in TCP;
instead, it only records the destination address for later use by the
SEND% function. The source address is the raw Ethernet address of
the stations sending the message. The type is used to determine
what protocol is used. For raw Ethernet messages, Type is the port
number that was assigned to the socket with the BIND% function.
There are two reserved numbers for Type that may not be used by
raw Ethernet messages: decimal 2048 and 2054. It is recommended
that port numbers begin at 5000.

413

4.4

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.5

4-14

Data Formats

The following section describes the internal representation of data
types used in AutoMax. See the AutoMax Enhanced BASIC
Language Instruction Manual (J-3675) for more information.

Booleans

A boolean is a bit in a 16-bit word. Individual bits can not be sent or
received. The smallest amount of data that can be sent is 1 byte (8
bits). If a single boolean variable is sent, 7 other bits are sent with it. If
CONVERT% is not used, a boolean array is transmitted bits 7..0 first
followed by bits 15..8, and so on.

Integers

Integers are stored in 2 bytes, high byte first. f CONVERT% is not
used, the high byte is transmitted first.

Double Integers

Double integers are stored in 4 bytes, high byte first. If CONVERT% is
not used, the high byte is transmitted first.

Reals

Real numbers are stored in 4 bytes. The format of the number is
optimized for performance on the processor. It consists of a 24-bit
mantissa, a 1-bit sign, and a 7-bit exponent in excess 64. This may
be converted to IEEE standard with the CONVERT% function.

Strings

The default length of a string is 32 characters. This takes 34 bytes in
memory. The first byte of a string contains the number of bytes
available for string storage and the second byte indicates the actual
length of the string variable. This is followed by the string itself.

Use of Hardware Interrupts in Racks
Containing Ethernet or Network Modules

This section is applicable only to racks that contain Current Minor
Loop (CML) tasks or hardware EVENT statements in BASIC or
Control Block tasks. These two kinds of tasks require Processors to
allocate hardware interrupt lines on the rack backplane because
some portion of task execution depends upon receiving a
user-defined hardware interrupt from another module in the rack,
e.g., a Resolver Input module. The remainder of this section will first
describe the basic method by which interrupt lines are allocated and
then how Ethernet modules affect the allocation process. See the
Enhanced BASIC Language instruction manual (J-3675) for more
information on hardware EVENT statements and the Control Block
Language instruction manual (J-3676) for more information on CML
tasks.

4.5.1

Because the number of interrupt lines is limited to four, it is necessary
to take into account the rules by which they are allocated in order to
prevent errors when application tasks are put into run. Each of the
four interrupt lines can “service” one of the following:

a) up to four BASIC language hardware EVENT statements that are
found in BASIC or Control Block tasks

b) one CML task (used in racks containing drive modules only)

Any one Processor module can allocate up to one of the four
interrupt lines for 0-4 hardware EVENT statements and one line for a
CML task. (CML tasks are limited to to 2 per rack because of drive
module configuration restrictions.) Note that a minimum of one
hardware interrupt line will be allocated for a Processor module
regardless of whether one or four hardware EVENT statements are
used in application tasks loaded on that Processor.

The following examples of interrupt line allocation assume that there
are three Processor modules in the rack. Note that these examples
do not take into account the efficiency of distributing application
tasks between Processor modules in this manner (in terms of system
performance) and do not include Ethernet Network Interface
modules (M/N 57C440A) or Network modules (57C404A or later
only). These two modules will be added in later examples.

Examples of Interrupt Line Allocation

The following are examples of interrupt line allocation.
Example #1

Slot 1 Slot 2 Slot 3
Processor Processor Processor
Module Module Module
—_— | — XX X=X
— XX

4 hardware EVENT Nohardware EVENT 2 hardware EVENT

statements or statements
statements in CML tasks.
BASIC or Control
Block tasks.
— =Interrupt Line N = Network Modules
= Hardware EVENT Statement E = Ethernet Modules

X
CML = CML Task

4-15

Example #2

Slot 1 Slot 2 Slot 3
Processor Processor Processor
Module Module Module
— | —CML

—_— XX X=X
—X
— CML

1 CML task 4 hardware EVENT 1 hardware EVENT
statements statement

— = Interrupt Line

x = Hardware EVENT Statement

CML = CML Task

1 CML statement

N = Network Modules
E = Ethernet Modules

Example #3
Slot 1 Slot 2 Slot 3
Processor Processor Processor
Module Module Module

—X
— CML
—_—XxXxX

1 hardware EVENT 1 CML task and No hardware EVENT

statement 3 hardware EVENT statements or
statements CML tasks

— = Interrupt Line

X = Hardware EVENT Statement

CML = CML Task

N = Network Modules
E = Ethernet Modules

Example #4
Slot 1 Slot 2 Slot 3
Processor Processor Processor
Module Module Module
— | —CML
— CML
—_— X —————

—_—xX

1 CML task 2 hardware EVENT 2 hardware EVENT
statements statements
1 CML task

— = Interrupt Line

x = Hardware EVENT Statement

CML = CML Task

4-16

N = Network Modules
E = Ethernet Modules

4.5.2

— | —xxx-xNE—

Examples of Interrupt Allocation with Ethernet or
Network Modules in the Rack

With the addition of Ethernet Network Interface modules or Network
modules (M/N 57C404A and later only) to the rack, examples #2 and
#4 in section 4.5.1 would cause an error (code 44 displayed on the
Processor LEDs) when tasks were put into run and would not allow
them to go into run. The following section explains the allocation of
interrupts when Ethernet and Network modules are added to the
examples in 4.5.1.

Ethernet and Network modules require the allocation of an interrupt
line by the leftmost Processor module in the rack. The presence of
either or both of these two modules in any quantity will require a
single interrupt line on the leftmost Processor. The interrupt line
required by these modules can, however, be shared with four
hardware EVENT statements, but cannot be shared with the interrupt
line required by a CML task.

If two Ethernet modules and two Network modules were added to the
rack in the above examples, the following would occur. Note that
when either of these modules are added to the rack, the leftmost
Processor module will show an increase in CPU utilization
(processing capacity used). The CPU utilization statistic is available
through the Programming Executive software.

Example #1

The Ethernet and Network modules would share the interrupt line
with the four hardware EVENT statements in the left-most Processor
module.

Slot 1 Slot 2 Slot 3
Processor Processor Processor
Module Module Module

I_X'X

— = Interrupt Line N = Network Modules
x = Hardware EVENT Statement E = Ethernet Modules

CML = CML Task

Example #2

This example would cause an error when application tasks were put
into run. The CML task in the leftmost Processor module cannot
share its interrupt line, and the remaining three lines are already
allocated (one on Processor in slot 2, two on Processor in slot 3).

One solution to this problem would be to move the CML task from
the Processor in slot 1 to the Processor in slot 2 and the task(s)
containing the four hardware events from the Processor in slot 2 to
the Processor in slot 1. The Ethernet and Network modules could
share the interrupt line required for the EVENT statements in the
left-most Processor.

Slot 1 Slot 2 Slot 3

Processor Processor Processor
Module Module Module
— CML
— | =X xx-x N-E—
—_— ——
— CML—/——————
— = Interrupt Line N = Network Modules
x = Hardware EVENT Statement E = Ethernet Modules
CML = CML Task
Example #3

The Ethernet and Network modules would share the line required for
the hardware EVENT statement in the leftmost Processor. Note that
this line can be shared whether it is used for 1, 2, 3, or 4 EVENT
statements.

Slot 1 Slot 2 Slot 3
Processor Processor Processor
Module Module Module
— | — x-xN-E
— CML
— X-% X
— = Interrupt Line N = Network Modules
x = Hardware EVENT Statement E = Ethernet Modules

CML = CML Task

Example #4

This example would cause an error when application tasks were put
into run. Four interrupt lines have already been allocated. The
leftmost Processor module has allocated one for its CML application
task. The Processor module in slot 2 has allocated one for two
hardware EVENT statements and one for its CML task. The Processor
module in slot 3 has allocated one for two hardware EVENT
statements. There are no lines left for the left-most Processor to
allocate for the Ethernet and Network modules, and the interrupt line
required for the CML task cannot be shared.

One solution is to move the CML task from the Processor in slot 1 to
the Processor in slot 3 and to move the task or tasks containing two
hardware EVENT statements to the Processor in slot 2. In this case,
the Processor in slot 2 still requires one interrupt line. The Processor
module in slot 3 requires one interrupt line. The left-most Processor
will allocate an interrupt line for the Ethernet and Network modules.
Note that this line could be shared with up to four EVENT statements.

Slot 1 Slot 2 Slot 3
Processor Processor Processor
Module Module Module
— CML———
— CML
— | —N-E
— X X X=X

— = Interrupt Line
x = Hardware EVENT Statement
CML = CML Task

4.6 Functions

N = Network Modules
E = Ethernet Modules

The BASIC functions that follow are used in application software
written for use with the Ethernet Network Interface.

When a function is executed, a value is returned in the variable
specified. A negative value indicates an error. The error codes for
each function are listed in the function descriptions. Appendix C
contains a list of all the ENI error codes. Application software must

check for these error codes.

4-19

4.6.1

4-20

ENI_INIT% Function

Format:

ENI_INIT%(slot%, addr$, tcp%, udp%, ether%)

where:

slot% is the logical slot the ENI is to be in. This can be a

variable or a constant. The only legal values are 2 or 4.
See section 3.2 for information on rack configuration.

addr$ is the Internet address you assign to the ENI. This is a
string of four decimal numbers separated by decimal
points, each ranging from 0 to 255. A typical address is
128.0.0.10. (Note that 128.0.0.0 is an illegal address.)

tcp% defines the number of sockets to use for the TCP
protocol.

udp% defines the number of sockets to use for the UDP
protocol.

ether% defines the number of sockets to use for raw Ethernet.

The ENI_INIT% function commands the Ethernet Network Interface to
go through its initialization. The ENI supports three types of
protocols: TCP, UDR, and raw Ethernet. Up to 64 channels (sockets)
can be assigned to each ENI. Part of the initialization selects how
may sockets to allow for each protocol. At least one socket must be
defined for each protocol. The green LED on the front of the ENI will
turn off for approximately 10 seconds while the initialization is
performed.

Values Returned:

1 Success
-1 ENI failed self test
-8 Bus error

-10 Error allocating interrupts

-11 Bad slot number

-12 Bad Internet address

-13 Total number of sockets >64

For example:
STATUS% = ENI_INIT%(4, “128.0.0.10", 32, 10, 3)

4.6.2 SOCKET% Function

Format:

SOCKET%(slot%, type%)

where:

slot% is the logical slot the ENI is to be in. This can be a

variable or a constant. The only legal values are 2 or 4.
See section 3.2 for information on rack configuration.

type% is used to select the protocol for this socket.
Legal values for type are:

1 fora TCP socket
2 for a UDP socket
3 for a Raw EtherNet socket

This function will find an available socket of the requested type. If
successful, the value returned is the number of the socket allocated.
The socket number is a 16-bit word (e.g., 022FH). The first byte is the
logical slot the ENI is jumpered to (02 or 04) and the second byte is
the socket (00-3F). All subsequent function calls to communicate with
the ENI use this socket number to select the socket to talk through.

Values Returned:

>0 The socket number allocated
-2 ENI not initialized

-3 Did not create socket

-9 No buffer space

-11 Bad slot number

-14 Bad socket type

-40 No available buffer

For example:
SOCKET_NUM% = SOCKET%(4, 1)

4-21

4.6.3

4-22

BIND% Function

Format:

BIND%(sn%, port%)

where:

sn% is the number of the socket you want to bind. This is

the value that was returned from the SOCKET%
function. This can be specified as a simple variable or
as an element of an array.

port% is the local port number you want to give to the socket.
Begin assigning port numbers at 5000. Port numbers
must be unique. A port number cannot be reassigned
unless the socket using that number has been closed.
For raw Ethernet sockets, this value is used to select
the value of the 16-bit packet type in the message
header.

This function assigns a local port number or Ethernet packet type to
a socket.

Values Returned:

1 Success
-2 ENI not initialized
-4 Did not bind socket
-9 No buffer space
-15 Bad socket number
-40 No available buffer

For example:
STATUS% = BIND%(SN%, 5000)

4.6.4

CONNECT% Function

Format:

CONNECT%(sn%, addr$, port%)

where:

sn% is the number of the socket you want to connect to a

destination. This is the value returned from the
SOCKET% function. This can be specified as a simple
variable or as an element of an array.

addr$ is the destination Internet (used with TCP and UDP) or
Ethernet (used with raw Ethernet) address you want to
connect to. See ENI_INIT for applicable rules for
Internet addresses. Ethernet addresses are 12-digit
Hex number strings.

port% is the destination port number you want to connect to.

This function assigns a permanent destination for a socket. It must be
executed before any messages can be sent using any of the three
protocols. For raw Ethernet or UDP sockets, this function is used only
to specify the destination address. For TCP sockets, it directs the ENI
to do an active open. A passive open (ACCEPT%), done by the
destination TCP socket, must occur prior to this function being
executed to establish a connection. After the connection is made,
messages can be exchanged.

If connecting a TCP socket and the other end is not ready to accept
the connection, the socket will be closed. To try to connect again, the
application must create a new socket and bind it again.

For raw Ethernet sockets, the port number defines the packet type of
all messages that will be sent. The receiving end must do a BIND%
with the same value for the port number.

Values Returned:

1 Success
-2 ENI not initialized
-9 No buffer space
-12 Bad InterNet address
-15 Bad socket number
-40 No available buffer
-102 Socket not connected

For example:
STATUS% = CONNECT%(SN%, DEST_INET_ADDRS, 5001)

4-23

4.6.5

4-24

ACCEPT% Function

Format:

ACCEPT%(sn%, nsn%)

where:

sn% is the number of the TCP socket that should begin
waiting for a connection to be made. This can be
specified as a simple variable or as an element of an
array.

nsn% is filled in by this function with a new socket number

created when a connection has been established. This
must be a simple variable; array elements are not
allowed.

This function is used to direct the ENI to do a passive open. This is
valid only on TCP sockets. This function suspends execution of the
task and waits until a connection is established. When a connection
arrives, it creates a new socket with the attributes of the given socket
to service the connection. The application program may then shut
down the original socket sn%, or it may loop back to the ACCEPT%
to wait for another connection to come in. In this way a given service
may have more than one client at a time. Communication will take
place through the new socket.

Values Returned:

1 Success
-2 ENI not initialized
-7 Did not accept
-9 No buffer space
-15 Bad socket number
-16 Not a TCP socket
-40 No available buffer

For example:
STATUS% = ACCEPT%(SN%, NSN%)

4.6.6

SEND% Function

Format:

SEND%(sn%, var, len%)

where:

sn% is the number of the socket through which the

message is to be sent. This is the value that was
returned from the SOCKET% or ACCEPT% function.
This can be specified as a simple variable or as an
element of an array.

var is the variable that has the data to send. It can be a
boolean, integer, double integer, real, string, or an
array of these types. It may be local or common. If an
array is specified, no subscript may be given. It will
always start with the zeroth element of the array.

len% is the number of bytes to send beginning at var. This
parameter can be a constant, an integer, or a double
integer.

If var is an array, and len% is zero, the length to send is the size of
the array. An error is generated if len% is greater than the size of the
array.

This function causes a message to be sent to the destination as
defined by the socket number.

If a TCP socket is specified, it must be connected first (receiving side
executes an ACCEPT function, then sending side executes a
CONNECT function).

Values Returned:

>0 Number of bytes transferred
-2 ENI not initialized

-9 No buffer space

-15 Bad socket number

-17 Message too long, UDP > 1472, ETH > 1500
-18 Zero length for non-array
-26 Array is not single dimension
-32 Beyond end of array

-40 No available buffer

-102 Socket not connected

For example:
XMIT_LEN% = SEND%(SN%, SET_POINTS%, MSG_LEN%)
where SET_POINTS% is the name of an array.

495

4.6.7

4-26

SENDL% Function

Format:

SENDL%(sn%, list!)

where:
sN%

list!

is the number of the socket through which the
message is to be sent. This is the value that was
returned from the SOCKET% or ACCEPT% function.
This can be specified as a simple variable or as an
element of an array.

is a one-dimensional double integer array whose size
is limited only by memory capacity. The values in this
array define where to get the data to send. No
subscript is given on this parameter.

Beginning at list! (0), the values in the array are
structured so that an entry consists of two double
integers.

Data Pointer
Convert Mode | Byte Count

The even numbered elements of the array contain a
pointer indicating where to put data received. These
pointers are found with the VARPTR! or FINDVAR!
functions.

LIST! (0) = FINDV! (VAR_NAMES$)

The odd numbered elements contain the number of
bytes to receive in the low word and a convert mode in
the high word. The value for convert mode is the same
as used in the CONVERT% function to change data
formats. The following example converts from IEEE to
Motorola floating point format.

LIST! (1) = BYTE_COUNT% + 00020000H

Such pairs of elements may be repeated as often as
necessay with the only limitation being that UDP
messages may not exceede 1472 bytes and raw
Ethernet messages may not exceede 1500 bytes.

The list is terminated by a data pointer with a value of
zero.

This function causes a message to be sent to the destination as
defined by the socket number.

If a TCP socket is specified, it must be connected first (passive side
executes an ACCEPT function, then active side executes a
CONNECT function).

Values Returned:

>0 Number of bytes transferred
-2 ENI not initialized

-9 No buffer space

-15 Bad socket number

-17 Message too long

-18 Zero length

-19 lllegal Pointer

-25 Not a double integer array
-26 Not a single dimension array
-27 Bad array format

-30 Odd number of bytes in list parameter
-40 No available buffer

-102 Socket not connected

For example:

XMIT_LEN% = SENDL%(SN%, NETWORK_LIST!)

4-27

4.6.8

4-28

RECV% Function

Format:

RECV%(sn%, var, len%)

where:
sn%

var

len%

is the number of the socket through which the
message is to be received. This is the value that was
returned from the SOCKET% or ACCEPT% function.
This can be specified as a simple variable or as an
element of an array.

is the variable where the data received is written. It can
be a boolean, integer, double integer, real, string, or an
array of those types. If an array is specified, no
subscript may be given.

is the number of bytes to receive. This parameter can
be a constant, an integer, or a double integer.

If var is a simple variable and len% is greater than the
size of the simple variable, then var must be defined as
1/0 to avoid overwriting AutoMax memory.

If var is an array, and len% is zero, the length to receive
is the size of the array. An error is generated if len% is
greater than the size of the array.

For TCP only, if len% is -1, the number of bytes
received will be returned to the sender.

This function writes up to LEN% bytes of data from socket SN% into
the variable VAR. If a TCP socket is specified, it must be connected

first.

A socket can be selected as blocking or non-blocking. If the socket is
designated as blocking and no data has come in, the task will be
suspended until data arrives. If the socket is designated as
non-blocking and no data has come in, the RECV% command will
return with the error “No message waiting”. The default mode is

blocking.

Values Returned:

>0 Length of message received

-2 ENI not initialized

-9 No buffer space

-15 Bad socket number

-17 Message too long

-18 Zero length for non-array

-26 Array is not single dimension
-29 Max size of strings are not equal
-31 Max size of string < recv size of string
-32 Beyond end of array

-101 No message waiting

-102 Socket not connected

For example:
RECV_LEN% = RECV%(SN%, SET_POINTS%, LEN%)

4.6.9 RECVL% Function

Format:

RECVL%(sn%, list!)

where:

sn% is the number of the socket through which the

message is to be received. This is the value that was
returned from the SOCKET% or ACCEPT% function.
This can be specified as a simple variable or as an
element of an array.

list! is a one-dimensional double integer array whose size
is limited only by memory capacity. The values in this
array define where to put the data received. No
subscript is given on this parameter.

Beginning at list! (0), the values in the array are
structured so that an entry consists of two double
integers.

Data Pointer
Convert Mode I Byte Count

The even numbered elements of the array contain a
pointer indicating where to put data received. These
pointers are found with the VARPTR! or FINDVAR!
functions.

LIST! (0) = FINDV! (VAR_NAMES$)

The odd numbered elements contain the number of
bytes to receive in the low word and a convert mode in
the high word. The value for convert mode is the same
as used in the CONVERT% function to change data
formats. The following example converts from |IEEE to
Motorola floating point format.

LIST! (1) = BYTE_COUNT% + 00020000H

Such pairs of elements may be repeated as often as
necessay with the only limitation being that UDP
messages may not exceede 1472 bytes and raw
Ethernet messages may not exceede 1500 bytes.

The list is terminated by a data pointer with a value of
zero.

This function receives data from socket SN% into memory pointed to
by the list. All pointers must reference variables defined as 1/O.
Pointers may not reference variables defined in the Common Memory
Module or AutoMax Processor. If a TCP socket is specified, it must be
connected first.

A socket can be selected as blocking or non-blocking. If the socket is
designated as blocking and no data has come in, the task will be
suspended until data arrives. If the socket is designated as
non-blocking and no data has come in, the RECVL% command will
return with the error No message waiting. The default mode is
blocking.

4-29

4-30

Values Returned:

>0 Number of bytes transferred
-2 ENI not initialized

-9 No buffer space

-15 Bad socket number

-17 Message too long

-18 Zero length

-19 lllegal pointer

-25 Not a double integer array
-26 Not a single dimension array
-27 Bad array format

-30 Odd number of bytes in list parameter
-37 Pointing to on-board memory
-101 No message waiting

-102 Socket not connected

For example:

RECV_LEN% = RECVL%(SN%, NETWORK_LIST!)

4.6.10 SETSOCKOPT% Function

Format:

SETSOCKOPT%(sn%, opnum%, opval%)

where:

sn% is the number of socket whose option you want to set.
opnum% is the number of the option to set.

opval% is the value to write into the ENL.

This function is used to select different modes of operation.
OPNUM% selects which option to change, and OPVAL% selects the
mode of operation.

Options OPNUM% OPVAL% Description
“Keep Alive” 0008h 0 Keep alive is disabled (Default)
1 Keep alive is enabled

This option is only used on TCP sockets. When enabled, the ENI will
periodically send an empty message to maintain the connection. If
this option is not used and a frame is not received within 8 minutes,
the ENI will assume the connection has been broken and it will close
this socket.
“Linger” 0080h 0] Linger is disabled (Default)

1 Linger is enabled

This option is only used on TCP sockets to select how the
SHUTDOWN function will operate. When linger is enabled, the socket
will wait until remote SHUTDOWN% is completed before shutting
down.
“Non Blocking” 0200h 0 Non Blocking is disabled
(Default)

1 Non Blocking is enabled

This option is used to select how the RECV% and RECVL% function
will operate. If Non blocking is enabled and no message has arrived
for the RECV% or RECVL%, control is returned to the application
program and an error code -101 is returned by the RECV% or
RECVL%.

Values Returned:

1 Success
-2 ENI not initialized
-5 Did not set option
-9 No buffer space
-15 Bad socket number
-20 Bad option number
-21 Bad option value
-40 No available buffer

For example, to set the socket to nonblocking:
STATUS% = SETSOCKOPT%(SN%, 0200h, 1)

4-31

4.6.11

4-32

GETSOCKOPT% Function

Format:

GETSOCKOPT%(sn%, opnum%, opval%)

where:

sn% is the number of socket whose option you want to
read.

opnum% is the number of the option to read.

opval% is the name of the option variable where the current

value is written.

This function is used to examine what modes of operation are
selected. OPNUM% selects which option to look at, and OPVAL%
displays the current status.

Options OPNUM% OPVAL% Description
“Keep Alive” 0008h 0 Keep alive is disabled (Default)
1 Keep alive is enabled

This option is only used on TCP sockets. When enabled, the ENI will
periodically send an empty message to maintain the connection. If
this option is not used and a frame is not received within 8 minutes,
the ENI will assume it has been broken.
“Linger” 0080h 0 Linger is disabled (Default)

1 Linger is enabled

This option is only used on TCP sockets to select how the
SHUT-DOWN function will operate. When linger is enabled and there
are messages in any transmit or receive queues the ENI will process
those messages before doing the shutdown.

“Non Blocking” 0200h 0 Non Blocking is disabled
(Default)
1 Non Blocking is enabled

This option is used to select how the RECV% and RECVL% function
will operate. If Non Blocking is enabled and no message has arrived
for the RECV% or RECVL%, control is returned to the application
program and an error code -101 is returned by the RECV% or
RECVL%.
“Connected” 0800h -102 Socket not connected

1 Socket connected

This option is only used on TCP sockets. It allows the application
program to test if a connection is established without doing a SEND%
or RECV%.

Values Returned:

1 Success
-2 ENI not initialized
-6 did not get option
-9 No buffer space
-15 Bad socket number
-20 Bad option number
-40 No available buffer
-100 No buffer space

For exampile, to test if the socket is connected:
STATUS% = GETSOCKOPT%(SN%, 0800h, OPTION_VALUE%)

4.6.12 SHUTDOWN% Function

Format:

SHUTDOWN%(sn%)

where:

sn% is the number of the socket for which the connection

should be terminated.

This function closes the socket to allow it to be re-used at a later time.

TCP sockets need to be shut down at only one end. Either the active
or passive side may close the connection. The other side will
automatically shut down. UDP and raw Ethernet sockets need to be
shut down at both ends.

Values Returned:
1 Success
-2 ENI not initialized
-7 No free channel
-15 Bad socket number
-28 Socket closed by destination
-40 No available buffer

For example:
STATUS% = SHUTDOWN%(SOCKET_NUM%)

4-33

4.6.13

4-34

READVAR% Function

Format:

READVAR%(vn$, value)

where:

vn$ is a string expression for the name of the variable to
read. It can be a boolean, integer, double integer, real
or string, or an array of these types. Only
one-dimensional arrays are allowed.

value is the variable where the value read is written.

This function accepts a variable name as a string expression and
returns the value in variable VALUE. The string that defines the
variable name must have a suffix as follows:

@ Booleans

% Integers

! Double integer
$ Strings

No suffix Reals

If specifying an array element, the subscript must be after the data
type character if there is one. Only common variables can be
accessed.

Values Returned:

1 Success
-22 Variable not found
-23 Data type mismatch
For example:

VARIABLE_NAMES$ = “SET_POINTS(17)”
STATUS% = READVAR%(VARIABLE_NAMES, VALUE)

4.6.14

WRITEVAR% Function

Format:

WRITEVAR%(vn$, value)

where:

vn$ is a string expression for the name of the variable to
write to. It can be a boolean, integer, double inte ger,
real or string, or an array of these types. Only
one-dimensional arrays are allowed.

value is the variable that has the value to write.

This function accepts a variable name as a string expression and a
value to write into the variable. The string that defines the variable
name must have a suffix as follows:

@ Booleans

% Integers

] Double integers
$ Strings

No suffix Reals

If specifying an array element, the subscript must be after the data
type character if there is one.

If the data type of the variable, as defined in the string vn$, is different

than that of VALUE, an error is generated. Only common variables
can be accessed.

Values Returned:

1 Success
-22 Variable not found
-23 Data type mismatch
-24 Variable forced
For example:

VARIABLE_NAMES$ = “SET_POINTS(17)”
VALUE = 12.345

STATUS% = WRITEVAR%(VARIABLE_NAMES, VALUE)

4-35

4.6.15

4-36

FINDVAR! Function

Format:

FINDVAR!(varname$)

where:

varname$ is a string expression for the name of the

variable to find.

This function accepts a variable name as a string expression and
returns a pointer to that variable. This may then be used in the
SENDL% and RECVL% functions.

@ Booleans

% Integers

! Double integers
$ Strings

No suffix Reals

If specifying an array element, the subscript must be after the data
type character if there is one.

Values Returned:

>0 Pointer to Variable

-22 Variable not found

For example, to find a pointer to XYZ%(10):

VARIABLE_NAMES = “XYZ2%(10)”

POINTER! = FINDVAR!(VARIABLE_NAMES$)

4.6.16

CONVERT% Function

Format:

CONVERT% (src_variable, src_subscript, dest_variable, &
dest_subscript, num_of words, mode)

where:

src_variable is the variable that selects where to get data
from. This parameter may be a scalar or an
array of any data type. If src_variable is an
array, it should be the base name and any data
type character only.

src_subscript is only used if the src_variable is an array. It
determines where in the array to begin reading.
If not an array, the value should be 0.

dest_variable is the variable that selects were to move the
data. This parameter may be a scalar or an
array of any data type. If dest_variable is an
array, it should only be the base name and any
data type character.

dest_subscript is only used if destination_variable is an array. It
determines where in the array to begin writing.
If not an array, the value should be 0.

num_of words selects the number of words to move.

mode determines the mode of operation.
VALUE FUNCTION

0 Move data with no change in format

1 Convert from Motorola Floating Point
to |IEEE format

2 Convert from |EEE Floating Point to
Motorola format

4 Word swap (0102H to 0201H)

8 Long word swap (01020304H to

04030201H)
9 Motorola to |IEEE followed by long
word swap
10 Long word swap followed by [EEE to
Motorola

All other values are illegal

This function is used to convert between data formats used by
AutoMax and data formats used by other computers.

Values Returned:
1 Success
-26 Array is not single dimension
-32 Beyond end of array
-33 lllegal mode value
-34 Zero number of words
-35 Odd number of words on long word swap
-36 Number of words > dest data type when dest memory is on
CPU

For example, to move 30 real numbers beginning at SRC_ARRAY(10)
to DST_ARRAY(20) converting from Motorola to IEEE and inverting
the byte order:

STATUS% = CONVERT%(SRC_ARRAY, 10, DST_ARRAY, 20, 60 ,9

4-37

5.0 DIAGNOSTICS AND

TROUBLESHOOTING

Upon power-up, the ENI module will automatically run its on-board
diagnostics. After approximately 10 seconds, the “OK” LED should
turn on. The “OK” LED will turn off while the initialization procedure is
run, and will turn on at its completion. It will also turn off if a STOP
ALL command is executed, and will remain off until the ENI is
re-initialized.

Software errors are indicated by error codes returned by BASIC
functions. Your application software must check for these error
codes.

Hardware errors are indicated by the LED on the faceplate turning
off. Follow the procedures below in the order listed to isolate a
hardware problem. If none of the procedures listed below isolates the
problem, the module is not user-serviceable.

Step 1. Check the LEDs on the Power Supply module faceplate.
Any problems with the Power Supply module or the rack
can usually be isolated by observing the condition of the
LEDs on the Power Supply module faceplate. Refer to the
AutoMax Power Supply Module and Racks Instruction
Manual (J-3670) for detailed procedures for
troubleshooting the Power Supply.

Step 2. Turn off power to the rack. Check the seating of the ENI.
Use a screwdriver to loosen the screws that hold the
module in the rack. Remove the module from the slot in
the rack, and then reinsert it. Turn on power to the rack.

Step 3. Check all cable connections of the ENI to the Ethernet
network.

5-1

Appendix A

Technical Specifications

Ambient Conditions

Storage temperature: —40°C — 85°C
Operating temperature: 5°C — 50°C
Humidity: 5—90% non-condensing

Dimensions

Height: 11.75 inches
Width: 1.25 inches
Depth: 7.375 inches
Weight: 2 [bs.

System Power Requirements

Input Voltage

+5 VDC: 5000mA
+12 VDC: 500mA
—12 VDC: 100mA

Maximum Transceiver Cable Length

50 meters (164 feet)

A-1

Appendix B

Connecting the ENI to the Transceiver

Ethernet Version 1.0, Version 2.0, and IEEE 802.3 standards all require different
style transceiver cables. Since cable grounding is done at the ENI end of the
cable, proper matching is critical.

If you wish to fabricate your own cable, you can do so following the directions
below.

WARNING

THE FOLLOWING INSTRUCTIONS ARE INTENDED ONLY TO ALLOW
FABRICATION OF PROPER CONNECTIONS BETWEEN RELIANCE EQUIPMENT
AND USER-PROVIDED DEVICES. THE USER MUST READ AND UNDERSTAND
ALL APPLICABLE INSTRUCTION MANUALS PRIOR TO FABRICATING THE
CABLE. FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN BODILY
HARM.

1. Cut a suitable length of Ethernet/|[EEE 802.3 Transceiver cable. Maximum
cable length is 50 meters (164 feet).

2. Follow the connector manufacturer’s instructions to make cable connections
using the figure below.

3. Check for grounds, shorts, and continuity using an Ohm meter.

ENI end
Pin Number Signal Name

1 Shield (Ethernet 1.0, 2.0)(Ground)
2 Collision Presence +
3 Transmit +
4 Ground
5 Receive +
6 Power Return (Ground)
7 Reserved
8 Ground
9 Collision Presence —

10 Transmit —

11 Reserved

12 Receive —

13 Power (+12VDC Fused)

14 Ground

15 Reserved

Figure B-1 - Transceiver Cable Pin Connections

B-1

Appendix C

Error Code Summary

Codes for Errors found by ENI
-1 ENI failed self test

-2 ENI not initialized

-3 Did not create socket
-4 Did not bind socket
-5 Did not set option
-6 Did not get option
-7 Did not accept

-8 Bus error

-9 No buffer space

Codes for errors found by AutoMax

—10 Error locating interrupts
—-11 Bad slot number
—12 Bad Internet address
—13 Total number of sockets >64
—14 Bad socket type
—15 Bad socket number
—16 Not a TCP socket
—17 Message too long
—18 Zero length for non-array
—19 lllegal pointer
—20 Bad option number
-21 Bad option value
—22 Variable not found
—23 Data Type Mismatch
—24 Variable Forced
—25 Not a double integer array
—26 Not a single dimension array
—27 Bad array format
—28 Socket closed by destination
—29 Max size of strings
are not equal
—30 Odd number of bytes
in list parameter
—31 Max size of string
< recv size of string
—32 Beyond end of array
—33 lllegal mode value
—34 Zero number of words
—35 Odd number of words on long
word swap
—36 Number of words > dest data
type when dest is on CPU
—37 Pointing to on-board memory

Returned by

ENL_INIT

SOCKET, BIND, CONNECT, ACCEPT
SEND, SENDL, RECV, RECVL
SETSOCKOPT, GETSOCKOPT
SHUTDOWN

SOCKET

BIND

SETSOCKOPT

GETSOCKOPT

ACCEPT

ENL_INIT

SOCKET, BIND, CONNECT, ACCEPT
SEND, SENDL, RECV, RECVL
SETSOCKOPT, GETSOCKOPT

ENL_INIT

ENI_INIT, SOCKET

ENI_INIT, CONNECT

ENIL_INIT

SOCKET

BIND, CONNECT, ACCEPT
SEND, SENDL, RECV, RECVL
SETSOCKOPT, GETSOCKOPT
SHUTDOWN

ACCEPT

SEND, SENDL, RECV, RECVL
SEND, SENDL, RECV, RECVL
SENDL, RECVL
SETSOCKOPT, GETSOCKOPT
SETSOCKOPT

READVAR, WRITEVAR, FINDVAR
READVAR, WRITEVAR
WRITEVAR

RECVL, SENDL

SEND, SENDL, RECV, RECVL,
CONVERT

RECVL, SENDL

SHUTDOWN

RECV

SENDL, RECVL

RECV

CONVERT, SEND, RECV
CONVERT

CONVERT

CONVERT

CONVERT

RECVL

Warning Status Codes (from ENI — not critical)

—101 No Message Waiting
—102 Socket Not Connected

RECV, RECVL
CONNECT, SEND, SENDL, RECV,
RECVL

CA1

Appendix D

Glossary

connection

The path between two protocol modules. In Internet, a connection extends
from a TCP module on one machine to a TCP module on another.

CSMA/CD

Carrier Sense Multiple Access with Collision Detection. A characteristic of
network hardware that allows stations to contend for access to a
transmission medium by listening to see if it is idle.

Ethernet

The name given to a popular local area packet-switched network
technology invented by Xerox PARC in the early 1970s.

port

The abstraction that transport protocols use to distinguish among multiple
destinations within a given host computer. Internet protocols identify ports
using small positive integers. Usually, the operating system allows an
application program to specify which port it wants to use.

protocol

A formal description of message formats and the rules two or more
machines must follow to exchange those messages.

Raw Ethernet

A transmission protocol that allows a message to be broadcast only, using
the Ethernet address. There is no acknowledgment of the message being
received. Cyclical Redundancy Check (CRC) is used for transmission error
detection.

socket

The abstraction provided by Berkeley 4.3 BSD UNIX that allows a process
to access the Internet. A process opens a socket, specifies the service
desired, binds the socket to a specific destination, and then sends or
receives data.

TCP

Transmission Control Protocol. TCP allows you to send a message to a
specific internet address and socket. There is an acknowledgment sent
back to the source that the message was received. Cyclical Redundancy
Check (CRC) is used for transmission error detection.

TCP/IP

(Transmission Control Protocol/Internet Protocol) The Internet standard
transport level protocol that provides the reliable, full duplex, stream service
on which many application protocols depend. It allows a process on one
machine to send a stream of data to a process on another. It is
connection-oriented in that before transmitting data, a connection must be
established. Software implementing TCP usually resides in the operating
system and uses IP protocol to transmit information across the Internet.

D-1

Appendix D

Glossary (Continued)

transceiver
A device that connects a host interface to a local area network (e.g.,
Ethernet).

ubpP
User Datagram Protocol. The Internet standard protocol that allows an
application program on one machine send a message to an application
program on another machine. UDP messages include a protocol port
number, allowing the sender to distinguish among multiple destinations on
the remote machine. It also includes a checksum over the data being sent.

D-2

RE 1857LC Printed in U.S.A.

RELIANCE CONTROLS
DOCUMENTATION IMPROVEMENT FORM

Document Number:

Page Number(s):

Comments: (Please give chapters, page numbers or specific paragraphs that the change will affect. Include markeups from
the document or attach additional pages if necessary.)

What will this improvement suggestion provide?

Originator: City: State: ZIP:
Company: Phone: ()

Address: Date:

Technical Writing Internal Use: Follow-Up Action:

Writer: Date:

Thank you for your comments . . .

For additional information

1 Allen-Bradley Drive

Mayfield Heights, Ohio 44124 USA
Tel: (800) 241-2886 or (440) 646-3599
http://www.reliance.com/automax

www.rockwellautomation.com

Corporate Headquarters
Rockwell Automation, 777 East Wisconsin Avenue, Suite 1400, Milwaukee, WI, 53202-5302 USA, Tel: (1) 414.212.5200, Fax: (1) 414.212.5201

Headquarters for Allen-Bradley Products, Rockwell Software Products and Global Manufacturing Solutions

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444

Europe/Middle East/Africa: Rockwell Automation SA/NV, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640
Asia Pacific: Rockwell Automation, 27/F Citicorp Centre, 18 Whitfield Road, Causeway Bay, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Headquarters for Dodge and Reliance Electric Products

Americas: Rockwell Automation, 6040 Ponders Court, Greenville, SC 29615-4617 USA, Tel: (1) 864.297.4800, Fax: (1) 864.281.2433
Europe/Middle East/Africa: Rockwell Automation, BriihlstraRe 22, D-74834 Elztal-Dallau, Germany, Tel: (49) 6261 9410, Fax: (49) 6261 17741
Asia Pacific: Rockwell Automation, 55 Newton Road, #11-01/02 Revenue House, Singapore 307987, Tel: (65) 6356-9077, Fax: (65) 6356-9011

Publication J-3696-2 - February 1995 Copyright © 2002 Rockwell Automation, Inc. All rights reserved. Printed in U.S.A.

	Front Cover
	Important User Information
	Table of Contents
	1 - Introduction
	Overview
	Additional Information
	Related Hardware and Software

	2 - Mechanical/Electrical Description
	Mechanical Description
	Electrical Description
	Transceiver Interface

	3 - Installation
	Hardware Configuration
	Rack Configuration
	ENI Installation
	Module Replacement

	4 - Programming
	Introduction
	Programming Overview
	Raw Ethernet Notes
	Data Formats
	Use of Hardware Interrupts in Racks Containing Ethernet or Network Modules
	Functions

	5 - Diagnostics and Troubleshooting
	A - Technical Specifications
	Ambient Conditions
	Dimensions
	System Power Requirements
	Maximum Transceiver Cable Length

	B - Connecting the ENI to the Transceiver
	C - Error Code Summary
	D - Glossary
	Document Improvement Form
	Back Cover

