AutoMax®
Control Block
Language

Instruction Manual J-3676-5

N Roclawell rutomation

Reliance Electric

The information in this user's manual is subject to change without notice.

WARNING

PROGRAMS INSERTED INTO THE PRODUCT SHOULD BE REVIEWED BY
QUALIFIED PERSONNEL WHO ARE FAMILIAR WITH THE CONSTRUCTION AND
OPERATION OF THE SYSTEM AND THE POTENTIAL HAZARDS INVOLVED.
FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN BODILY INJURY
OR DAMAGE TO EQUIPMENT.

WARNING

ALL USERS MUST PROVIDE A HARDWIRED EMERGENCY STOP CIRCUIT
OUTSIDE THE PROGRAMMABLE CONTROLLER CIRCUITRY. FAILURE TO
OBSERVE THIS PRECAUTION COULD RESULT IN BODILY INJURY OR DAMAGE
TO EQUIPMENT.

WARNING

ONLY QUALIFIED PERSONNEL MAY INSTALL, ADJUST, OPERATE, AND
MAINTAIN THIS EQUIPMENT. READ AND UNDERSTAND THIS INSTRUCTION
MANUAL BEFORE ANY WORK IS PERFORMED. FAILURE TO OBSERVE THIS
PRECAUTION COULD RESULT IN BODILY INJURY OR DAMAGE TO EQUIPMENT.

WARNING

ONLY QUALIFIED PERSONNEL WHO HAVE READ AND UNDERSTOOD ALL
APPLICABLE AUTOMAX INSTRUCTION MANUALS AND ARE THOROUGHLY
FAMILIAR WITH THE PARTICULAR APPLICATION MAY UTILIZE THE ON-LINE
PROGRAMMING OPTION PROVIDED IN THE AUTOMAX PROGRAMMING
SOFTWARE. FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN
BODILY INJURY OR DAMAGE TO EQUIPMENT.

Norton® is a registered trademark of Peter Norton Computing, Inc.

IBM-XT™ and AT™ are trademarks of IBM.

Toshiba™ is a trademark of Toshiba America.

Microsoft™ , Windows™, and MS-DOS™ are trademarks of Microsoft.

Reliance®, AutoMax®, and AutoMate® are registered trademarks of
Reliance Electric Company or its subsidiaries.

ReSource™, Shark™ and R-NET™ are trademarks of Reliance Eleciric
Company orits subsidiaries.

© Copyright Reliance Eiectric Industrial Company 1996.

1.0

20

3.0

4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0

18.0

Table of Contents

Introductionccciiiriiiinriinns e ieeeraaaaaes 1-1
1.1 Compatibility with Earlier Versions 1-1
1.2 Additional Informationo 1-2
1.3 Related Hardware and Software 1-2
Programming For AutoMax Systems00 241
21 Configuration oo 21
2.2 AutoMax ApplicationTasks oot 2-2
2.3 UDC Application Taskscouiiiiiimiiiiiinn ... 2-3
2.4 AutoMax Programming Convenlions 2-3
P I o - T 41 oo 2-3
242 Constantsco i e 2-4
243 Variables i e e 25
244 AITAYS ... i e e e 25
245 variable Control Typescooviin e inns 28
2.4.6 Pre-defined Common Memory Variables 2-9
Control Block Programmingccivrevrrncccnrennanana. 31
3.1 Formatof ComtrolBlocks iiiriiiinrnninnnn 31
3.2 TaskExecutiono 31
3.3 Variable Definition and Initialization 32
£ o7 11 T T T 4-1
Absolute Valueoiviinmn it i iis e san e B-1
Y 1= T 1 1 T 6-1
Amplifler i i it e 71
11 T« 8-1
BitSeleotcviiri i iiiiiii i iiaciarraan e, 9-1
COMPAreciiiiiiiiiiiie et aaacrearaantsacan 10-1
Counteriiiiiiiiitci sttt a st s baa s 11-1
Differencecccvriiiiniieiaiitostasannsnnansesnnnnnnun 12-1
FunctionGeneratorc.civicivrenrrarrasnnnnrnsssnannns 131
Inverer. ... i it r e 141
I 1 15-1
18 T £ | 16-1
MOV ...t ivvtiriitnrcsccnasssassanananrnsssnssnannnsrnssns 17-1

X 1 T 6 1941

20.0 PackBitsovvvmeiiiiii et a e 20-1
21.0 Pulse Multiplierottt aiaaaa 2141
220 RAMPivniiiriiieiniiinnenisansansesenasnanasnannssnns 22-1
230 Read Bits0iiiiiiiiean i iiiiieainaaar st e iinaranans 23-1
240 Read Wordsc..ciuieiinaereiarvrnerrosnsanenancnnes 241
25.0 RUNNIiNg AVeragec.cruuvinnrarcnsscinasnssanennses 25-1
26.0 SOUNVE vt iiii it iieseiea i iaa e carsansnannnnannnns 26-1
27.0 Sampled AVETagecccciuiiirenrrnrrerentiiiraararsonss 2741
280 Scale. i i it s sttt s a e 281
281 0verflowHandlingo i i e 28-2
28.2Application Noteso i 28-2
29.0 SearChcovvrriiee i i aaaiiaarran i a e 29-1
300 ShiftBitsccioiiiii ittt e e ar s 30-1
31.0 ShiftWordsiiiiiiiiiariiiaiaanrrsasrannsrarnnnn 311
320 Selectciiiviiiiir e ea i et e s i e e 321
33.0 SUMMETiitiiiirsarrrnnsncnnarcsassasssernnrerannns 331
34.0 SWiIteh ... i e i i i ra e 3441
35.0 TachlLossandOverspeedccciiiiraieerinnnnnnn 35-1
35.1 Setup Calculations and Block Equations 35-3
360 ThermalOverloadcciiiiiiiiiiiiii i eeanaaan 36-1
36.1 Setup Calculations and Block Equations 36-3
36.2Special NOteSccriiiii i e 36-3
37.0 Transition ciiiiiiiiiiei i eniiiia it 37-1
38.0 UnpackBitscciiiiiiiiiniiiieneisesstraansnannes 38-1
39.0 WriteBitso i i e 39-1
40,0 Write Words i i ittt e 40-1
CONTROL BLOCKS Dependent Upon the
SCANLOOPBLOCK ... ittt ianaainarairaassraananes 41-1
41.0 DifferentiatorLagcovieriiiieiiinarinnniiainnannans 41-2
411 DIFF_LAGwm Limitations i, 41-3
41.2 DIFF_LAG wig Limitationsc.. oo 414

42.0

43.0

44.0

45.0

46.0

47.0

48.0

49.0

50.0

51.0

52.0

Integrateccveiiiimi i it 42-1
42.1 INTEGRATE wm Limitations ooty 42-2
42.2 INTEGRATE K1 Limitationscooiviiiiiiiiit, 42-3
42.3 Calculating K1 for INTEGRATE Time Domain Applications 42-3
. Y 43-1
431 LAGwm Limitations i 43-2
432 LAG wig Limitationso 43-3
LEAD/LAGciiiiittiinrieracrsrnarssssasaesneisannnanns 441
44.1 LEAD_LAG, wid, wlg, and wm Limitations 44-2
Notch Filter iii it it it c i searnnenanes 45-1
High-pass Filter (Nth Order High-Pass Butterworth Filter) 46-1
46.1 HIGH_PASS FILTER wid Limitations 46-2
Low_Pass_Filter {Nth Order Low-Pass Butterworth Filter) 471
47.1 LOW PASS_FILTER wig Limitations 47-2
Notchn (Nth Order Notch Filter)coviinnnn, 48-1
48.1 NOTCHN wn Limitations o e, 48-2
Proportional + Integralc.coviimniiiieinnnannns 49-1
49.1 PROP_INT wm Limitations 49-3
49,2 PROP_INT wid Limitationsot 49-3
49.3 PROP_INT KP Limitationsccooiviiieann ot 49-4
2 0 50-1
501 KPLimitationsot e 50-7
50.2 KILimitationscovieir i e 50-7
50.3 KD Limitationsoooiiiiiann, N 50-8
50.4 LOOP TIME Limitationsciiiiiiiinmnnnirnnnns 50-8
50.5 DEAD_BAND Limitationscooi it 50-8
50.6 MAX_CHANGE Limitationscco0iiieins 50-8
Special Coefficient Restrictions00entt 5141
D-C Drive Current MinorLoopcccociiiiiiiiiiiinnnas 52-1
52.1 Input Keyword Definitions oot 52-3
52.1.1 Physical Configuration Inputs 52-5
52.1.2Loop Control Inputso 52-5
52.1.3Sequencing ControlInputs, 52-7
5214TestModelnputs........... .o 52-8
52.1.5 Drive Faults Programming Inputs 52-8
52.1.6 Drive Controlier Module (57C406) Switch Outputs 52-11
52.2 Qutput Keyword Definitionscoooiioin 52-11
52.2.1Loop Control Outputscciiiiiiininn, 52-11
52.2.2 Drive Faults and DiagnosticOutputs 52-12
52.3 Power Module Diagnostic Enhancements 52-13
52.3.1 Shorted SCR Diagnosticccoviiiii o, 52-14
52.3.2 Diagnostic Data Collection 52-15

52.4 Tach Loss Delta Threshold Adjustment
52.4.1 Making Tach Loss Adjustments
52.5 Line Synchronization Filter Adjustments
52.5.1 PLL Filter Adjustmentso,

52.6 Fast Bridge Change . .

52.6.1Hardware Requirementscciiiniinen..n.
52.6.2S5oftware Requirementso o
52.7 Drive IO Controller Write Registers

53.0 Execution Time Estimates

...................................

53.1 AutoMax Processor and AutoMax PC3000

Control Block Tasks ..
532UDCTasks

....................................

Appendices

Appendix A
Converting a Control Block Task to the Most Current Version A-1

Appendix B
BASIC Language Statements and Functions in
AutoMax Control Block Tasks

Appendix C
Control Blocks Supported in UDC Control Block Tasks C-1

Appendix D
BASIC Language Statements and Functions in UDC
Control Block Tasks ... i D-1

A

List of Figures

Figure 28.1 - Converting 4-20mato 0-10000 counts 28-3

Figure 50.1 - PIDBlock Diagram 50-3

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6

List of Tables

Input Parameters Summaryl 524
Organization of DIAG DATAArmaycooo.... 52-16
Maximum Armature Inductance for Fast Bridge Change 52-21
Maximum Execution Time Summary - AutoMax Tasks 53-2
Maximum Execution Time Summary - UDC Tasks 53-3

Maximum Execution Time Summary - AutoMax
PC3000 TasKSoviiiiiiii it iiiaiie e 53-4

1.0

1.1

INTRODUCTION

The products described in this manual are manufactured or
distributed by Reliance Electric Industrial Company.

The AutoMax Programming Executive software includes the
software used to create and compile Control Block programs. This
instruction manual describes AutoMax Control Block language for
Version 2.0 and later AutoMax Programming Executive software.

Features that are either new or different from those in previous
versions of the AutoMax Programming Executive software are so
noted. Appendix A describes how to convert a Control Block task
created with earlier versions of the Programming Executive to the
current version.

Compatibility with Earlier Versions

Version 2.0 of the AutoMax Programming Executive requires
AutoMax Processor M/N 57C430A or 57C431; Version 3.0 and later
require AutoMax Processor M/N 57C430A, 57C431, or 57C435. M/N
57C430 cannot co-exist in the same rack with M/N 57C430A,
57C431, or 57C435. Refer to Appendix E for a listing of the AutoMax
Processor modules that are compatible with Version 2 and later of
the AutoMax Programming Executive software.

This instruction manual is organized as follows:

1.0 Introduction
Where to find additional information
Related hardware and software

2.0 General information about programming for
AutoMax systems and Distributed Power systems

3.0 General information about programming in Control
Block language

4.0 SCAN LOOP block

5.0-40.0 Control Biocks not dependent upon the SCAN
LOOP block

41.0-53.0 Control Blocks dependent upon the SCAN LOOP
block

54.0 Execution time estimates

Appendix A Converting lasks created with previous versions of
the Executive software to the current version

Appendix B BASIC language statements and functions in
Control Block tasks

Appendix C Control Block functions supported in UDC Control
Block tasks

Appendix D BASIC language statements and functions
supported in UDC Contro! Block tasks

Appendix E AutoMax Processor compatibility with versions of
the AutoMax Programming Executive

The thick black bar shown at the right-hand margin of this page will
be used throughout this instruction manual to signify new or revised
text or figures.

1-1

1.2

1.3

Additional Information

You should be familiar with the instruction manuals which describe
your system configuration. This may include, but is not limited to,
the following:

e J-3618 NORTON EDITOR REFERENCE MANUAL

e J-36843 AutoMax CONFIGURATION TASK INSTRUCTION
MANUAL

e J-3650 AutoMax PROCESSOR INSTRUCTION MANUAL

e J-3675 AutoMax ENHANCED BASIC LANGUAGE
INSTRUCTION MANUAL

e J-3677 AutoMax LADDER LOGIC INSTRUCTION MANUAL

e J2-3018 AutoMax REMOTE |/O SHARK INTERFACE
INSTRUCTION MANUAL

e J2-3093 AutoMax Ladder Language Editor
e J2-3094 AutoMax Enhanced Ladder Language

& Your ReSource AutoMax PROGRAMMING EXECUTIVE
INSTRUCTION MANUAL

e Your personal computer, DOS and Windows instruction manuals

e |EEE 518 GUIDE FOR THE INSTALLATION OF ELECTRICAL
EQUIPMENT TO MINIMIZE ELECTRICAL NOISE INPUTS TO
CONTROLLERS

Related Hardware and Software

The AutoMax Programming Executive software is used with the
following hardware and software, which is sold separately.

1. M/N 57C430A, 57C431, or 57C435 AutoMax Processor.

2. IBM-compatible 80386-based personal computer running DOS
version 3.1 or later. Version 4.0 and later Executive Software
requires an 80486-based computer (or higher) running
Windows 95.

3. M/N 61C127 RS-232C ReSource Interface Cable. This cable is
used to connect the personal computer to the Processor
module.

4. M/N 57C404A (and later) Network Communications module.
This module is used to connect racks together as a network and
supports communication with all racks on the network that
contain 57C404A modules through a single Processor module.
M/N 57C404 can be used to connect racks on a network;
however, you cannot communicate over the network to the
racks that contain M/N 57C404 Network modules. You must
instead connect directly to the Processors in those racks.

5. M/N 57C413 or 57C423 Common Memory module. This module
is used when there is more than one Processor module in the
rack.

6. M/N 57C492 Battery Back-Up. This unit is used when thereis a
M/N 57C413 Common Memory module in the rack.

10.

1.

12.

M/N 57C384 Battery Back-Up Cable. This cable is used with the
Battery Back-Up unit.

M/N 57C554 AutoMax Remote I/O Shark Interface Module. This
module is used to connect a Shark remote rack to the AutoMax
Remote I/O network.

B/M 57552 Universal Drive Controller module. This module is
used for drive control applications.

M/N 57C560 AutoMax PC3000 Processor/Scanner module. This
module is a full-size ISA module that mounts in the personal
computer.

M/N 57C565 AutoMax PC3000 Serial module. This module is a
full-size ISA module that mounts in the personal compulter.

M/N 57C570 Industrial AutoMax PC3000. This unit consists of a
panel-mount, industrial grade enclosure containing an AutoMax
PC3000 Processor/Scanner module, an AutoMax PC3000 Serial
Interface module, and a power supply.

1-3

2.0 PROGRAMMING FOR

2.1

AutoMax SYSTEMS

In AutoMax systems, application programs, also referred to as tasks,
can be written in Ladder Logic/PC language, Control Block

language, and Enhanced BASIC language. Control Block language

is typically used for programming process control ioops. It consists

of BASIC statements and Control Block function calls. Refer to

J-3675, J-3677, and J2-3094 for more information about Enhanced
BASIC and Ladder Logic/PC programming.

In addition to multi-processing, AutoMax systems incorporate
muiti-tasking. This means that each AutoMax Processor (up to four)
in a rack allows real-time concurrent operation of muitiple
application tasks.

Multi-tasking features allow the programmer's overall control
scheme to be separated into individual tasks, each written in tha
programming language best suited to the task. This simplifies
writing, check-out, and maintenance of programs; reduces overall
execution time; and provides faster execution for critical tasks.

Programming in AutoMax systems consists of configuration, or
defining the hardware, system-wide variables, and application tasks
in that system, as well as application programming.

Configuration

Version 3.0 and Later Systems

If you are using AutoMax Version 3.0 or later, you define
system-wide variables within the AutoMax Programming Executive.
This eliminates the requirement to write a configuration task for the
rack. See the AutoMax Programming Executive (J-3750) for
information about configuring variables.

The information that follows is applicable if you are using AutoMax
Version 2.1 or earlier. If you are using AutoMax 3.0 or later, you can
skip over the remainder of this section and continue with 2.2,

Version 2.1 and Earlier Systems

AutoMax Version 2.1 and earlier requires a configuration task in
order to define the following:

1. All tasks that will reside on the Processors in a rack.
2. Allvariables that equate to physical I/O in the system.

3. Al other variables that must be accessible to all
Processors in the rack.

One configuration task is required for each rack that contains at
least one Processor. The configuration task must be locaded onto the
Processor(s) in the rack before any application task can be
executed because it contains information about the physical
organization of the entire system.

2.2

The configuration task does not actually execute or run; it serves as
a central storage location for system-wide information. Note that
local variables, those variables that do not need to be accessible to
more than one task, do not need to be defined in the configuration
task. Refer to J-3649 for more information about configuration tasks.

AutoMax Application Tasks

AutoMax Processors allow real-time concurrent operation of multiple
programs, or application tasks, on the same Processor. The tasks
are executed on a priority basis and share all system data.

Each task operates on its own variables. The same variable names
may be used in different tasks, but each variable is only recognized
within the confines of its task unless it is specifically designated a
COMMON variable. Changing local variable ABC% (designated
LOCAL) in one task has no effect on variable ABC% in any other
task.

Muiti-tasking in a contro! application can be compared to driving a
car. The programmer can think of the different functions required as
soparate tasks, each with its own priority.

In driving a car, the operator must monitor the speedometer,
constantly adjust the pressure of his foot on the gas pedal, check
the rearview mirror for other traffic, stay within the boundaries of his
lane, etc., all while maintaining a true course to his destination. All of
these functions have an importance or priority attached to them,
with keeping the car on the road being the highest priority. Some
tasks, like monitoring the gasoline gauge, require attention at
infrequent intervals. Other tasks require constant monitoring and
immediate action, such as avoiding obstacles on the road.

In a control application the Processor needs to be able to perform
calculations necessary for executing a control scan loop, monitor an
operator's console, log error messages to the console screen, etc.
Of these tasks, executing the main control loop is obviously the
most impaortant, while logging error messages is the least important.
Multi-tasking allows the control application to be broken down into
such tasks, with their execution being dependent upon specified
“events,” such as an interrupt, operator input, or the expiration of a
time interval.

The following table is a representation of typical tasks found in a
control application and the kind of event that might trigger each.

Task Triggering Event
Execute main control loop Expiration of a

hardware timer that
indicates the interval
at which to begin a
new scan

Respond to external 1/ input Generation of a
hardware interrupt by
an input module

Read operator data Input to an operator
panel
Log information Expiration of a

software timer

Each of these tasks would be assigned a priority level (either in the
specific configuration task for the rack, or in later versions of the
Programming Executive software, through the configuration option).
The priority determines which task should run at any particular
instant. The more important the 1ask, the higher the task priority.

2.3 Univeral Drive Control Application Tasks

Universal Drive Control (UDC) Control Block tasks are used
exclusively for drive control applications. Each UDC module in an
AutoMax rack can run up to 2 independent Control Block tasks (one
for Drive A and another for Drive B) that provide speed loop control.
UDC Control Block tasks share all system data. These tasks are not
assigned a priority.

Each task operates on its own variables. The same variable names
may be used in different tasks, but each variable is recognized only
within the confines of its task unless it is specifically designated a
COMMON variable. Changing local variable ABC% (designated
LOCAL) in one task has no effect on variable ABC% in any other
task.

UDC Control Block tasks can use maost, but not all, of the Control
Block function calls in the AutoMax Control Block language. See
Appendix C for a list of the Control Block functions that are allowed
in UDC Control Block tasks. Also, note that the descriptions of
Control Block functions in this manua! indicate whether a pariicular
function can be used in UDC Control Block tasks.

UDC Control Block tasks can be up to 20 Kbytes in size. These

tasks are run at a fixed tick rate of .5 milliseconds. The maximum

scan time allowed (set by using the SCAN LOOP function) is 20 ticks
(10 milliseconds). Note that if a UDC module will be running two

tasks, both must be assigned the same scan time. See section 53.0 ||
for information regarding how to estimate execution time for a UDC
Control Block task.

2.4 AutoMax Programming Conventions

This section describes programming conventions that apply to all
Configuration, BASIC, Control Block, and Ladder Logic/PC tasks.

2.4.1 Naming

All task names are limited to 8 characters. The initial character must
always be a letter. Only letters (A-Z), underscores (_), and numbers
(0-9) are permitted. Spaces and other characters are not permitted
in task names. The file extension is used to identify the task.
Extension .CNF identities configuration tasks (used only in
Programming Executive Version 2.1 and earlier). .BAS is used for
BASIC tasks. AutoMax Control Block tasks use extension .BLK. UDC
Control Block tasks also use extention .BLK. PC/Ladder Logic tasks
have a .PC extension.

Variable names in BASIC, AutoMax Controf Block, and UDC Contro!
Block tasks are limited 10 16 characters. Variable names in Ladder
Logic/PC tasks are limited to 14 characters (16 characters in V4.0
and later). The initial character of variable names must always be a
letter or an underscore. Only letters (A-Z), numbers (0-9} and the

2.4.2

2-4

underscore (_) are permitted within the variable name. Spaces and
other characters are not permitted in variable names. Terminating
characters used to specify the variable type (see section 2.4.3) are
not included in the size limits.

Constants

A constant, also known as a literal, is a fixed value that is not
associated with a variable name. Listed below are the five types of
constants that can be used in AutoMax, along with their size
limitations:

1.

Integer Constants (Integers and Double Integers)

Single integer value range is +32767 to —32768 with no
fractional part. Double integer value range is +2147483647 to
—2147483648 with no fractional part.

Hexadecimal Constants

Hexadecimal constants are integers in base 16, or “hex” format.
The allowable range of hexadecimal constants is 0 to
OFFFFFFFFH. Hexadecimal constants are not sign-extended
when they are stored. Leading zeroes are used to fill in any of
the hex digits not specified. This means that numbers must be
entered as 2’s complement signed numbers. For example, if you
enter 0F371H, it will be stored as 0000F371H, not as
OFFFFF371H.

A hexadecimal number has three parts:
{O}NNNNNNNNH

where: 0 = required only when the first digit of the hexadecimal
number is an alpha character (A-F) NNNNNNNN = the
hexadecimal number H = specifies that the number is in
hexadecimal format; always required

Real Constants

Real constants are decimal values. The value can be in the
following ranges:

9.2233717 x 10**18 > positive value >
54210107 x 10 ** (—20)
—9.2233717 x 10**18 > negative value >
—2.7105054 x 10 ** (-20)

Only eight digits of significance are accepted. The format for
entering real constants is as follows:
{sign}{digits}{.}{E}{sign}{digits}

For example: —1234.5678E+ 11

Use scientific notation to enter large numbers. Use double
asterisks to indicate exponentiation.

String Constants

String constants are sequences of alphanumeric and other
printable characters. Line terminators (<CR>) are not allowed.
String constants must be enclosed either in single or double
quotes. If one type of quotes is used in the sequence itself, the
other type must be used to enclose the sequence. String
constants may be up to 132 characters long.

243

5. Boolean Constants
There are four boolean constants: TRUE, ON, FALSE, and OFF.

Variables

A variable is a named location that represents a value or a physical
IfO location. A variable may be either a simple variable or a
subscripted (array) element. Depending upon the operations
specified in the application task, the value of a variable may change
from line to line. BASIC tasks use the most recently assigned value
of a variable when performing calculations. Control Block and
Ladder Logic/PC tasks latch the value of common double integer,
integer, and boolean variables at the beginning of the task scan to
ensure that external inputs will not change state during a scan.

The data type of a variable determines the type of information stored
in that variable. For variables that contain numeric information, the
data type also determines the range of values that may be stored in
the variable. Values that are not in the allowable range will cause an
error when the task is compiled or when it is put into run, depending
upon the type of error. The data type of a variable is specified with a
terminating character for four of the five types of variables. The fifth
type, real variables, do not have a terminating character.

1. Long Integer or Double Integer Variables

Used to store 32 bits. The value can be in the range
+2147483647 to —2147483648 with no fractional part. The
terminating character is !. If you assign a real number (see #3
befow) to an integer variable, the fractional part will be
truncated.

2. Integer or Single Integer Variables

Used to store 16 bits. The value can be in the range +32767 to
--32768 with no fractional part. The terminating character is %. If
you assign a real number (see #3 below) to the variable, the
fractional part will be truncated. Note that all internal integer
calculations are in double precision, or 32 bits.

3. Real Variables

Used to store a decimal value. The value can be in the following
ranges:

9.2233717 x 10**18 > positive value >
5.4210107 x 10 **
(—20) —9.2233717 x 10**18 > negative value >
—2.7105054 x 10 ** (—20)

There is no terminating character for real variables. Use
scientific notation to enter large numbers. Use double asterisks
to indicate exponentiation.

Only eight digits of significance are accepted. The format for
entering real constants is as follows:
{sign}{digits}{.}{E}{sign} {digits}
For example: —1234.5676E+11

4, Boolean Variables

Used to store the status of 1 bit. The value can be either TRUE
or FALSE or ON or OFF. The terminating character is @. Note
that in BASIC tasks, the inverted sense (negative of the current

2-5

2-6

2.4.4

state) of a boolean variable is indicated with NOT. in Control
Block language only, the inverted sense of a boolean variable
can be indicated by entering a minus sign in front of the name
when referencing it in the application task. For example,
STATUS@ indicates the normal sense of variable STATUS@,
while —STATUS@ would indicate the inverted sense of variable
STATUS@. Note that inverted booleans cannot be assigned to
outputs from control blocks.

5. String Variables

Used to store any alphanumeric sequence of printable
characters, including spaces, tabs, and special characters. The
terminating character is $.

The sequence in a string variable cannot include a line
terminator (<CR>). When defined, the sequence must be
enclosed either in single or double quotes. If one type of quotes
is used in the sequence itself, the other type must be used to
enclose the sequence.

Version 1.0 Executive software allowed a fixed maximum length
of 31 characters for string variables. Version 2.0 and later aliow
string variables of variable length, from 1 to 255 characters. To
specify the maximum size of a string variable, add a colon and a
number (1-255) immediately after the $ character. For example,
defining A$:50 as a local variable in an application task will
reserve space for 50 characters. Note that if no length is
specified, the default length is 31.

Arrays

Array variables are used to store a collection of data all of the same
data type. Arrays are permitted for all data types. Arrays are limited
to four dimensions, or subscripts. The number of elements in each
dimension is limited to 65535. The term array is used to denote the
entire collection of data. Each item in the array is known as an
element.

Array variables are specified by adding a subscript(s) after the
variable name which includes the appropriate terminating character
to denote the type of data stored in the array. The terminating
character is followed by a left parenthesis (or bracket), the
subscript(s), and a right parenthesis (or bracket). Multiple subscripts
are separated by commas. Note that subscripts can be integer
constants as well as arithmetic expressions that result in integer
values.

array variable name

A%(5)
/ subscript

terminating character
{denotes variable

type)

An array with one dimension, i.e., one subscript, is said to be
one-dimensional. An array with two subscripts is said to be
two-dimensional, etc. The first element in each dimension of the
array is always element 0. Therefore, the total number of elements in

each dimensian of the array is always one more than the largest
subscript.

Example 1 - One-dimensional array

A% 0|12} 3| 41656

185 2| 53| 79| 99|122

value of A

Example 2 - Two-dimensional array
B% (6. 3)

0y 1] 21 3| 4| 5] 6

0 |185| 2 | 53] 79| 99|122| 40

B% 1170|36|46|31|34|85]| 6

2| 77| 73] 21|3656]476 51} 47
3 | 18| 23] 53342} 39 |224]107

In the case of string arrays, version 1.0 Executive software always
allocated the maximum amount of memory for each element in the
array, regardless of whether the string stored in that element was ot
the maximum length, 31 characters. Version 2.0 {(and later)
Executive software allows the programmer to specify the maximum
size of elements in the array, from 1 to 255 characters.

To specify the maximum size of string variables in an array, add a
colon and a number (1-255) immediately after the $ character when
declaring the variable in an application task or defining it during
configuration. For example, defining A$:10(20) as a local variable in
an application task allocates space for 21 string values of 10
characters each. Note that if no length is specified in the initial array
reference, the default maximum is 31.

To define an array that will be common, i.e., accessible to all tasks in
the rack, you need to first define the variable. If you are using
AutoMax Version 2.1 or earlier, this is done with a MEMDEF or
NVMEMDEF statement in the configuration task for the rack. It you
are using AutoMax Version 3.0 or later, common variables are
defined within the Programming Executive. For example,
ARRAY1@(10) will allocate space for 11 boolean variables. Then, in
an application task for the rack, you declare the array a COMMON
variable as follows:

COMMON ARRAY1@(10).

Each element of the array that will be used in the task can be
defined with LET statements as follows:

LET ARRAY1@(0) = TRUE

(boolean values can only be TRUE/FALSE or ON/OFF). Other
application tasks in the rack can access the value in variable
ARRAY 1@(0) simply by declaring it a COMMON variable.

2.4.5

2-8

Variable Control Types

The control type of a variable refers to the way the variable is
declared or defined in the rack configuration and application tasks.
There are two control variable types in AutoMax systems, local and
common.

1.

Local

Local variables are variables that are not defined in the
configuration for the rack and are therefore accessible only to
the application task in which they are defined. BASIC and
Control Block tasks must define the variables with a BASIC
LOCAL statement. For Ladder Logic/PC tasks, the editor
prompts for whether the variable is local or common when the
task is being created.

In BASIC and Control Block tasks, local variables can be
defined as tunable. Tunables are variables whose value can be
tuned, i.e., changed within limits, by the operator through the
On-Line menu of the Executive software. The value of tunable
variables can not be changed by application tasks. BASIC and
Control Block tasks must define tunable variables with a
variation of the BASIC LOCAL statement that includes the tuning
parameters. Ladder Logic/PC tasks cannot use tunable
variables.

The value of local variables at the time of initial task installation
is always 0. The effect of a STOP ALL or a power failure on
variable values in the rack depends on the variable type. Local
tunable variable values in both AutoMax and UDC application
tasks is always retained. Local variabte values are retained for
AutoManx tasks, but not for UDC tasks.

AutoMax Processors will retain the last values of all local
variables. UDC modules will retain the variable values for the
following: parameter configuration data, UDC test switch
information, and D/A setup configuration. The variable values of
the following input data will also be retained: feedback registers,
UDC-PMI communication status registers, and UDC task error
log information. UDC modules will NOT retain local variable
values and data found in the following registers, which are
considered outputs: command registers, application registers,
the ISCR (interrupt status and control register), scans per
interrupt register, and scans per interrupt counter register. See
the AutoMax Programming Executive for more information on
the STOP ALL and system re-initialization conditions.

Common

Common variables are variables that are defined in the
configuration for the rack and are therefore accessible to all
application tasks in the rack. There are two types of common
variables, those that refer to memory locations, and those that
refer to actual physical I/O locations. The two types are defined
differently in the configuration task for the rack.

Common memory variables can be of any data type. They may
be read to or written from. Common |fO variables are long
integer, integer, or boolean variables that represent actual
physical IfO locations. Common I/O variables that represent
inputs may be read but not written to. I/O variables that
represent outputs may be read or written to.

2.4.6

All BASIC and Control Block tasks that need to access common
variables can do so by using the BASIC statement COMMON (or
GLOBAL). For Ladder Logic/PC tasks, the editor prompts for
whether the variable is local or common when the task is being
created, Al least one task in the rack should also initialize
common memory variables, i.e., assign values to them, if they
need to be at a known slate other than 0.

The value of common variables at the time of initial task
installation depends upon whether the variable references
memory or physical /O locations. Common memory variables
are always 0 at task installation. Common I/O variables that
represent outputs are always 0. Commeon /O variables that
represent inputs are always at their actual state.

After a STOP ALL condition or a power failure followed by a
system-restart, common memory variables that are defined as
volatile memory in the configuration for the rack are 0. Common
memory variables that are defined as non-volatile memeory in the
configuration retain their last value. Common variables that
represent /O locations are at 0 for outputs and at their actual
state for inputs. Note that the UDC dual port memory is treated
like /O variables. See the AutoMax Programming Executive for
more information on the STOP ALL and system-restart
conditions.

Pre-defined Common Memory Variabies

The following common memory variables are pre-defined for every
rack. However, they do not appear on the form for common memory
variables. You must enter these variable names on the form if you
want to use these variables in application tasks.

AUTORUNSTATUS@ - True when AUTO RUN is enabled for the

rack; false if AUTO RUN is not enabled

FORCINGSTATUS®@ - True when a variable is forced in the rack;

false when no variables are forced in the
rack

BATTERYSTATUSO@ - True when the on-board battery of the

Processor module or Common Memory
module in slot 0 is OK

BA‘”‘E HYSTATUS1 @ - LI T L e L A e 1 "on n
BA‘”‘EHYSTATUS2@ - LI O T L [L 2 nonon
BA"TERYSTATUSa@ - P T N A T 3 M oNon
BA"—I'EHYSTATUS4@ - noH M B N o o4& NN NN 4 nooN N

29

3.0

3.1

3.2

CONTROL BLOCK
PROGRAMMING

AutoMax Control Block is a high-level language used for
programming process controi loops. It consists of BASIC language
statements and function calls, or blocks, that are commonly used in
the design of control systems. These functions have a graphic form
that is used during the design and check-out phase of a project, as
well as a textual form that is used by the programmer for creating
the program. The graphic form includes an abbreviated symbol for
each input and output. An arrow pointing into a block indicates a
required input parameter. An arrow pointing out of a block indicates
a required output parameter.

A file that contains templates of the textual form of all blocks is
loaded onto the hard disk of the personal computer when the
Executive software is installed. The file is named “TEMPLATE.BLK”
and is stored in the AutoMax installation directory. You can access
the fite when creating Control Block tasks using a text editor.

TEMPLATE.BLK can be used when creating either AutoMax Control
Block tasks or UDC Control Block tasks. AutoMax PC3000 Control
Block tasks are identical to AutoMax Control Block tasks. Note that
some of the blocks listed in TEMPLATE.BLK cannot be used in UDC
Control Block tasks. The text editor will not prevent you from using
an illegal block, but the compiler will catch the error. The task will
not compile successfully until any illegal blocks are removed. Refer
to Appendix C for a list of the Control Block functions supported in
UDC Control Block tasks.

Format of Control Blocks

A control block, or function call, consists of the following:

a line number: positive integer in the range 1-32767 inclusive
the keyword CALL

the function name that identifies the function

the parameter list, which contains the inputs and outputs for the
function.

Note that there are three types of inputs: optional, required, and
default. Optional means that the value or parameter does not need
to be entered. Required means that the value/parameter must be
entered. Default means that the value/parameter does not need to
be entered by the user, but that the value is still required in order to
execute the function and, if the user does not enter a value, the
default value will be used in executing the function.

Task Execution

Each AutoMax Control Block task or UDC Contro! Block task must
include a SCAN LOOP block. The SCAN LOOP block specifies the
periodic interval at which the task will execute. The SCAN LOOP

block must be the first block called in a Control Block task. Any

BASIC statement that could cause the task to be suspended is not
permitted. The BASIC statement END must be executed at the end
of each scan of a Gontrol Block task. See Table 4 and 5, Maximum

3-1

3.3

Execution Time Summary, for information on execution times for all
blocks. Note that UDC Control Block tasks can use only the blocks
listed in Table 5. See the AutoMax Programming Executive
instruction manual for more information on task execution.

Variable Definition and Initialization

All variables used in the task must be defined using the BASIC
statements COMMON or LOCAL at the beginning of the scan before
the SCAN LOOP block. All variables that must be at a known state
or at a non-zero state must also be initialized in the task, i.e., a value
must be assigned to them, before the SCAN LOOP block. Variables
are initialized using the BASIC statement LET or the BASIC relational
operator “=".

At the beginning of each scan, the values of the following are
latched, i.e., read into a local buffer for reference throughout the
scan: all simple (non-subscripted) common integer, double integer,
boolean variables. This ensures that external inputs will not change
state during a scan. Reals, strings, and array variables of any data
type are not latched.

As the task executes, each block will read/write simple common
variables of integer, double integer, and boolean type to this local
buffer. Each block that references these variables will always see the
value of those variables as currently stored in the buffer, even if
another task modifies the actual state of the variables in question. At
the end of the Control Block task, all buffered variables are
examined to see if they are different from their initial state. if so, the
new value is written to the actual variable.

Note that BASIC statements, whether in a BASIC task, an AutoMax
Control Block task, or a UDC Control Biock task, always reference
the current value/state of all common variables. Variables are not
buffered for BASIC statements. Instead, as they are referenced via
the BASIC statement, they are read from and written to their actual
location, whether it is a common memory location or a common /O
point.

For example, Control Block task ABC references variable
COMM_VAR% from several control block statements within the task.
Task XYZ, which is in the same Processor module or another
Processor module in the same rack, writes to COMM_VAR%, At the
start of the scan of ABC, the value of COMM_VAR% is 100 and is
read and stored in the local buffer of ABC. Task XYZ runs and
changes the value of COMM_VAR% to 299 before task ABC has
completed its scan. Since the buffered value is used, all control
block statements that reference COMM_VAR% will see 100 rather
than 299 as the value of COMM_VAR%.

WARNING

IF BASIC STATEMENTS ARE USED WITHIN A CONTROL BLOCK TASK, ENSURE
THAT A CONFLICT DOES NOT ARISE BETWEEN A CONTROL BLOCK’S USEOF A
PARTICULAR COMMON VARIABLE AND A BASIC STATEMENT'S USE OF THE
SAME COMMON VARIABLE. A CONFLICT MAY ARISE IF A BASIC STATEMENT
REFERENCES A COMMON VARIABLE ALSO REFERENCED BY A CONTROL
BLOCK STATEMENT WITHIN THE TASK. FAILURE TO OBSERVE THESE PRE-
CAUTIONS COULD RESULT IN BODILY INJURY OR IN DPAMAGE TO OR DE-
STRUCTION OF THE EQUIPMENT.

In the example below, if a BASIC statement produces variable
COMM_VAR?%, subsequently referenced as an input to a

control block statement, the DIFFERENCE block will not see the
new state of COMM_VAR% produced by statement 101. Instead, it
will see the state produced during the last scan of the task. This is
because the DIFFERENCE block will obtain the value of

COMM _VAR% from the LOCAL buffer and the BASIC statement at
line 101 wilt write the new value for COMM_VAR% to its common
location. This value will then be read into the task’s LOCAL buffer at
the start of the next scan.

101 COMM_VAR% = LOCAL_A% + LOCAL + C%

204 CALL DIFFERENCE(INPUT1 = COMM_VAR%, &

INPUT2 = FDBK%, OUTPUT = CNTL_ERR%)

Control Block tasks in which BASIC statements and control blocks
reference the same simple common integer, double integer, and
boolean variables must be constructed taking into account the fact
that BASIC statements will always reference the actual current value
of the variable, whereas control blocks will always reference the
value of the variable that is in the buffer.

Potential problems can be avoided if both BASIC statements and
control blocks in the task use local variables, or if common variables
used in BASIC statements are not used by any control blocks.

Note that is you define both an integer and bits within that integer,
the variable values are stored in the Control Block task buffer
independently. If you write to the integer variable in the buffer (i.e.,
with a Control Block statement), you do not affect the integer’s bits
within the buffer. if you uss BASIC statements to write to the integer
or bits within the integer, you are referencing the actual variable
values, not the values in the buffer. Iif you want to change the value
of an integer and the bits within it, use BASIC statements to do so.

See Appendix B for the BASIC statements that can be used in
AutoMax Control Block tasks. See Appendix D for the BASIC
statements that can be used in UDC Control Block tasks. See the
Enhanced BASIC Language instruction manual, J-3675, for error
codes that can occur when application tasks are compiled and
when they are put into RUN.

33

4.0 SCAN LOOP

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

Function

The SCAN LOOP block is used to define the time intervals at which
the task will execule. The periodic interval can be conirolled by
either the AutoMax Processor’s or UDC module’s real time clock or
a system EVENT (for AutoMax Processor only) that is defined prior
to the call of this block.

Note that this block is required in every AutoMax Control Block task
or UDC Control Block task. The SCAN LOOP block must be the first
block called. All definition of variables and initialization required
must occur before this block is called.

This block also performs the function of tatching all simple common
integer (%}, double integer {1}, and boolean (@) variables defined
within the lask each time the task runs.

Program Statement

CALL SCAN_LOOP(TICKS=ticks%, EVENT=event name})

Inputs
TICKS =

Specifigs the periodic interval of execution for the
control loop, type INTEGER. For versions of the
AutoMax Programming Executive earlier than 3.1, a tick
is defined as 5.5 milliseconds. The AutoMax
Programming Executive Version 3.1 (and later) allows
you to assign a tick rate ranging from 0.5 milliseconds
to 10 milliseconds for each AutoMax Processor. The
default tick rate is 5.5 milliseconds.The tick rate for UDC
modules is fixed at .5 milliseconds. The maximum
number of ticks for UDC Control Block tasks is 20. See
J-3750 or J2-3045 for more information. This parameter
must be specified and must be specified as a literal
value only {variable name not accepted).

EVENT =

Specifies the name of the previously defined (through a
BASIC statement) hardware event that causes the task

to run. This parameter is optional. If specified, the task

will execute based on the event. If not specified, the task
will execute based on the system clock. This parameter
cannot be specified for an AutoMax PC3000 Control I
Block task or a UDC Control Block task.

Even if the EVENT input is programmed, the TICKS input must still
be programmed. The TICKS input is used to define the scan period
of the task that is required when making scan-time dependent
coefficient calculations for frequency-based control blocks

4-1

4-2

(PROP_INT, LAG, efc.).

100 COMMON ISCR%

500 EVENT NAME=START_TASK, &
INTERRUPT_STATUS =ISCR%, TIMEQUT=6

1000 CALL SCAN_LOOP(TICKS=4, EVENT=START_TASK)

The EVENT input parameter is intended to be used for AutoMax
Processor control loop tasks having a feedback parameter obtained
from an interrupting 1/O module. There are presently four input
modules that have this ability: the Resolver input Module (67C411)
the 32 Channe! Input Module (57C419), the 2 Channel Analog Input
Module (57C409), and the Pulsetach Module (67C421). These
modules have the ability to latch the input data when the interrupt is
generated. This effectively “freezes” the data in time until the task
that uses it gets its turn to execute and read it from the input
module.

The period at which the data is latched and the interrupt is
generated is programmable. Refer to individua! 1/O module
documentation for more information.

Note that the BASIC statement GOTO is not permitted to reference a
SCAN_LOOP block or any program line that precedes this block. A
BASIC END statement must be executed every scan.

5.0

ABSOLUTE VALUE

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

—> | ABS 0]

Function
OUTPUT = | INPUT |

Program Statement

CALL ABSOLUTE_VALUE(&
INPUT = input%, &

OUTPUT = output%)

Inputs

[INPUT) =

INTEGER signal input. This parameter must be specified
as a variable name only (literal value not accepted).

Outputs

O (OUTPUT) =

INTEGER signal output. This parameter must be
specified.

5-1

6.0

ALARM

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

HHL AHH

HL AH
! | ALARM

LL AL

LLL ALL

Function

if INPUT is equal to or exceeds any of the alarm limits, the proper
ALARM output(s) are set TRUE.

Program Statement

CALL ALARM(INPUT =input%,
HIGH_LIMIT=high_limit%,
LOW | LIMIT=low ' limit%,
HIGH_HIGH_LIMIT=high_high_limit3%,
LOW LOW LIMIT= low_low_limit%,
ALARM HIGH alarm hlgh@
ALARM LOW alarm_low@,
ALARM_HIGH_HIGH=alarm_high_ hugh@
ALARM LOW LOW= alarm_low_low@)

o Qo Qo Qo Qo Lo Qo Lo

Inputs

I (INPUT) =
Signal input, type INTEGER. This parameter must be
specified as a numeric symbol only (literal value not
accepted).

HL (HIGH_LIMIT) =

Alarm high limit, type INTEGER. This is an optional
parameter. It sets the high limit alarm value. The default is
+32767.

LL (LOW LIMIT) =
Alarm low limit, type INTEGER. This is an optional
parameter. It sets the low limit alarm value. The default is
-32768.

6-1

6-2

HHL (HIGH_HIGH_LIMIT) =
Alarm high-high limit, type INTEGER. This is an optional

parameter. It sets the high_high limit alarm value. The
default is +32767.

LLL {LOW _LOW_LIMIT) =
Alarm low-low limit, type INTEGER. This is an optional

parameter. it sets the low-low limit alarm value. The
default is -32768.

Outputs

AH {ALARM_HIGH) =
Alarm high output, type BOOLEAN. This parameter is

optional. If INPUT is greater than or equal to HIGH_LIMIT,
then ALARM_HIGH output is set TRUE.

AL (ALARM_LOW) =
Alarm low output, type BOOLEAN. This parameter is
optional. If INPUT is less than or equal to LOW_LIMIT,
then ALARM_LOW output is set TRUE.

AHH (ALARM_HIGH_HIGH) =

Alarm high-high output, type BOOLEAN. This parameter
is optional. If INPUT is greater than or equal to
HIGH_HIGH_LIMIT, then ALARM_HIGH_HIGH output is
set TRUE.

ALL (ALARM_LOW_LOW) =
Alarm iow-low output, type BOOLEAN. This parameter is
optional. If INPUT is less than or equal to
LOW_LOW_LIMIT, then ALARM_LOW_LOW output is set
TRUE.

Notes

1. The order in which the outputs are programmed is unimporiant.
However, a minimum of one output must be programmed. If this
requirement is not met, a compilation error will occur.

7.0

AMPLIFIER

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

Maximum ‘n’ = 8

Function
OUTPUT = (INPUT1 * GAIN1 +...INPUTn * GAINN)/SCALE)

Program Statement

CALL AMPLIFIER({INPUT1=input1%,
GAIN1 = gain1%,...,
INPUTN = inpuin,
GAINn = gainn%,
SCALE = scale%,
OQUTPUT = output%)

Qo Qo Qo Qo Qo

Inputs

1 (INPUT) =

INTEGER signal type 1. This parameter must be specified.
G1 (GAIN) =

INTEGER gain 1. This parameter must be specified.

In (INPUTn) =

INTEGER signal input n. This is an optional parameter. A
maximum of 8 input/gain pairs can be specified.

Gn (GAINn) =

INTEGER gain n. This is an optional parameter; however, a
GAIN must be specified for each INPUT.

SC (SCALE) =
INTEGER scale factor. The default for this parameter is 10000.

Outputs

O (OUTPUT) =
INTEGER signal output. This parameter must be specified.

7-1

Notes

1. The order in which (INPUTn) and (GAINn) pairs are entered is
not imporiant. However, it is required that, for “m” channels
used, channels 1 through “m” be programmed. In other words,
the channels used must be contiguous beginning with channel
1. A compilation error will occur if this requirement is not met.

The following is a correct statement:

CALL AMPLIFIER(
INPUT1 = INA%,GAIN1 = GAINA%,
INPUT2 = INB%,GAIN2 = GAINB%,
INPUT3 = INC%,GAIN3 = GAINC%,
INPUT4 = IND%,GAIN4 = GAIND%,
SCALE = scale%,OUTPUT = output%)

The following is also correct, illustrating that the order of entry is not
important:

Re Ro Qo po Qo

CALL AMPLIFIER(&
INPUT2 = INB%,GAIN2 = GAINB%, &
INPUT4 = IND%,GAIN4 = GAIND%, &
INPUT3 = INC%,GAIN3 = GAINC%, &
INPUT1 = INA%,GAIN1 = GAINA%, &
SCALE = scale%,0UTPUT = output%)

The following is an incorrect statement because the channels are

not contiguous:

CALL AMPLIFIER(&
INPUT1 = INA%,GAIN1 = GAINA%, &
INPUT3 = INC%,GAIN3 = GAINC%, &
INPUT4 = IND%,GAIN4 = GAIND%, &

SCALE = scale%,OUTPUT = output%)

2. Overflow handling: During block execution, (INPUTn) and
(GAINN) pairs are read and processed in sequential order
beginning with (INPUT1) and (GAIN1) until a null pair is found.
As the sum of the products from (INPUTn*GAINR) is computed
and an overflow of 32 bits occurs (sum exceeds +2147483647
or —2147483648), the sum wili be clamped to +2147483647 or
—2147483648, an error will be logged, and the OUTPUT will be
clamped to +32767 or —32768. Once a 32-bit overflow occurs,
all remaining input channels will be ignored.

When all consecutive sequential input channels are processed,
the 32-bit sum is divided by SCALE, producing OUTPUT as a
16-bit result. If an overflow occurs on the divide, that is, the
result exceeds 16 bits +32767 or —32768, an error will be
logged and the result will be clamped to +32767 or —32768,
producing OUTPUT.

3. Multiplying a positive input by —1 will result in that input
being subtracted from the other inputs.

4. Setling SCALE <0 will effectively invert the sign of the
output.

8.0

AND

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

—_— 1
AND o pb—»
In
Maximum 'n’ =8
Function

OUTPUT = INPUT1 and ... INPUTn

Program Statement

CALL AND (INPUT1 =input1i@, &
INPUTn=inputn@, &

OQUTPUT=output@)

inputs

1 (INPUTH) =

Signal input 1, type BOOLEAN. This parameter must be
specified.

In (INPUTn) =

Signal input n, type BOOLEAN. This is an optional
parameter. A maximum of 8 inputs can be specified.

Outputs

O (OUTPUT) =

Data output, type BOOLEAN. This parameter must be
specified. If all specified inputs are TRUE then QUTPUT
will be TRUE.

Notes

1. The inputs programmed must be contiguous beginning with
input 1. A compilation error will occur if this requirement is not
met.

8-1

9.0

BIT SELECT

This function can be used in AutoMax Control Block tasks only. It
cannot be used in UDC Control Block tasks.

—] BIT SELECT O(n}—>
OFFSET

Function

It (INPUT - OFFSET) > = 0 and (INPUT - OFFSET) =< 15
then OUTPUT(INPUT - OFFSET) is set TRUE

All other outputs{n) are set FALSE

else
All outputs(n) are set FALSE

Program Statement

CALL BIT_SELECT(INPUT =input%, OFFSET =offset%, &
OQUTPUTO=output0@, ...OUTPUTn=outputn@)

Inputs

I {(INPUT) =

Signal input, type INTEGER. This parameter must be
specified.

OFFSET (OFFSET) =

Offset input value, type INTEGER. This parameter is
optional. The default value is zero if not specified. This
value is subtracted from INPUT to calculate the index
(0-15) for QUTPUT(n).

Outputs

O(n) (QUTPUT) =

Data output 0...15, type BOOLEAN. The outputs can be
specified in any order.

91

9-2

Notes

1. The order in which the outputs (output0...output15) are
programmed is unimportant. However, a minimum of one output
must be programmed. If this requirement is not met, a
compilation error will occur.

10.0 COMPARE

This function can be used in AutoMax Contro! Block tasks and UDC
Control Block tasks.

GT
—_t
COMPARE EQ
—d |2
LT
Function

Compares INPUT1 against INPUT2

OUTPUT _GTR is set TRUE when INPUT1 is greater than INPUT2
OUTPUT_EQU is set TRUE when INPUT1 is equal to INPUT2
QUTPUT LES is set TRUE when INPUT1 is less than INPUT2

Program Statement

CALL COMPARE(INPUT1 =input1%, INPUT2=input2%,
OUTPUT_GTR=greater_than@,
OUTPUT_EQU=equal@,

OUTPUT _LES=less_than@)

Inputs

11 (INPUTH) =

Data input 1, type INTEGER. This parameter must be
specified.

12 (INPUT2) =

Data input 2, type INTEGER. This parameter must be
specified.

Outputs

GT (OUTPUT _GTR) =

Data output, type BOOLEAN. This is an optional
parameter. The output OUTPUT_GTR is set TRUE when
INPUT1 is greater then INPUT2.

EQ (OUTPUT_EQU) =
Data output, type BOOLEAN. This is an optionai

parameter. The output QUTPUT_EQU is set TRUE when
INPUT1 is equal to INPUT2.

Qo Qo Qo

10-1

10-2

LT (OUTPUT LES) =

Data output, type BOOLEAN. This is an optional

parameter. The output OUTPUT_LES is set TRUE when
INPUT1 is less than INPUT2.

Notes

1. The order in which the outputs (OUTPUT_GTR,
OUTPUT_EQU, and OUTPUT_LES) are programmed is
unimportant. However, a minimum of one output must be
programmed. If this requirement is not met, a compilation
error will occur.

11.0 COUNTER

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

PR
IP
IM
R

Function

OUTPUT = QUTPUT(n—1) + INPUT(+) — INPUT(-)

Program Statement

CALL COUNTER(RESET = reset@,
PRESET = presetl(%),
INPUT_PLUS = input_plus%,
INPUT_MINUS = input_minus%,
OUTPUT = output)

Qo go Qo Qo

Inputs

PR (PRESET) =

DOUBLE PRECISION INTEGER(!) or INTEGER (%)
Counter preset. This parameter must be specified as a
variable name (literal value not accepted). The default for
this parameter is zero (0). The 32-bit internal counter is
preset to this value when RESET is TRUE.

IP (INPUT PLUS) =

INTEGER plus input. The default for this paramater is zero
(0). This input is added to the counter, This parameter can
be specified as a variable or a constant.

IM (INPUT_MINUS) =

INTEGER minus input. The default for this parameter is
zero (0). This input is subtracted from the counter. This
parameter can be specified as a variable or a constant.

R (RESET) =
BOOQLEAN counter reset. The default for this parameter is

FALSE. This signal causes the counter to be initialized to
the preset value,

Outputs

O (OUTPUT) =

INTEGER counter output. This parameter must be
specified. If the value of the counter exceeds 15 bits plus
sign, OUTPUT is limited to the maximum signed value
(—32768 to +32767).

12.0 DIFFERENCE

This function can be used in AutoMax Caontrol Block tasks and UDC
Control Block tasks.

Function
OUTPUT = INPUT1 — INPUT2

Program Statement

CALL DIFFERENCE(INPUT1 = input1%, &
INPUT2 = input2%, &
OUTPUT = output%)

Inputs

1 (INPUT1) =

INTEGER signal input 1. This parameter must be
specified.

12 INPUT2) =

INTEGER signal input 2. This parameter must be
specified.

Output

0 (OUTPUT) =

INTEGER signal output. This parameter must be specified.
QUTPUT is limited to —32768 to +32767. If this limit is
exceeded, an error will be logged.

12-1

13.0 FUNCTION GENERATOR

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

— Mi
—|
—>| T o |——
SE
T2

Function

subscript.remainder = INPUT*({table_ size —1)
(max_input +1)

OUTPUT = TABLEN%({subscript}+

[(TABLENn%(subscript+ 1)~ TABLENn%(subscript))*

remainder]

OUTPUT is the result of linear interpolation between two points in
the table.

Program Statement

CALL FUNCTION(INPUT = input%,
MAX_INPUT = max_input,
SELECT = seleci@,

TABLE1 = table1%,
TABLE2 = table2%,
OUTPUT = output%)

Qo Qo Qo go Qo

Inputs

MI (MAX_INPUT) =

The largest possible value of INPUT, type INTEGER. Must

be entered explicitly as a numeric literal equal to (2**n)—1
where n is an integer equal to or greater than 1 or equal to
or less than 15.

| (INPUT) =

INTEGER signal input. This parameter must be specified.
It must be specified as a variable name only {literal value
not accepted).

T1 (TABLE) =

INTEGER look up table 1. This parameter must be
specified. it must be specified as a variable name only
{literal value not accepted). It must be defined as an array
with the size (number of points}) equal to (2**m)+1 where
m is an integer less than or equal to n for MAX_INPUT.
This array definition occurs when defining the variable
using a LOCAL or COMMON statement in the task
[LOCAL TABLE1 %{186)]. Values must be calculated and
stored for all points in the array.

13-1

13-2

LOCAL TABLE1%(16), for example, will index into the
array beginning with the first element, which has the
subscript zero(0), not 1. Therefore, to define an array
having the number of elements of 2**m+1,2**m is used
when defining the array. To define the common array
“FUNCTION_TBL” with 17 elements (24 + 1) and a local
array “TABLE1%" with 9 elements (23 + 1), the definition
statements would be:

10 COMMON FUNCTION_TBL%(16)
20 LOCAL TABLE1%(8)

SE (SELECT) =

BOOLEAN TABLE. The default for the parameter is
FALSE. When FALSE, TABLE1 will be selected; otherwise,
TABLE2 will be selected.

T2 (TABLE2) =

INTEGER look up table 2. This parameter is optional. If
specified, it must be as a variable name only (literal value
not accepted). The same table definition specifications as
for TABLE1 apply. if TABLE2 is specified, SELECT should
also be specified, and vice versa. If specified, TABLE2
must be the same size as TABLE 1.

Outputs

O (CUTPUT) =

INTEGER signal output. This parameter must be specified.
If SELECT is FALSE, QUTPUT will be obtained from
TABLE1; otherwise, QUTPUT will be obtained from
TABLE2. QUTPUT is linearly interpolated between points
in the table.

If INPUT goes negative, the computed value for output will
be negated as well. This will have the effect of folding the
function defined in the table from the first quadrant to the
third quadrant (assuming the table entries are in the first
quadrant).

14.0 INVERTER

This function can be used in AutoMax Contro! Block tasks and UDC
Control Block tasks.

EN
Function
If ENABLE = TRUE then
QUTPUT = —|NPUT
else
QUTPUT = [INPUT

Program Statement

CALL INVERTER (ENABLE = enable@, INPUT = input%, &
OUTPUT = output%)

Inputs

(EN) ENABLE =

Enable input, type BOOLEAN. This is an optional
parameter. The default is TRUE. When ENABLE is TRUE,
OUTPUT is set equal to the complamanted value of
INPUT. When ENABLE is FALSE, OUTPUT is set equal to
the value of INPUT.

| INPUT) =

INTEGER signal input. This paramster must be specified.
It must be specified as a variable name only (literal value
nat accepted).

Outputs

O (OUTPUT) =

INTEGER signal output. This parameter must be specified.
When ENABLE is TRUE, QUTPUT = —INPUT. When
ENABLE is FALSE, QUTPUT = INPUT.

14-1

15.0 LATCH

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

R
S
LATCH o F—»
|
CLK
Function
H RESET is TRUE set QUTPUT FALSE
else
if RESET is FALSE and SET is TRUE
set QOUTPUT TRUE
else if

RESET and SET are FALSE and CLOCK is TRUE
set QUTPUT to the state of INPUT

else
QUTPUT state is unchanged.

Program Statement

CALL LATCH (RESET=resel@, SET=sel@, &
CLOCK=clock@, INPUT=input@, &
OUTPUT =output@)

Inputs

R (RESET) =

Reset input, type BOOLEAN. This is an optional
parameter. The default is FALSE. When RESET is TRUE
the OUTPUT will be set FALSE.

S (SET) =

Set input, type BOOLEAN. This is an optional parameter.
The default is FALSE. When RESET is FALSE and SET is
TRUE the QOUTPUT will be set TRUE.

CLK (CLOCK) =

Clock input, type BOOLEAN. This is an optional
parameter. The default is FALSE. Whan RESET and SET
are FALSE and CLOCK is TRUE, set OUTPUT equa! to the
state of INPUT.

| (INPUT) =

Data input, type BOOLEAN. This is an optional parameter.
The default is FALSE. Determines the state of QUTPUT if
RESET and SET are FALSE and CLOCK is TRUE.

15-1

15-2

Outputs

O (OUTPUT) =

Data output, type BOOLEAN. This parameter must be
specified. The state of OUTPUT is determined by the state
of the inputs RESET, SET, CLOCK, and INPUT. See the
functionai description above.

Notes

1. The order in which the input parameters (RESET, SET, CLOCK,
and INPUT) are programmed is unimportant. However, a
minimum of two of the four input parameters must be
programmed. If this requirement is not met, a compilation error
will occur.

16.0 LIMIT

This function can be used in AutoMax Control Block tasks and UDC
Controt Block tasks.

LP SP
—_—» Qj————»
LM SM

Function

OUTPUT = INPUT within the range LIMIT(+) TO LIMIT{=). If INPUT
exceeads either limit, OUTPUT is held at that limit and the proper
SATURATED output will be set.

Program Statement

CALL LIMIT{INPUT = input%,
LIMIT_PLUS = limit_plus%,
LIMIT_MINUS = limit_minus%%,
SATURATED PLUS = saturated_plus@,
SATURATED_MINUS = saturated_minus@,
OUTPUT = output%)

Qo Qo Qo Qo Qo

Inputs

LP (LIMIT_PLUS) =

INTEGER upper limit. The default for this parameter is
+32767. This parameter will limit OUTPUT from becoming
more positive. it will not prevent the output value from
becoming more negative.

| (INPUT) =

INTEGER signal input. This parameter must be specified.
it must be specified as a variable name only (literal value
not accepted).

LM (LIMIT_MINUS) =
INTEGER lower limit. The default for this parameter is
—32768. This parameter will limit OUTPUT from becoming

more negative. It will not prevent the output value from
becoming more positive.

16-1

Outputs

SP (SATURATED_PLUS) =

BOOLEAN SATURATED plus output. This parameter is
optional. TRUE if CUTPUT reaches LIMIT_PLUS.

O (OUTPUT) =
INTEGER signal output. This parameter must be specified.
SM (SATURATED_MINUS) =

BOOLEAN saturated minus output. This parameter is
optional. TRUE if OUTPUT reaches LIMIT_MINUS.

16-2

17.0 MOVE

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

—» 1 o1 p—>»
MOVE
In On
EN

Maximum 'n’ = 8

Function

If ENABLE = TRUE then
QUTPUT1 = INPUT1

OUTPUTN = INPUTnN

Program Statement

CALL MOVE (ENABLE=enable@, &
INPUT1 =input1%, OUTPUT1 =outputi1%, ... &
INPUTn=inputn%, OUTPUTn=outputn% }

Inputs

EN (ENABLE) =

Enable input, type BOOLEAN. This is an optional
parameter. The default is TRUE. When ENABLE is TRUE
the values read at the input(s) are transferred to the
correspanding outputs. When ENABLE is FALSE, the
outputs are not updated, i.e., the values will remain
unchanged from the previous scan.

11 (INPUT1) =
Signal input 1, type INTEGER. This parameter must be
specified.

in (INPUTR) =

Signal input n, type INTEGER. This is an optional
parameter. A maximum of 8 inputs can be specified.
Unused inputs are ignored. Each specified input must
have a corresponding output.

17-1

Outputs

01 (OUTPUTY) =

Data output 1, type INTEGER. This parameter must be
specified.

On (OUTPUTN) =

Data output n, type INTEGER. This is an optional
parameter. The number of outputs specified must equal
the number of inputs.

Notes

1. The order in which the input/foutput pairs are entered is
unimportant. However, for every INPUT(n) programmed, an
QOUTPUT({n) must also be programmed. In addition, all
input/output pairs must be contiguous beginning with
input/output pair 1. If these requirements are not met, a
compilation error will occur.

2. When ENABLE is FALSE, the outputs are not updated.
Therefore if an output is forced and then unforced it will not
return to its original value.

17-2

18.0 MULTIPLY AND DIVIDE

This funclion can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

— \

*
— |2 M - 2_ o >
—| 13 /

Function

OQUTPUT = INPUT1 * INPUT2 - INPUT3

Program Statement

CALL MULTIPLY_DIVIDE(INPUT1 = input1%,
INPUT2 = input2%,
INPUT3 = input3%,
QUTPUT = outputi?)

Qo Qo Qo

Inputs

11 (INPUTH) =

INTEGER signal input 1. This parameter must be
specified.

12 (INPUT2) =

INTEGER signal input 2. This parameter must be
specified.

I3 {(INPUT3) =

INTEGER signal input 3. This parameter must be
specified.

Outputs

O (OUTPUT) =

INTEGER signal output. This parameter must be specified.
If the result exceeds the range —32768 to +32767, the
result will be clamped to —32768 or +32767, producing
OUTPUT.

18-1

19.0 OR

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

OR oOF—>»

Maximum ‘n’ = 8

Function
OUTPUT = INPUT1 or ... INPUTn

Program Statement

CALL OR (INPUT1=input1@, &
INPUTn=inputn@, &
OUTPUT=output@)

Inputs

11 (INPUTY) =

Signal input 1, type BOOLEAN. This parameter must be
specified.

In (INPUTN) =

Signal input n, type BOOLEAN. This is an optional
parameter. A maximum of 8 inputs can be specified.

Outputs

O (OUTPUT) =

Data output, type BOOLEAN. This parameter must be
specified. If any of the specified inputs are TRUE then
QUTPUT will be TRUE.

Notes

1. The inputs programmed must be contiguous beginning with
input 1. A compilation error will occur if this requirement is not
met.

19-1

20.0 PACK BITS

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

—pi In PACK_BITS OpF—»

‘n"=0..15

Function
BITn in OUTPUT is set to the state of INPUTN. if INPUTn is not
programmed, then BITn in OUTPUT is set FALSE.

Program Statement

CALL PACK_BITS{INPUTO=input0@, ... INPUTn=inputn@, &
OUTPUT=output%)

Inputs

in (INPUTR) =

Signal input 0...15, type BOOLEAN. The inputs can be
specified in any order.

Outputs

O (OUTPUT) =

Data output, type INTEGER. This parameter must be
specified.

Notes

1. The order in which the inputs (input0...input15) are programmed
is unimportant. However, a minimum of one input must be
programmed. If this requirement is not met, a compilation error
will acour.

20-1

21.0 PULSE MULTIPLIER

This function can be used in AutoMax Control Block tasks and UDC

Control Block tasks.

R

v

—_— | 0)———>»
WS

M

Function

if WORD_SIZE > 0 (Relative mode), then

If RESET@ = TRUE then
ERROR =0
Rem (n-1) =0
Error = sign extended (Error masked with
(16-WORD_SIZE))

else if TRUE to FALSE transition on RESET@ then
Input (n-1} = INITIAL VALUE
Error = INPUT - Input (n-1)
Error = sign extended (Error masked with
(16-WORD_SIZE))

else (RESET@ = all other conditions)
if (FIRST PASS) then
INPUT (n-1) = INPUT
Error = INPUT - INPUT (n-1)
Error = sign extended (Error masked with
(168WORD_SIZE))

else (Absolute mode) then

If RESET®@ = TRUE then
Error =0
Rem (n-1) =0

else (RESET@ = all other conditions)
Error = INPUT

{Calculate QOUTPUT and Remainder (n-1) for both modes)
Ans (real) = ((Error * MULTIPLIER) / 32768} +Rem (n-1))
QUTPUT = INT (Ans)

Rem (n-1) = Ans - QUTPUT

Program Statement

CALL PULSE_MULT(INPUT = input%,
RESET = reset@,
WORD_SIZE = nnn,
INITIAL_VALUE = initial_value%,
MULTIPLIER = multiplier%,
QUTPUT = output%)

2o go go Qo Qo

27-1

21-2

Inputs

R (RESET) =

BOOLEAN multiplier reset. The default for this parameter
is FALSE. If TRUE, OUTPUT is held to zero and all internal
registers are set to zero. If TRUE to FALSE transition, the
INPUT (n-1)term will be obtained from INITIAL_VALUE [not
applicable when used in absolute mode (WORD_SIZE =
0)]. FALSE, the block will function normally. '

IV (INITIAL_VALUE) =

INTEGER preset of INPUT (n-1). The default for this
parameter is zero. On the TRUE to FALSE transition of
RESET, INITIAL_VALUE is used as INPUT (n-1) when
computing relative counts/scan. INITIAL_VALUE must be
right-justified within the 16-bit word regardless of the
WORD_SIZE value.

| INPUT) =

INTEGER signal input. This parameter must be specified.
It must be specified as a variable name only (literal value
not accepted).

WS (WORD_SIZE) =

INTEGER word size of input (in bits). Specifies the number
of significant bits in INPUT beginning with bit 0
{right-justified}. The default for this parameter is zero. If
specified, it must be entered explicitly as a numeric literal
between 0 and 16, inclusive. If WORD_SIZE equals 0,
INPUT must be in counts/scan (absolute mode). if
WORD_SIZE does not equa! 0, INPUT must be
right-justified and a relative counts/scan value is
computed as [(INPUT - INPUT(n-1)].

M (MULTIPLIER) =

INTEGER multiplier ratio. The default for this parameter is
32768, giving an overall gain of 1.0. This parameter
divided by 32768 controls the ratio of input to output
counts.

Outputs

O (OUTPUT) =
INTEGER signal output. This parameter must be specified.

Notes

1. Not programming (defaulting) the MULTIPLIER parameter is the
only way of achieving a gain equal to 1. If programmed, the
nearest value to 1.0 that the overall gain can achieve is 32767
32768, or 0.9999695.

2. The intended use of this block is to provide an interface from a
frequency input module, such as the resoiver feedback, to the
digital system. It also provides a means to scale position
information properly without losing any information from one
scan to the next. This is accomplished by saving the remainder
after the divide operation and adding it during the next scan
calculations.

213

22.0 RAMP

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

v

AR 0 |—n
—> | RATE

PR
SC
ABS

Function

For a change in INPUT, QUTPUT will ramp toward the new INPUT
value. During steady state operation, QUTPUT = INPUT.

Two types of RAMP generators are provided: a normal (algebraic)
ramp and an absolute value ramp. For a normal ramp, the accel
condition is defined by an input that is becoming more positive, and
a decel condition is defined by an input that is becoming more
negative. For an absolute value ramp, the accel condition is defined
by an input moving away from zero, and a decel condition is defined
by an input moving towards zero.

Program Statement

CALL RAMP(INPUT = input%,
ABS_RAMP = TRUE/FALSE,
RESET = resst@,
INITIAL_VALUE = initial_value%,
HOLD = hold@,

ACCEL_RATE = accel_rate%,
DECEL _RATE = decel_rate%,
SCALE = nnnnn,

OUTPUT = output%,

RATE = rate%)

Qo0 Qo Qo Qo Qo Qo Qo Qo Do

Inputs

R (RESET) =

BOOLEAN ramp reset. The default for this parameter is
FALSE. This parameter will hold QOUTPUT to
INITIAL_VALUE when TRUE. The internal ramp

register is also reset.

IV {INITIAL_VALUE) =

INTEGER initial ramp value. The default for this parameter
is zero. When RESET = TRUE, OUTPUT will equal
INITIAL_VALUE.

22-1

22-2

H (HOLD) =

BOOLEAN ramp hold. The default for this parameter is
FALSE. This parameter will hold OUTPUT at its current
value. OUTPUT will continue to ramp from that value
when HOLD is FALSE.

AR (ACCEL_RATE) =

INTEGER acceleration rate (in units of counts per scan).
The absolute value of this input is performed to obtain the
acceleration rate. The default for this parameter is 32767.

F{INPUT) =
INTEGER signal input. This parameter must be specified.
DR (DECEL_RATE) =

INTEGER deceleration rate (in units of counts per scan).
The absolute value of this input is performed to obtain the
deceleration rate. The default for this parameter is 32767.

SC (SCALE) =

INTEGER scale factor for both ACCEL_RATE and
DECEL_RATE. The default for this parameter is 1. This
parameter must be entered explicitly as a numeric literal
and, therefore, cannot be madified while the task is active.
This parameter must be positive between 1 and 32767
inclusive.

ABS (ABS_RAMP) =

BOOLEAN ramp type. The default for this parameter is
TRUE. if programmed, it must be entered explicitly as a
boolean literal and, therefore, cannot be modified while
the task is active. If TRUE, the block will function as an
absolute value ramp; otherwise, it will function as a normal
(algebraic) ramp.

Outputs

O (OUTPUT) =
INTEGER signal output. This parameter must be specified.
RATE (RATE) = :

INTEGER internal change in the QUTPUT * SCALE. This
parameter is optional. It is computed from the internal
32-bit value as (QUTPUT * SCALE) - (QOUTPUT(n-1) *
SCALE).

Notes

The SCALE input is optional. It is used only to change the units for
the two rate inputs (A\CCEL_RATE and DECEL_RATE) from per-scan
to per-second units. To do this, the SCALE input is set to the number
of times the block is executed in one second.

For example, if the RAMP block is used in a UDC task running at 20
ticks, SCALE should be set to 100. On the UDC, 1 tick=0.0005
seconds, 50 20 ticks=0.01 seconds. SCALE is then (1/0.01)=100.

In this example, if an accel rate of 500 counts per second is desired,
ACCEL_RATE would be set to 500. If the SCALE input was not used

SC

AR. DR
H. ABS
R. IV

(it defaults to 1), ACCEL_RATE would have to be set to 5 to achieve
the desired 500 counts per second.

RAMP Internal Block Diagram

! } |

INPUT RAMP DIVIDE
» ¢ | —» GENERATOR BY = O
SCALE e SCALE
ZERO
ORDER
7 HOLD
6

OUTPUT OUTPUT (n-1)

OUTPUT — OUTPUT {n-1) > (psrAsE:%n)

1. When accel rate and/or decel rate is equal to zero (0), the ramp
will effectively be held (not permitted to move) in that direction.

2. The actual rate of change of the output is inversely proportional

to the scan time. Thus, the actual rates in counts/second can be
calculated as:

RATE =rate% * 1
scale% Ts

where:

rate% = accel_rate% or decel_rate%
Ts = scan period in seconds/scan

The slowest rate, therefore, is when rate% is equal to its
minimum value (1) and scale% is equal to its maximum valus
(32767). Similarly, the fastest rate is when rate% is equal to its
maximum value (32767) and scale% is equal to its minimum
value (1).

For example, when Ts = 5.5 msec:

Min rate = (1 = 32767) <+ .0055 = .00554882 counts/sec
Max rate = (32767 + 1) — .0055 = 5957636.4 counts/sec

22-3

23.0 READ BITS

This function can be used in AutoMax Control Block tasks only. it
cannot be used in UDC Control Block tasks.

—»{ SN E
—»{ COL

READ_BITS On b—»

Maximum ‘'n' = 8

Function

This function reads data from a column in the specified BOOLEAN
data structure.

Program Statement

CALL READ BITS(STRUCTURE_NAME=structure_name@,
COLUMN=column%, ENABLE=enable@,
ERROR=¢error@,

OUTPUT1 =output1%,...OUTPUTn=outputn%)

R0 Qo Ro

Inputs

SN (STRUCTURE_NAME) =

Name of the BOOLEAN data structure where data is to be
read from. This parameter must be specified by name
only (literal value not accepted). The data structure name
is limited to a maximum length of 15 characters and must
be type BOOLEAN. The specified data structure must be
created by a control block within the task. Refer to the
SHIFT_BITS block for an example of a control block that
creates a BOOLEAN data structure.

COL (COLUMN) =

Selects a column within the specified BOOLEAN data
structure, type INTEGER. This parameter is required. The
columns are numbered from 0 to MCOL - 1, where MCOL
is equal to the number of columns (depth) that were
defined by the control block that created the data
structure.

23-1

23-2

EN (ENABLE) =

Enable input, type BOOLEAN. This parameter is required.
The state(s) read from the column specified by COLUMN
are written to the output(s) when ENABLE is TRUE. If this
parameter is FALSE, the state(s) at the outputs will remain
unchanged from the previous scan.

Outputs
E (ERROR) =

Error output, type BOOLEAN. This is an optional
parameter. The output is TRUE if the value of COLUMN
selects a non-existent column for the specified data
structure. Valid values for COLUMN range from 0 to MCOL
- 1. See COLUMN above.

On (OUTPUTN) =

Data output n, type BOOLEAN. The cutputs can be
specified in any order.

Notes

1.

The READ_BITS block must reference a BOOLEAN data
structure that was created by a control block within this task. A
minimum of one autput must be programmed. The order in
which the-outputs (outputl...output8) are programmed is not
important. However, all of the outputs programmed by the
READ_BITS block must also be defined by the control block that
created the data structure. If these requirements are not met, a
compilation error will occur.

If the value of COLUMN selects a non-existent column, the
output ERROR is set TRUE, the output (s) of the READ_BITS
block are set FALSE, and the appropriate run time error is
logged.

When ENABLE is FALSE, the output(s} are not updated.
Therefore if an output is forced and then unforced, it will not
return to its original value.

24.0 READ WORDS

This function can be used in AutoMax Control Block tasks only. It
cannot be used in UDC Control Block tasks.

—»{ SN E
—» COL

READ WORDS On [———p

Maximum ‘n" = 8

Function

This function reads data from a column in the specified INTEGER
data structure.

Program Statement

CALL READ_WORDS(STRUCTURE_NAME=structure_name%, &
COLUMN=column%, ENABLE=enable@, &
ERROR=error@, &
OUTPUT1 =output1%,.. OUTPUTn=outputn%)

Inputs

SN (STRUCTURE_NAME) =

Name of the INTEGER data structure where data is to be
read from. This parameter must be specified by name
only (literal value not accepted). The data structure name
is limited to a maximum length of 15 characters and must
be type INTEGER. The specified data structure must be
created by a contro! block within the task. Refer to the
SHIFT_WORDS block for an exampie of a control block
that creates an INTEGER data structure.

COL (COLUMN) =

Selects a column within the specified INTEGER data
structure, type INTEGER. This parameter is required. The
columns are numbered from 0 to MCOL - 1, where MCOL
is equal to the number of columns (depth) defined by the
control block that created the data structure.

24-1

24-2

EN (ENABLE) =

Enable input, type BOOLEAN. This parameter is required.
The vatues read from the column specified by COLUMN
are written to the outputs when ENABLE is TRUE. If this
parameter is FALSE, the values at the outputs will remain
unchanged from the previous scan.

Outputs

E (ERROR) =

Error output, type BOOLEAN. This is an optional
parameter. The output is TRUE if the value of COLUMN
selects a non-existent column for the specified data
structure. Valid values for COLUMN range from 0 to MCOL
- 1; see COLUMN above.

On (OUTPUTN) =

Data output n, type INTEGER. The outputs can be
specified in any order.

Notes

1. The READ_WORDS biock must reference an INTEGER data
structure that was created by a control block within the task. A
minimum of one output must be programmed. The order in
which the outputs {outputi...output8) are programmed is
unimportant. However, all of the outputs programmed by the
READ_WORDS block must also be defined by the control block
that created the data structure. If these requirements are not
met, a compilation error will occur.

2. If the value of COLUMN selects a non-existent column, the
output ERROR is set TRUE, the output(s) of the READ_WORDS
block are set equa! to zero, and the appropriate run time error is
logged.

3. When ENABLE if FALSE, the output(s) are not updated.

Therefore if an output is forced and then unforced, it will not
return to its original value.

25.0 RUNNING AVERAGE

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

R bv
——r—3! RS MX
RUNNING_AVERAGE
—»1 | 0 }—»
MN

Function

OUTPUT = (INPUT{n) + ...INPUT(n+1))
(REQUIRED_SAMPLES)

The OUTPUT is updated each scan with the average of the samples
read for INPUT over the last RS scans.

Program Statement

CALL RUNNING_AVERAGE(REQUIRED_SAMPLES=req_sam,
RESET =reset@,
INPUT =input%s,
DATA_VALID=data_valid@,
MAX_VALUE=max_value%, MIN_VALUE=min_value%,
OUTPUT =output%)

Qo 0 Lo oo Qo

Inputs

RS (REQUIRED_SAMPLES) =

Required number of samples to average, type INTEGER.
This parameter must be entered explicitly as a numeric
literal. The value entered for REQUIRED_SAMPLES can
range from 1 to 32767. See note 1 for details.

R (RESET) =

Reset input, type BOOLEAN. This is an optional
parameter. The default is FALSE. When this input is true,
the following occur: the internal storage areas are
initialized, OUTPUT is set to zero, VALID_DATA is set
FALSE, MAX VALUE is set to -32768, and MIN_VALUE is
set to 32767,

I INPUT)

I§

Signal input, type INTEGER. This parameter must be
specified as a numeric symbol only (literal value not
accepted).

25-1

25-2

Outputs

DV (DATA_VALID) =

Data valid output, type BOOLEAN. This is an optional
parameter. DATA_VALID is set TRUE after a minimum of
RS samples have been read since RESET went FALSE.
When RESET is TRUE, DATA_VALID is set FALSE.

MX (MAX_VALUE) =

Maximum value output, type INTEGER. This is an optional
parameter. This parameter outputs the maximum value
sampled for INPUT since RESET went FALSE. When
RESET is TRUE, MAX_VALUE is set to -32768.

MN (MIN_VALUE) =

Minimum value output, type INTEGER. This is an optional
parameter. This parameter outputs the minimum value
sampled for INPUT since RESET went FALSE. When
RESET is TRUE, MIN_VALUE is set to 32767.

O (OUTPUT) =

Data output, type INTEGER. This parameter must be
specified. OUTPUT is updated each scan with the average
of the RS samples read for INPUT over the last RS scan.
When RESET is TRUE, OUTPUT is set to a value of zero.

Notes

1. The RUNNING_AVERAGE block creates an internal data storage
area that is used to store the last RS samples read for INPUT.
The size of the internal data storage area in bytes is equal to two
times the required number of sampiles. If the size of the internal
data storage area exceeds 32767 bytes, a compilation error will
occur. In addition, since the internal data storage area is local to
the control block task, its size is further limited by the maximum
size of the total data storage area that the task can allocate for
all the local variables.

26.0 S CURVE

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks

SC RATE
REV

Function

The S_CURVE block performs the same basic function as the RAMP
block with a jerk rate added. The jerk rate is the maximum rate of
change of the rate used to ramp output to input, just as the accel
and decel rates are the maximum rate of change of output to input.
It is, therefore, the second derivative of the input. The primary
requirement of the S_CURVE function is to ensure that the rate
never changes by more than the specified jerk rate.

When a step change occurs on the input, the rate increases at the
jerk rate up to the accel or decel rate. The accel or decel rate is
maintained until output reaches a distance from input at which point
the rate must begin decreasing. Rate will decrease by the jerk rate
such that output equals input when rate is less than or equal to the
jerk rate. In some cases, depending on the values of accel, decel,
and jerk, the accel or decel rate may not be reached before the rate
must begin decreasing by the jerk rate.

If the reverse bit = TRUE, the input accel rate will become the decel
rate and the input decel rate will become the accel rate. This
provides a function similar to the “motor” type RAMP block

(ABS RAMP = TRUE). With the S_CURVE block, however, this
function can be dynamically controlied by the application.

Program Statement

CALL S CURVE(INPUT = input%,
RESET = reset@,
HOLD = hold@,
ACCEL_RATE = accel_rate%,
DECEL_RATE = decel_rate%,
JERK_RATE = jerk_rate%,
SCALE = nnnnn,
REVERSE = reverse@,
INITIAL VALUE = initial_value%,
OUTPUT = output%,
RATE = rate%)

20 Qo Qo Lo Qo Lo Lo Qo Qo Lo

26-1

26-2

Inputs
R (RESET) =

BOOLEAN S_CURVE reset. The default for this parameter
is FALSE. When TRUE, OUTPUT will be held equal to
INITIAL_VALUE.

IV (INITIAL_VALUE) =

INTEGER initial vaiue of S_CURVE.The default for this
parameter is zero. When RESET = TRUE, OUTPUT will
equal INITIAL_VALUE.

H (HOLD) =

BOOLEAN S CURVE hold. The default for this parameter
is FALSE. When TRUE, QUTPUT will be held at its current
value. (See item 3 under “S_CURVE Internal Block
Diagram.”) QUTPUT will continue to move from that value
until it equals INPUT when HOLD is FALSE.

AR (ACCEL_RATE) =

INTEGER acceleration rate (in units of counts per scan).
The absolute value of this input is used to obtain the
maximum acceleration rate from QUTPUT to INPUT. The
default for this parameter is 32767.

| (INPUT) =

INTEGER signal input (initial output in equation). This
parameter must be specified.

DA (DECEL_RATE) =

INTEGER deceleration rate (in units of counts per scan).
The absolute value of this input is used to obtain the
maximum deceleration rate from QUTPUT to INPUT. The
default for this parameter is 32767.

JR (JEAK_RATE) =

INTEGER jerk rate (in units of counts per scan?). The
absolute value of this input is used to obtain the jerk rate.
The default for this parameter is 32767. The jerk rate
defines the rate of change in the rate used when ramping
output to input.

SC (SCALE) =

INTEGER scale factor forACCEL_RATE, DECEL_RATE
and JERK_RATE. The default for this parameter is 1. This
parameter must be entered explicitly as a numeric literal
and, therefore, cannot be maodified while the task is active.
This parameter must be positive between 1 and 32767
inclusive.

REV (REVERSE) =

BOOLEAN S_CURVE direction. The default for this
parameter is FALSE. If TRUE, the ACCEL_RATE will be
used as the deceleration rate and the DECEL_RATE will
be used as the acceleration rate.

Outputs
O (QUTPUT) =

INTEGER signal output (final output in equations). This
parameter must be specified.

RATE (RATE) =

INTEGER. Internal change in the OUTPUT * SCALE. This
parameter is optional. It is calculated from the internal
32-bit value of QUTPUT * SCALE.

Notes

The SCALE input is optional. It is used only to change the units for
the two rate inputs (ACCEL_RATE and DECEL_RATE) from per-scan
to per-second units. To do this, the SCALE input is set to the number
of times the block is executed in one second.

For example, if the S_CURVE block is used in a UDC task running at
20 ticks, SCALE should be set to 100. On the UDC, 1 tick=0.0005
seconds, so 20 ticks=0.01 seconds. SCALE is then (1/0.01)=100.

In this example, if an accel rate of 500 counts per second is desired,
ACCEL _RATE would be set to 500. If the SCALE input was not used
(it defaults to 1), ACCEL_RATE would have to be set to 5 to achieve
the desired 500 counts per second.

S_CURVE Internal Block Diagram

> T |
INPUT S CURVE DIVIDE
|—1= GENERATOR BY » O
(initial SCALE /- SCALE (final
output) output)
ZERO
AR. DR ORDER
JR. REV 7~ HOLD
H.R. IV 7
QUTPUT lOUTPUT (n-1)
OUTPUT — OUTPUT (n-1) > (pgAgfan)

1. When accel rate and/or decel rate is equal to zero (0}, the block
will effectively be held (not permitted to move) in that direction.

2. The actual rate of change of the output is inversely proportional
to the scan time. Thus, the actual rates in counts/second can be
calculated as:

26-3

26-4

RATE =rate % * 1
scale%s Ts

where:

rate% = accel_rate% or decel_rate% (or jerk_rate% —— Ts)
Ts = scan period in seconds/scan

The slowest rate, therefore, is when rate% is equal to its
minimum (1) and scale% is equal to its maximum value (32767).
Similarly, the fastest rate is when rate% is equal to its maximum
value (32767) and scale% is equal to its minimum value (1).

For example, when Ts = 5.5 msec:

Minrate = (1 = 32767) = .0055 = .00554882 counts/sec
Max rate = (32767 = 1) — .0055 = 5957636.4 counts/sec

3. When QUTPUT (final) is moving toward input and HOLD is SET
= TRUE, the rate will immediately begin decreasing towards
zero at the jerk rate. OUTPUT (initial) will be held at whatever
value it had when the rate reached zero. This is due to the jerk
rate requirement. Therefore, when OUTPUT is finally held
constant, it will have a value different from its value the instant
that HOLD was SET = TRUE.

4. |f JERK_RATE is greater than or equal to ACCEL_RATE and
DECEL_RATE, the function will be identical to that of the RAMP
block.

5. Reducing the JERK_RATE during a transition may cause the
following to occur: the OUTPUT may overshoot the INPUT
and/or the calculated output value may exceed the limits of an
integer variable (+32767). If overshoot occurs, it is the result of
enforcing the entered JERK_RATE. To enforce the JERK_RATE,
if the RATE is at a value which, when the JERK_RATE is
lowered, cannot be decreased to zero by the new JERK _RATE
before OUTPUT = INPUT, OUTPUT must overshoot INPUT. This
can be avoided by decreasing JERK_RATE in small steps while
tuning or only decreasing JERK_RATE while OUTPUT = INPUT
{not during a transition). If the computed output value exceeds
+32767 or —32768, the QUTPUT will be clamped to +32767 or
—32768, respectively, and an error will be logged. Also, the
internal value for OUTPUT will be clamped to avoid internal
overshoot and the RATE will be set to zero.

6. The time that is required for the output to equal a change in the
input is a function of ACCEL_RATE, JERK_RATE, and the
difference between INPUT and QUTPUT.

System Reaches ACCEL_RATE

@ (COUNTS)

Final
Qutput
Initiat
Qutput
— !Region | ——#-a— tRegion 2 ~—#»a—— t Region 3—#=
= t
Region 1 Reglon 2 Region 3 Sc;!rns
seconds
FINAL _INITIAL
Total = -QUTPUT QUTPUT _ . _ACCEL
ACCEL JERK
Region 1 Equations
= _ACCEL
JERK
y (f) = INITIAL OUTPUT + !/, (JERK) t2
Region 2 Equations
JEHK(FINAL _INITIAL|> -
t, = OUTPUT OQUTPU ACCEL?
2 =
JERK * ACCEL ACCEL?
y () = INITIAL OUTPUT + (ACCEL) t — (—)
2 * JERK
Region 3 Equations
L ACCEL
3= 2
JERK FINAL INITIAL ACCEL
= 1 « i _ TPUT TPUT —ALLEL
y () = FINAL OUTPUT — 1/, (JERK) * |t ACOEL =

26-5

System Does Not Reach ACCEL_RATE

Final _}
Output

Initial
Output

When INITIAL OUTPUT — FINAL QUTPUT < (ACCEL_RATE2/JERK__RATE)

time = 2* INITIAL OUTPUT — FINAL OUTPUT
JERK_RATE

26-6

27.0 SAMPLED AVERAGE

This function can be used in AutoMax Conirol Block tasks and UDC

Control Block tasks.

R DV
—i1 RS MX
SAMPLED_AVERAGE
—_ | 0]
MN
Function

OUTPUT = (INPUT(1) + ..INPUT(RS))
(REQUIRED_SAMPLES)

The QUTPUT is updated once every RS scans with the average of
the samples read for INPUT during the last RS scans.

Program Statement

CALL SAMPLED_AVERAGE(REQUIRED_SAMPLES=req_sam,

INPUT =input%,
RESET =reset@,
DATA_VALID=data_valid@,

MAX_VALUE=max_value%, MIN_VALUE=min_value%,

OUTPUT =output%)

Inputs
RS (REQUIRED _SAMPLES) =

Required number of samples to average, type INTEGER.
This parameter must be entered explicitly as a numeric
literal or symbol. The value entered for

Qo Qo Qo Qo Do

REQUIRED_SAMPLES can range from 1 to 32767. Values

that are < O will be forced to 1.
R (RESET) =

Reset input, type BOOLEAN. This is an optional

parameter. The default is FALSE. When this input is TRUE,

the following occur: the internal storage areas are
initialized, OUTPUT is set to zero, VALID_DATA is set
FALSE, MAX_VALUE is set to -32768, and MIN_VALUE is

set to 32767.

271

27-2

| (NPUT) =

Signal input, type INTEGER. This parameter must be
specified as a numeric symbol only (literal value not
accepted).

Outputs

DV (DATA_VALID) =

Data valid output, type BOOLEAN. This is an optional
parameter. The DATA_VALID output is set TRUE only
during the scan when the outputs are being updated (the
RS scan). The DATA_VALID output is always set FALSE
when RESET is TRUE.

MX (MAX_VALUE) =

Maximum value output, type INTEGER. This is an optional
parameter. The parameter MAX_VALUE is updated once
every RS scan with the maximum value of the samples
read for INPUT during the last RS scan. When RESET is
TRUE, MAX_VALUE is set to -32768.

MN (MIN_VALUE) =

Minimum value output, type INTEGER. This is an optional
parameter. The parameter MIN_VALUE is updated once
every RS scan with the minimum value of the samples
read for INPUT during the last RS scan. When RESET is
TRUE, MIN_VALUE is set to 32767.

O (QUTPUT) =

Data output, type INTEGER. This parameter must be
specified. QOUTPUT is updated once every RS scans with
the average of the samples read for INPUT during the last
RS scan. When RESET is TRUE, OUTPUT is set to a value
of zero.

28.0 SCALE

This function can be used in AutoMax Control Block tasks and UDC
Conirol Block tasks.

—» IMX
-~ IMN
—> | SCALE o —

—»{ OIMX
—>» OIMN
CL

Function

if CLAMP is TRUE and INPUT exceeds INPUT_MAX or INPUT_MIN,
then the value of INPUT (not the actual input itself) is clamped at the
proper limit.

{INPUT — INPUT_MIN) * (QUTPUT_IMAX — QUTPUT_IMIN)
QUTPUT = + OUTPUT_IMIN

INPUT_MAX — INPUT_MIN

Program Statement

CALL SCALE{INPUT=input%, CLAMP =clamp@,
INFUT_MAX=input_max%,
INPUT_MIN=input_min%,
OUTPUT_IMAX=o0utput_imax%,
OUTPUT_IMIN=output_imin%,
QUTPUT=o0utput%)

fo Qo Qo Qo o

Inputs

CL (CLAMP) =

Clamp input, type BOOLEAN. This parameter is optional.
The default is FALSE. If CLAMP is TRUE and INPUT
exceeds either INPUT_MAX or INPUT_MIN, then clamp
the value of INPUT at the proper limit. if CLAMP is FALSE,
then the value of INPUT is not clamped.

I INPUT) =

Signal input, type INTEGER. This parameter must be
specified as a humeric symbol only (literal value not
accepled).

IMX (INPUT_MAX) =
Maximum value for INPUT, type INTEGER. This parameter
must be specified. If the value of INPUT is greater than

INPUT_MAX and CLAMP is TRUE, then INPUT is clamped
at INPUT_MAX.

28-1

28.1

28.2

28-2

IMN (INPUT_MIN) =

Minimum value for INPUT, type INTEGER. This parameter
must be specified. If the value of INPUT is less than
INPUT_MIN and CLAMP is TRUE, then INPUT is clamped
at INPUT_MIN.

OIMX (OUTPUT_IMAX) =

Value for OUTPUT when INPUT is equal to INPUT_MAX,
type INTEGER. This parameter must be specified.

OIMN (OUTPUT IMIN) =

Value for OUTPUT when INPUT is equal to INPUT_MIN,
type INTEGER. This parameter must be specified.

Outputs

O (OUTPUT) =

Data output, lype INTEGER. This parameter must be
specified. The value of QUTPUT is determined by the
current values of INPUT, INPUT_MAX, INPUT_MIN,
OUTPUT_IMAX, and OUTPUT_IMIN. See the functional
description above.

Overflow Handling

If the computed answer for OUTPUT exceeds +32767 or -32768,
then QUTPUT will be clamped to +32767 or -32768 and a run time
error will be logged.

Application Notes

A typical use for the SCALE block would be to convert a 4 to 20
milliamp signal from a M/N 57C409 2 Channel Analog Input module
to a linear signal with the range of 0 to 10000 counts to be used with
the PID block.

The 4 to 20 mA input would normally require a 511 ohm ioad resister
to convert the current signal into a voitage signal so that it can be
read by the input module. At 4 mA the voltage signal would
approximate 2.00 VDC and at 20 mA the voltage signal would
approximate 10.00 VDC.

if the A/D input card produces a count value of 4095 for a 10.00 VDC
input, then a 4 mA signal would be 819 counts and a 20 mA signal
would be 4095 counts. See figure 28.1.

Output

10000
9000
8000
7000 Output limited
000 o OMIN if
5000 CLAMP = TRUE
4000
3000
2000
1000

\ Cutput Hmited
to CIMAX if
CLAMP = TRUE

CGIMAX = 10000
IMAX = 4085

4 2?47 3(IJ99 ?095 cts

: T L 1 input

5ma 10ma 15ma 20ma

I } t —e
—20ma —15ma -10ma —°™2 -1000
—2000

3000

4000

~5000

-6000

—7000

—-B000

~9000

~10000

QIMIN =0
IMIN = 819

Figure 28.1 - Converting 4-20ma to 0-10000 counts

The SCALE block would be programmed as follows

nnnn CALL SCALE(INPUT = PROCESS_INPUT%,
INPUT_MAX = 4095,
INPUT_MIN = 819,
OUTPUT IMAX = 10000,
OUTPUT_IMIN = 0,
OUTPUT = PROCESS_OUTPUT%)

If you want to limit the value of OUTPUT to the range specified by
OUTPUT _IMAX and OUTPUT_IMIN even when the value of INPUT
exceeds INPUT_MAX or INPUT_MIN, then the current value of the
input CLAMP must be TRUE.

o Qo Lo Qo o

28-3

29.0 SEARCH

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

GT e
EQ

LT

—_—] | SEARCH Opr—»
— T1
SE
T2

Function

Compare INPUT against selected TABLE elements.

Search the selected table for a match according to the comparison
options selected by the three BOOLEAN inputs COMPARE_GTR,
COMPARE_EQU and COMPARE_LES. The search starts at the top
of the table (array element 0) and tests INPUT against each element
in the table until either a match is found or the end of the table is
reached (last element in the array). If a match occurs, the search
function is terminated and the index into the table where the match
occurred is written to OUTPUT. FOUND is then set true. if no match
occurred, then QUTPUT is set to a value of -1 and FOUND is set
FALSE.

Program Statement

CALL SEARCH (COMPARE_GTR=<boolean literal >,
COMPARE_EQU=<boolean literal >,
COMPARE_LES=<boolean literal>,

INPUT =input%,

SELECT =select@,

TABLE1=table1%, TABLE2=table2%,
FOUND=found@, OUTPUT =output%%)

R0 Qo Qo Qo Qo Lo

Inputs

| (INPUT) =

Data input, type INTEGER. This parameter must be
specified as a numeric symbol only (literal value not
accepted).

GT (COMPARE_GTR) =

Compare INPUT > TABLE(n), type BOOLEAN. This is an
optional parameter. The default for this parameter is
FALSE. It must be entered explicitly as a boolean literal.

29-1

EQ (COMPARE_EQU) =

Compare INPUT = TABLE(n), type BOOLEAN. This is an
optional parameter. The default for this input is FALSE. It
must be entered explicitly as a boolean literal.

LT (COMPARE_LES) =

Compare INPUT < TABLE(n), type BOOLEAN. This is an
optional parameter. The default for this parameter is
FALSE. It must be entered explicitly as a boolean literal.

T1 (TABLE1) =

Search table #1, type INTEGER. This parameter must be
specified as a variable name only {literal value not
accepted). TABLE1 must be defined as a single dimension
INTEGER array of length N. This array definition is used
when you define the variable using a LOCAL or COMMON
statement in the task.

SE (SELECT) =

This input selects the TABLE that is to be searched, type
BOOQLEAN. The default is FALSE. When FALSE, TABLE1
will be searched, else TABLE2 will be searched. if this
parameter is specified, then parameter TABLE2 must also
be specified.

T2 (TABLE2) =

Search table #2, type INTEGER. This parameter is
optional. if specified it must be a variable name only
(literal value is not accepted). If TABLE2 is specified then
the parameter SELECT must also be specified. TABLE2
must be defined as a single dimension INTEGER array.
The length of TABLE2 must be equal to TABLE1. This
array definition is used when you define the variable using
a LOCAL or COMMON statement in the task.

Outputs

O (OUTPUT) =

Data output, type INTEGER. This parameter must be
specified. If a match occurs, OUTPUT is set equal to the
array element (0 to N) in the table that met the search
requirement. If no match occurs, then OUTPUT is set
equal to -1.

F (FOUND) =

Found match output, type BOOLEAN. This is an optional
parameter. This output is TRUE if an element in the
selected table matched the INPUT according to the
selected comparison parameters (COMPARE_GTR,
COMPARE_EQU or COMPARE_LES). If no match occurs,
this output is set FALSE.

Notes

1. The order in which the comparison options are programmed is
unimportant. However, the number of comparison options

29-2

selected (programmed TRUE) must be a minimum of one and a
maximum of two. If this requirement is not met, a compilation
error will occur.

TABLE1 (and TABLEZ if specified} must be defined as a single
dimension INTEGER array whose size {number of elements) is
defined in a variable definition statement (LOCAL or COMMON)
(e.g. LOCAL TABLE1%(16)). The size of TABLEZ2 if specified
must be the same as TABLE1. The SEARCH block will begin
searching through the selected table at the first element in the
array, which is element 0, not element 1.

When loading data into the table(s) it may be necessary to
manually sort the data in ascending or descending order.

Example 1: If COMPARE_GTR mode has been specified, then
sart the data in descending order.

INPUT = 15 TABLE 1%(0) = 40
TABLE 1%(1) = 30
TABLE 1%(2) = 20

then TABLE 1%(3) = 10

OUTPUT = 3 and FOUND = TRUE

Example 2: If COMPARE_LES mode has been specified, then
sort the data in ascending order.

INPUT = 1501 TABLE 1%(0) = 100
TABLE 1%(1) = 200
TABLE 1%(2) = 300
then TABLE 1%(3) = 400

QUTPUT = 1 and FOUND = TRUE

29-3

30.0 SHIFT BITS

This functi

on can be used in AutoMax Control block tasks only. it

cannot be used in UDC Control Block tasks.
——p] MCOL
—»{ SH
R SHIFT_BITS o1 —»
—_— |1
in on
EN

Maximum'n' =8

Function

When RESET is FALSE and SHIFT is TRUE, shift the data in the
specified BOOLEAN data structure towards the output(s), update
the output(s} with the state(s) at column MCOL - 1 and if ENABLE is
TRUE shift the state(s) of the input(s) into column 0, else set the

state(s) of

column O FALSE.

Program Statement

CALL SHIFT_BITS(STRUCTURE_NAME=struc_name@,
MAX_ COLUMNS=max_columns%,
RESET=reset@, SHIFT=shift@,

INPUT1 =input1@, ...INPUTn=inputn@,

ENAB
OuUTP

Inputs

0 o fo Qo Ro

LE=enable@, DATA_VALID=data_valid@,
UT1=output1@, ... OUTPUTn=outputn@)

SN (STRUCTURE_NAME) =

Name of the BOOLEAN data structure used to store the
shifted data. This parameter must be specified by name
only (literal value not accepted). The data structure name
is limited to a maximum length of 15 characters and must
be type BOOLEAN. The required BOOLEAN data structure
is automatically created by this control block.

MCOL (MAX_COLUMNS) =

Required number of columns (depth) for the BOOLEAN
data structure, type INTEGER. This parameter must be
entered explicitly as a numeric literal. The minimum value
is 1 and the maximum value is 32767 (see note 3). The
columns of the data structure are numbered from 0 to
MCOL - 1. Column 0 corresponds to the input of data
structure and column MCOL - 1 to the output.

30-1

30-2

R (RESET) =

Reset input, type BOOLEAN. This parameter is optional.
The default for this parameter is FALSE. When TRUE, all
data in the data structure will be zeroed.

SH (SHIFT) =

Shift input, type BOOLEAN. This parameter must be
specified. When RESET is FALSE and SHIFT is TRUE,
shift the data in the data structure towards the output(s},
update the output(s) with the state(s) at column MCOL - 1,
and shift new states(s) into column O (see ENABLE).

EN (ENABLE) =

Enable input, type BOOLEAN. This parameter is optional.
The default for this parameter is TRUE. When ENABLE
and SHIFT are TRUE, the state(s) of the input(s) will be
transferred inta column ¢ of the data structure. When
ENABLE is FALSE and SHIFT is TRUE, set the state(s) of
column Q FALSE.

11 (INPUT1) =
Data input 1, type BOOLEAN. This parameter must be
specified.

in (INPUTn) =
Data input n, type BOOLEAN. A maximum of 8 inputs can

be specified. Each specified input must have a
corresponding output.

Outputs

DV (DATA_VALID) =

Data valid output, type BOOLEAN. This is an optional
parameter. DATA_VALID is set TRUE when the data in the
data structure has been shifted a minimum of MCOL times
since RESET went FALSE. When RESET is TRUE,

DATA VALID is set FALSE.

01 (OQUTPUTYT) =

Data output 1, type BOOLEAN. This parameter must be
specified.

On (OUTPUTN) =
Data output n, type BOOLEAN. This is an optional

parameter. The number of outputs specified must be
equal to the number of inputs.

Notes

1. Data structure names are limited to a maximum tength of 16
characters. If this requirement is not met, a compilation error will
occur.

2. The order in which the input/output pairs are entered is
unimportant. However, for every INPUT(n) programmed an
OUTPUT(n) must also be programmed, and the input/output
pairs must be contiguous beginning with input/output pair 1. If
these requirements are not met, a compilation error will occur.

3. The SHIFT_BIT block creates a BOOLEAN data structure that is
used to store the data shifted from the inputs towards the
outputs. The size of the data structure in byles is equal to
MAX_COLUMNS. If the data structure size exceeds 32767 byles,
a compilation error will occur. Since the data structure is local to
the control block task, its size is further limited by the maximum
size of the total data storage area that the task can allocate for
all the local variables.

30-3

31.0 SHIFT WORDS

This function can be used in AutoMax Control Block tasks only. it

cannoct be

——>»{ SN
—»| MCOL
—»| SH

used in UDC Control Block tasks.

bv

IF: SHIFTWORDS Of |—»
: On
In
EN

Maximum ‘n’ = 8

Function

When RESET is FALSE and SHIFT is TRUE, shift the data in the

specified |

NTEGER data structure towards the output(s), update the

output(s) with the value(s) at column MCOL - 1, and if ENABLE is
TRUE, shift the data at the input(s) into column 0, else shift zeroes
into column 0.

Program Statement

CALL SHIFT_WORDS(STRUCTURE_NAME=struc_name%,
MAX_COLUMNS=max_columns%,
RESET=reset@, SHIFT =shift@,
INPUT1 =input1%, ...INPUTn=inputn%%,

ENAB
OuUTP

Inputs

Qo Qo o Ro Ra

LE=enable@, DATA_VALID=data_valid@,
UT1=output1%, ...OUTPUTn=outputn%})

SN (STRUCTURE_NAME) =

Name of the INTEGER data structure used to store the
shifted data. This parameter must be specified by name
only (literal value not accepted). The data structure name
is fimited to a maximum length of 16 characters and must
be type INTEGER. The required INTEGER data structure
is automatically created by this control block.

MCOL (MAX_COLUMNS) =

Required number of columns (depth) for the INTEGER
data structure, type INTEGER. This parameter must be
entered explicitly as a numeric literal. The minimum value
is 1 and the maximum value is 32767 (see note 3). The
columns of the data structure are numbered from 0 to
MCOL - 1. Column O corresponds to the input of data
structure and column MCOL - 1 to the output.

31-1

R (RESET) =
Reset input, type BOOLEAN. This parameter is optional.

The default for this parameter is FALSE. When TRUE, all
data in the data structure will be zeroed.

SH (SHIFT) =

Shift input, type BOOLEAN. This parameter must be
specified. When RESET is FALSE and SHIFT is TRUE,
shift the data in the data structure towards the outpul(s},
update the output(s) with the value(s) at column MCOL -
1, and shift new data into column 0 (see ENABLE).

EN (ENABLE) =

Enable input, type BOOLEAN. This parameter is optional.
The default for this parameter is TRUE. When ENABLE
and SHIFT are TRUE, the values at the input(s) will be
transferred into column 0 of the data structure. When
ENABLE is FALSE and SHIFT is TRUE, zeros will be
transferred into column 0.

11 (INPUT1) =
Data input 1, type INTEGER. This parameter must be
specified.

In (INPUTR) =
Data input n, type INTEGER. A maximum of 8 inputs can

be specified. Each specified input must have a
corresponding output.

Outputs

DV (DATA_VALID) =

Data valid output, type BOOLEAN. This is an optional
parameter. DATA_VALID is set TRUE when the data in the
data structure has been shifted a minimum of MCOL times
since RESET went FALSE. When RESET is TRUE,
DATA_VALID is set FALSE.

01 (QUTPUTY) =

Data output 1, type INTEGER. This parameter must be
specified.

On (OUTPUTN} =
Data output n, type INTEGER. This is an optional

parameter. The number of outputs specified must be
equal to the number of inputs.

Notes

1.

Data structure names are limited to a maximum length of 16
characters. If this requirement is not met, a compilation error will
occur.

The order in which the input/output pairs are entered is
unimportant. However, for every INPUT{n) programmed a
OQUTPUT(n) must also be programmed. In addition, the
input/output pairs must be contiguous beginning with
inputfoutput pair 1. If these requirements are not met, a
compilation error will occur.

The SHIFT_WORDS block creates an INTEGER data structure
that is used to store the data shifted from the inputs towards the
outpuls. The size of the data structure in bytes is equal lo two
times the number of programmed inputs times the number of
MAX_COLUMNS specified. If the data structure size exceeds
32767 bytes, a compilation error will occur. Since the data
structure is local to the control block task, its size is further
limited by the maximum size of the total data storage area that
the task can allocate for ail the local variables.

32.0 SELECT

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

—> 1
—»{ SE1
®

b SELECT
®

In
SEn

Maximum 'n’ = 8

Q ————p

Function

OUTPUT will equal the sum of all selected inputs. if no SELECT is
TRUE, QUTPUT = 0.

Program Statement

CALL SELECT(INPUT1 = inpul1%,
SELECT1 = select1@....,
INPUTR = inputn%,

SELECTn = selectn@,
OUTPUT = output)

0 Qo Qo Qo Qo

Inputs

11 (INPUT1) =

INTEGER signal input 1. This parameter must be
specified.

SE1 (SELECT1) =

BOOLEAN signal 1 selecl. This parameter must be
specified. When TRUE, INPUT1 is algebraically summed
with other selected inputs, producing OUTPUT.

In (INPUTR) =

INTEGER signal input n. This is an optional parameter. A
maximum of 8 inputs can be specified.

SEn (SELECTn) =

BOOLEAN signal select. This is an optional parameter.
However, a SELECT is required for every INPUT. When
TRUE, (INPUTN) is algebraically summed with other
selected inputs, producing OUTPUT.

Outputs

O (OUTPUT) =
INTEGER signal output. This parameter must be specified.

J2-1

32-2

Notes

1.

The order in which (INPUTn} and (SELECTn) pairs are entered is
not important. However, it is required that, for “m” channels
used, channels 1 through “m” be programmed. In other words,
the channels used must be contiguous beginning with channel
1. A compilation error will occur if this requirement is not met,

The following is a correct statement:

CALL SELECT (INPUT1 = INA%,SELECT1 = SELECTA@, &
INPUT2 = INB%,SELECT2 = SELECTB@, &
INPUT3 = INC%,SELECT3 = SELECTC@, &
INPUT4 = IND%,SELECT4 = SELECTD@, &
OUTPUT = output%)

The following is also correct, illustrating that the order of entry is
not important:

CALL SELECT (INPUT2 = INB%,SELECT2 = SELECTB@, &
INPUT4 = IND%,SELECT4 = SELECTD@, &
INPUT3 = INC%,SELECT3 = SELECTC@, &
INPUT1 = INA%,SELECT1 = SELECTA@, &
OQUTPUT = output%)

The following is an incorrect statement because the channels
are not contiguous:

CALL SELECT (INPUT1 = INA%,SELECT1 = SELECTA®@,
INPUT3 = INC%,SELECT3=SELECTC@,
INPUT4 = IND%,SELECT4=SELECTD@,
OUTPUT = output%)

Overflow Handling: During block execution, (INPUTn) and
(SELECTN) pairs are read and processed in sequential order
beginning with INPUT1 and SELECT1. Since the sum of the
selected inputs is calculated as a 32-bit value and inputs are
integer quantities (16-bit values), an overflow cannot occur
during these intermediate additions (given an 8 input channel
restriction).

Ro go fo

When all consecutive sequential input channels are processed,
the final sum (QUTPUT) must be within the range —32768 to
+32767 or an error will be logged and the result will be clamped
to —32768 or +32767, producing QUTPUT.

33.0 SUMMER

This function can be used in AutoMax Contro! Block tasks and UDC
Control Block tasks.

+
—_—
+
Function
OUTPUT = INPUT1 + INPUT2
Program Statement
CALL SUMMER(INPUT1 = input1%, &
INPUT2 = input2%, &
OUTPUT = output%)
Inputs
H (INPUT1) =
INTEGER signal input 1. This parameter must be
specified.
12 (INPUT1) =
INTEGER signal input 2. This parameter must be
specified.
Outputs
O (OUTPUT) =

INTEGER signal output. This parameter must be specified.
OUTPUT is limited to the range —32768 to +32767. If this
limit is exceeded, an error will be logged.

33-1

34.0 SWITCH

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

—_— 11
—] 2 ob——>
—»| SE : | |

Function

If SELECT = TRUE then QUTPUT = INPUT1

else
OUTPUT = INPUT2

Program Statement

CALL SWITCH(INPUT1 = input1%,
INPUTZ = input2%,
SELECT = selsct@,
OUTPUT =outputs)

fo Qo Qo

Inputs

| INPUT1) =

INTEGER signal input 1. This parameter must be
specified.

12 (INPUT2) =

INTEGER signal input 2. This parameter must be
specified.

SE (SELECT) =
BOOLEAN signal select. This parameter must be
specified. When TRUE, INPUT1 is connected to OUTPUT.
When FALSE, INPUT2 is connected to QUTPUT.
Outputs

O (OUTPUT) =
INTEGER signal output. This parameter must be specified.

341

35.0 TACH LOSS AND
OVERSPEED

This function can be used in UDC Control Block tasks only. it cannot
be used in AutoMax Control Block tasks.

—» SPEED_FDBK
OVERSPEED LM SPEED FAULT |——>
TL_SPD_LLIM TACHLOSS OVERSPEED
AV_SPD_LLIM & TACH_LOSS

——»{ ARM VOLTAGE_FDBK OVERSPEED ARM_VFB_LOSS
TL_VFB_LLIM
ARM _VFB_LLIM
Function

This function provides tachometer loss and overspeed detection
using speed feedback and armature voltage for Distributed Power
System drives. Use of this block is appropriate for control of
motor-generator sets or in speed regulators where a signal
proportional to speed that is independent of the device measuring
speed {such as a resolver) is not provided by the PMI.

Program Statement

CALL TACHLOSS OVERSPEED{ SPEED_FDBK = speed_fdbk%,
ARM_VOLTAGE_FDBK = arm_voltage_fdbk%,
OVERSPEED_LIM = overspeed_lim%,
TL_SPD_LLIM = tt_spd_Ilim%,

AV SPD_LLIM = av_spd_llim%,
TL_VFB_LLIM = ti_vib_llim%,

ARM _VFB_LLIM = arm_vib_Illim%,
SPEED_FAULT = speed_fault@,
OVERSPEED = overspead@,
TACH_LOSS = tach_loss@,

ARM _VFB _LOSS = arm_vfb_loss@)

o fo Qo Qo Qo Qo Lo Lo Qo Qo

Inputs

SPEED_FDBK =

INTEGER speed feedback from the drive (typically 4095 =
gear-in speed). This parameter must be specified. There is no
default.

OVERSPEED LM =

INTEGER overspeed trip point or limit (typically 10% over gear-in
speed). The default is 4505.

TL_SPD_LLIM =

INTEGER speed feedback low limit used for tach loss detection
(typically 5% of gear-in speed). The default is 205.

35-1

AV_SPD _LLIM =

INTEGER speed feedback low limit used for armature voltage
feedback loss detection (typically 40% of gear-in speed). The
default is 1638.

ARM_VOLTAGE_FDBK =

INTEGER armature voltage feedback from drive (typically 3000
= rated armature volts). This parameter must be specified.
There is no default.

TL_VFB_LLIM =

INTEGER armature voitage feedback low limit used for tach loss
detection (typically 40% of rated voltage). The default is 1200.

ARM_VFB LLIM =

INTEGER armature voltage feedback low limit used for armature
voltage feedback loss detection {typically 5% of rated voltage).
The default is 150.

Outputs

SPEED_FAULT =

BOOLEAN speed emergency stop output; TRUE when
overspeed, tach loss, or armature voltage feedback loss is
detected. This parameter must be specified.

OVERSPEED =

BOOLEAN output TRUE when overspeed is detected. The
default is FALSE.

TACH_LOSS =

BOOLEAN output TRUE when tach loss is detected. The default
is FALSE.

ARM _VFB_LOSS =

BOOLEAN output TRUE when armature voltage feedback loss is
detected. The default is FALSE.

Notes

1. f armature voltage feedback comes from the PMI in volts, the
armature volts low limit must also be in volts.

35-2

35.1

Setup Calculations and Block Equations

IF ABS{ XXX_SPD_FBK%) > OVERSPD_LIM% THEN
XXX_OVERSPD@ = TRUE

ELSE
XXX_OVERSPD@ = FALSE

END_IF

IF ABS(XXX_SPD_FBK%) < TL_SPD_FBK_LLIM% AND
ABS(XXX_ARM_VFB%) > TL VFB_LOW_LIM% THEN
XXX_TACH_LOSS@ = TRUE
ELSE
XXX_TACH_LOSS@ = FALSE
END_IF

IF ABS(XXX_SPD_FBK%) > AV_SPD_FBK_LLIM% AND
ABS(XXX_ARM_VFB%) < ARM_VFB_LOW LIM% THEN
XXX_AVFB_LOSS@ = TRUE
ELSE
XXX_AVFB_LOSS@ = FALSE
END_IF

IF XXX_OVERSPD@ = TRUE OR &
XXX_TACH_LOSS@ = TRUE OR &
XXX_AVFB_LOSS@ = TRUE THEN

XXX_SPD_ESTOP@ = TRUE

ELSE
XXX_SPD_ESTOP@ = FALSE

END_IF

35-3

36.0

XXX_PMI_FB%
——

THERMAL OVERLOAD

This function can be used in UDC Contro! Block tasks only. it cannot
be used in AutoMax Control Block tasks.

XXX_OVRLOAD@
P

|_FDBK OVERLOAD
LIM_BAR THERMAL _ CALC RISE
THRESHOLD OVERLOAD

TRIP_TIME

RESET

Function

This block is used to create a model of the temperature in a device
such as a single motor or Power Module controlled by a Distributed
Power System drive and to turn on an alarm when an overload
condition exists. The block calculates a rise in temper ature based
on current feedback. When operating above 100%, if the rise in
temperature exceeds the programmed limit, the OVERLOAD output
will turn on. After the overload condition is detected, the rise in
temperature must return to the 100% condition before the drive will
be allowed to turn on again.

Note that this block is required in all UDC Control Block tasks,
unless motor thermal overload protection is provided by a hardware
device.

Program Statement

CALL THERMAL OVERLOAD(|_FDBK = xxx_pmi_fb%,
LIM_BAR = lim_bar%,
THRESHOLD = threshold%,
TRIP_TIME = trip_time%,
RESET = reset@,
OVERLOAD = xxx_ovrload@,
CALC_RISE = calc_rise%)

2o Qo Qo Qo Qo Qo

inputs

| FDBK =

This variable is the current feedback as sampled by the PM{
(Power Module Interface), register 211/1211 in the UDC dual
port for AC drives, and 207/1207 for DC drives. It is scaled so
4095 counts is the maximum current that will be produced. This
variable must be defined as a common integer. Recall that there
must be no duplicate common variable names in an AutoMax
rack; each instance of this variable name in a rack must be
customized. The suggested name of the variable is
XXX_PMI_FB%, with XXX used for UDC slot and drive
designation, for example: S12A_PMI_FB% might be used for the
current feedback value retumned by the PMI connected to port A
of the UDC in slot 12.

36-1

36-2

LIM_BAR=

This variable is the maximum current limit for the motor in
percent. The value used for LIM_BAR must be the same value
entered for the Motor Overload Ratio during drive parameter
configuration. It defines what percent of motor current is
expressed by 4095 counts. For example, if LIM_BAR is 150, then
100% motor current is 2730 counts. If LIM_BAR is 200, then
100% motor current is 2047 counts. This variable may be
programmed as an integer variable, an integer constant, or it
may be omitted, in which case it defaults to a value of 150. Legal
values range from a low of 115 to a high of 400. if the value is
outside this range, it will be limited to this range and an error will
be logged. The value must be greater than the value of
THRESHOLD or an error will be logged.

THRESHOLD =

This variable determines the threshold of current at which the
overload output is turned on. For example, if threshold is set to
114, then an overload will be detected when steady state current
reaches 115%. This variable may be programmed as an integer
variable or an integer constant, or it may be omitted, in which
case it defaults to a value of 114. Legal values range from a low
of 110 to a high of 124, If the value is outside this range, it will be
limited to this range and an error will be logged. The value must
be less than the value of LIM_BAR or an error will be logged.

TRIP_TIME =

This variable is the trip time in seconds. If |_FDBK is at steady
state 100%, and then stepped to LIM_BAR, the OVERLOAD
output will turn on in TRIP_TIME seconds. This variable may be
programmed as an integer variable or an integer constant, or it
may be omitted, in which case it defaults to a value of 60. Legal
values range from a low of 10 to a high of 120. If the value is
outside this range, it will be limited to this range and an error will
be logged.

RESET =

This variable is the reset input. When this input is turned on, the
OVERLOAD output is turned off, and CALC_RISE is set to zero.
This parameter is intended only for test purposes and should
not be used in application tasks controlling real applications. If
this variable is programmed, it must be specified as a boolean.

Outputs

OVERLOAD =

This variable is a boolean that will be turned on when an
overload is detected. This boolean must be programmed in a
Ladder Logic task to turn off the drive when the bit turns on. It
must be defined as a common boolean. Recall that there must
be no duplicate common variable names in an AutoMax rack;
each instance of this variable name in a rack must be
customized. The suggested name of the variable is
XXX_OVRLOAD@, with XXX used for UDC slot and drive
designation, for example: S07B_PMi_FB% might be used for the
bit that will turn off the drive connected to port B on the UDC
module in slot 7.

CALGC_RISE =

This variable displays the calculated rise in temperature. The
calculation squares |_FDBK, scales it, and then applies a low
pass filter to introduce a time delay. For example, when |_FDBK
is at steady state 100%, if |_FDBK is then stepped to 110%,
CALC RISE will reach a steady state value of 1210, (N%**2/10).
With THRESHOLD at 114%, the trip point will be 1300. If |_FDBK
remains less than 114%, CALC_RISE will remain less than 1300
and OVERLOAD will not turn on.

If this variable is programmed, it must be defined as an integer.

36.1 Setup Calculations and Block Equations

The following setup calculations are performed internally by the
Thermal Overload function based on the parameters enterad.

In{ (LIM_BAR**2 - 100**2) / {LIM_BAR**2 - THRESHOLD**2)]
TRIP_TIME (sec.)

Wig =

SCALE = (4095 / LIM_BAR)**2 * 10
IF OVERLOAD = TRUE THEN

LIMIT = 1000
ELSE
LIMIT = THRESHOLD**2/ 10
END_(F
(I FDBK**2) 1
CALC RISE = ——— * ————
- SCALE (1 + s/ wlg)

IF RISE% > LIMIT THEN
OVERLOAD = TRUE
ELSE
OVERLOAD = FALSE
END_IF

36.2 Special Notes

1. UL 508C section 56.1.3 specifies that when subjected to 200%
of rated full load motor current, the overload protection must trip
in at least eight (8) minutes. Because TRIP_TIME is calibrated
from 100% to current {imit, and TRIP_TIME from zero to current
fimit is approximately four times longer, the maximum trip time
that is allowed is 2 minutes (120 seconds). To meet UL listing
requirements, any value for TRIP_TIME greater than 120
seconds is limited to 120 seconds.

2. The National Electric Code (430-32; 1993} requires that thermal
overloads protecting motors having a 1.0 service factor trip at
load currents no greater than 115% of full load. To meet NEC,
the THRESHOLD block parameter has a default value of 114%.
If your motor has a service factor greater than 1.0, you may use
avalue up to 124,

36-3

37.0 TRANSITION

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

—_— | —-m— OF—»

Function

OUTPUT = TRUE when INPUT goes from off to on

Program Statement

CALL TRANSITION(INPUT = input@, OUTPUT = output@)

Inputs

| (INPUT) =

BOOLEAN signal input. This parameter must be specified.
it must be specified as a variable name only (literal value
not accepted).

Outputs

O (OUTPUT) =

BOOLEAN signal ocutput. This parameter must be
specilied.

37-1

38.0 UNPACK BITS

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

—»i 1 UNPACK BITS oOpb—»

‘n'=0..15

Function

QUTPUTn is set to the state of BITn in INPUT

Program Statement

CALL UNPACK_BITS{INPUT=input%, &
OUTPUTO=0utputd@, ... OUTPUTn=outputn@)

Inputs

| INPUT) =

Signal input, type INTEGER. This parameter must be
specified.

Outputs

On (OUTPUTR) =

Data output 0...15, type BOOLEAN. The outputs can be
specified in any order.

Notes

1. The order in which the outputs (output0...oulputi5) are
programmed is unimportant. However, a minimum of one output
must be programmed. If this requiremsnt is not mel, a
compilation error will occur.

38-1

39.0 WRITE BITS

This function can be used in AutoMax Contro! Block tasks only. It
cannot be used in UDC Control Block tasks.

—»| SN E

—» COL
——»{In WRITE_BITS

Maximum ‘n’ = 8

Function

This function stores data into a column in the specified BOOLEAN
data structure.

Program Statement

CALL WRITE_BITS(STRUCTURE_NAME=structure_name@,
COLUMN=column%, ENABLE=enable@,
INPUT1=input1@, ...INPUTN=inputn@,
ERROR=error@)

o @

Inputs

SN (STRUCTURE_NAME) =

Name of the BOOLEAN data structure where data is to be
written to. This parameter must be specified by name only
(literal value not accepted). The data structure name is
limited to a maximum length of 15 characters and must be
type BOOLEAN. The specified data structure must be
created by a control block within the task. Refer to the
SHIFT_BITS block for an example of a control block that
creates a BOOLEAN data structure.

COL (COLUMN) =

Selects a column within the specified BOOLEAN data
structure, type INTEGER. This parameter is required. The
columns are numbered from 0 to MCOL - 1, where MCOL
is equal to the number of columns (depth) defined by the
control block that created the data structure.

EN (ENABLE) =

Enable input, type BOOLEAN. This parameter is required.
The state(s) of the input(s) are written into the column
specified by COLUMN when ENABLE is TRUE. If this
parameter is FALSE, no data will be written into the
column.

39-1

39-2

In (INPUTR) =

Data input n, type BOOLEAN. The inputs can be specified
in any order.

Outputs
E (ERROR) =

Error output, type BOOLEAN. This is an optional
parameter. The output is TRUE if the value of COLUMN
selects a non-existent column for the specified data
structure, or if the column specified has not been loaded
previously with data by the control block that created it.
Valid values for COLUMN range from 0 to MCOL - 1. See
COLUMN above.

Notes

1.

The WRITE_BITS block must reference a BOOLEAN data
structure that was created by a control block within the task. A
minimum of one input must be programmed. The order in which
the inputs (input1...input8) are programmed is unimportant.
However, all of the inputs programmed by the WRITE_BITS
block must also be defined by the control block that created the
data structure. If these requirements are not met, a compilation
error will occur.

If the value of COLUMN selects a non-existent column, the
output ERROR is set TRUE, no data is stored in the specified
data structure, and the appropriate run time error is logged.

If the value of COLUMN selects a column that has not been
previously loaded with data by the control block that created it,
the output ERROR is set TRUE, no data is stored in the specified
data structure, but no run time error is logged.

40.0 WRITE WORDS

This function can be used in AutoMax Controf Block tasks only. It
cannot be used in UDC Control Block tasks.

—-—» SN E

— COL
—1 In WRITE_WORDS

Maximum ‘n’ =8

Function

This function stores data into a column in the specified INTEGER
data structure.

Program Statement

CALL WRITE_WORDS (STRUCTURE_NAME =struc_name%,
COLUMN=column%, ENABLE =enable@,
INPUT1=input1%, ...INPUTN=inputn,
ERROR=error@)

0 Qo Qo

Inputs

SN (STRUCTURE_NAME) =

Name of the INTEGER data structure where data is to be
written to. This parameter must be specified by name only
(literal value not accepted). The data structure name is
limited to a maximum length of 15 characters and must be
type INTEGER. The specified data structure must be
created by a control block within the task. Refer to the
SHIFT_WORDS block for an example of a control block
that creates an INTEGER data structure.

COL {(COLUMN) =

Selects a column within the specified INTEGER data
structure, type INTEGER. This parameter is required. The
columns are numbered from 0 to MCOL - 1, where MCOL
is equal to the number of columns {depth) defined by the
control block that created the data structure.

EN (ENABLE =

Enable input, type BOOLEAN. This parameter is required.
The values read from the inputs are written into the
column specified by COLUMN when ENABLE is TRUE. if
this parameter is FALSE, no data will be written into the
column.

40-1

40-2

In INPUTR) =

Data input n, type INTEGER. The inputs can be specified
in any order.

Outputs
E (ERROR) =

Error output, type BOOLEAN. This is an optional
parameter. The output is TRUE if the value of GOLUMN
selects a non-existent column for the specified data
structure or if the column specified has not been
previously loaded with data by the control bfock that
created it. Valid values for COLUMN range from O to
MCOL - 1 {see COLUMN above).

Notes

1.

The WRITE_WORDS block must reference an INTEGER data
structure that was created by a control block within this task. A
minimum of one input must be programmed. The order in which
the inputs {inputt ...input8) are programmed is unimportant.
However, all of the inputs programmed by the WRITE_WORDS
block must also be defined by the control block that created the
data structure. if these requirements are not met, a compilation
error will occur.

If the value of COLUMN selects a non-existent column, the
output ERROR is set TRUE, no data is stored in the specified
data structure, and the appropriate run time error is logged.

If the value of COLUMN selects a column that has not been
previously loaded with data by the control block that created it,
the output ERROR is set TRUE, no data is stored in the specified
data structure, but no run time error is logged.

41.0 DIFFERENTIATOR LAG

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

R
IV
sfwlg
1+swg °
— 3| WLG
WM
Function
LAPLACE TRANSFER FUNCTION = __sjolg

1 + (s/wig)

Program Statement

CALL DIFF_LAG{INPUT =input%,
WLG=wlg,
WM=nnn.n,
INITIAL_VALUE =initial_value%,
RESET =reset@ |,
OUTPUT=output?%)

o Qo Qo Qo Qo

inputs

R (RESET) =

BOOLEAN device reset. The default for this parameter is
FALSE. When this parameter is TRUE, OUTPUT will be
held at INITIAL_VALUE.

IV (INITIAL_VALUE) =

INTEGER initial value. The default for this parameter is
zero.

| (NPUT) =

INTEGER signal input. This parameter must be specified
as a variable name only (literal value not accepted).

WLG (wlg) =

REAL lag frequency in radians/second. This parameter
must be specified. You must include a decimal point in the
actual value.

WM (om) =

REAL mapping frequency in radians/second. If specified,
this parameter must be entered explicitly as a real literal.
The default value for this parameter is ws divided by 20
where ws is the frequency in rad/sec. You must include a
decimal point in the actual value.

411

41.1

41-2

Outputs

O (OUTPUT)=
INTEGER signal output. This parameter must be specified.

DIFF_LAG om Limitations

wm is equal to or greater than 0.0013872 divided by TICKS
wm is equal to or less than 253.866 divided by TICKS.

Low Limit = (-%) ARCTAN (2 -18)

-(22)
2-17
T

_ 0.0013872
TICKS

2R
45T

High Limit

_ 253.866
TICKS

where:

T scan period in seconds
number of CPU clock ticks times tick rate

218 3.814697266E-06

Refer to section 51.0 Special Coefficient Restrictions, for further
resiriction notes.

41.2 DIFF_LAG olg Limitations

wlg is equal to or greater than 0.00137573 divided by TICKS. wlg is
equal to or less than 256.055 divided by TICKS.

Low Limit = C(218)
_ wm(218)
TAN (ﬂ)m*T)
2

High Limit = 0.71C

0.71om
N (L)
2

if Wm is defaulted ((0m = Ws -+~ 20):

Low Limit =(2-18) _1.-.9TBL

_ 0.00137573
TICKS

High Limit =.071 (1'9{&)

_ _256.055
TICKS
where:
T = scan period in seconds
= number of CPU clock ticks times tick rate
(s = scan frequency in radians/second
= _2n
T
C = bilinear mapping constant
wm
= TAN (mm *T)
2
218 = 3.814697266E-06
Refer to section 51.0, Special Coefficient Restrictions, for further]

restriction notes.

41-3

42.0 INTEGRATE

This funclion can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

R SP
—| Kl
LP
HP
HM s
LM

v

WM SM

Function

LAPLACE TRANSFER FUNCTION = _Kli
s

Program Statement

CALL INTEGRATE(INPUT = input%,
Kl = ki,
WM = nnn.n,
INITIAL_VALUE = initial_value%,
LIMIT_PLUS = limit_plus%,
LIMIT_MINUS = fimit_minus%,
RESET = reset@,
HOLD _PLUS = hold_plus@,
HOLD _MINUS = hold_minus@,
SATURATED_PLUS = saturated_plus@,
SATURATED_MINUS = saturated_minus@,
OUTPUT = output%)

fo Qo Qo Qo Qo Qo Qo Lo Qo Qo o

Inputs

R (RESET) =

BOOLEAN integrator reset. The default for this parameter
is FALSE. When this parameter is TRUE, OUTPUT will be
held at INITIAL_VALUE.

Kl (KI) =
REAL integrator gain. This parameter must be specified.
You must include a decimal point in the actual value.

LP (LIMIT_PLUS) =
INTEGER integrator upper limit. The default for this
parameter is 32767. This parameter will limit OUTPUT

from becoming more positive. It will not prevent the output
value from becoming more negative.

42-1

42.1

42.2

HP (HOLD_PLUS) =

BOOLEAN integrator hold plus. The default for this
parameter is FALSE. When this parameter is
TRUE,QUTPUT will be prevented from becoming more
positive. It will be permitted to go more negative.

[(INPUT) =
INTEGER signal input. This parameter must be specified.
HM (HOLD MINUS) =

BOOLEAN integrator hold minus. The default for this
parameter is FALSE. When this parameter is TRUE,
OUTPUT wili be prevented from becoming more negative.
It will be permitted to go more positive.

LM (LIMIT_MINUS) =

INTEGER integrator lower limit. The default for this
parameter is —32767. This parameter will limit OUTPUT
from becoming more negative. It will not prevent the
output value from becoming more positive.

IV (INITIAL_VALUE) =

INTEGER initial value of integrator. The default for this
parameter is zero.

WM (wm) =
Mapping frequency in radians/second. If specified, this
parameter must be entered explicitly as a REAL literal.

The default value for this parameter is ws divided by 20

where (s is the frequency in rad/sec. You must include a
decimal point in the actual value.

Outputs

SP (SATURATED_PLUS) =

BOOLEAN SATURATED plus output.This parameter is
optional. TRUE if OUTPUT% reaches LIMIT(+).

O (OUTPUT) =
INTEGER signal output. This parameter must be specified.
SM {SATURATED MINUS) =

BOOLEAN saturated minus output. This parameter is
optional. TRUE if OUTPUT% reaches LIMIT(-).

INTEGRATE om Limitations

wm is equal to or greater than 0.01. wm is equal to or less than
0.97t divided by T.

Low Limit = .01
High Limit =09
T

where:
T = scan period in seconds
= number of CPU clock licks times tick rate

42.2 INTEGRATE K1 Limitations

K1 is equal to or greater than the value 0.00137573 divided by
TICKS. K1 is equal to or less than 0.97 divided by T.
Low Limit = C(2-18)
mm(g‘lﬂ)
= TAN (wm*T)
2

High Limit = 0,95
=

if om is defaulted (wm = ws —— 20):
Low Limit = (2-18) _1.9835
T

where:
T = scan period in seconds
= number of CPU clock ticks times lick rale
ws = scan frequency in radians/second
= 2n
T
C = bilinear mapping constant

_ wm
~ TAN (wm*T)
2

218 = 3.814697266E-06

Refer to section 51.0, Special Coefficisnt Restrictions, for |
further rastrictions.

42.3 Calculating K1 for INTEGRATE Time
Domain Applications

The following describes calculating K1 when the INTEGRATE block
is used for its time domain characteristics. When used in this
manner, the frequency characteristics of the block are of no
concern. Therefore, the (om specification wilt always be defaulted
{not specified).

Calculate K1 such that QUTPUT will accumulate (change) by “y”
counts/second with a constant “x” INPUT value and a scan period of
“t” TICKS. The equation executed by the INTEGRATE block is as
follows:

OUTPUT = Kx{INPUT + INPUT(n-1)] + OUTPUT{n-1)

42-3

where:
Kx =K1
C

wm
c = TAN (mm*T)
2

Since Wm is defaulted (om = Ws - 20 where Ws = 21X =-T):

wom = 2a =n
20T 10T

(THOT)
(ior)(2
LY
{ 10T)

0.15838

Therefore,

)

= 1.6835
T

Determine the Counts/Scan as follows:

Counts/Scan = y Counts/Second
Scan/Second

(=)

1
T

= y*T
Because QUTPUT = Counts/Scan = Kx{2x), solve for Kx:
Kx = (_Counts/Scan)
2x

= y*T
2x
To solve K1 in the formula Kx = K1 :
C
Ki=Kx*C
_fy*T 1.8835
- 2% T
_ fy*1.9835
- 2%
= 0.99179 (ylx)

42-4

For example, if an application required that the output
integrate 1200 counts/second with a constant input value of 2000,
we calculate for K1 as follows:

K1 0.99179 (y)
X

0.99179 ¢ 1200
2000)

59507

42-5

43.0 LAG

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

R
v
| | 1 0 >
1 +{s/wig)
—_— WLG
WM
Function
LAPLACE TRANSFER FUNCTION = 1
1 + (s/wig)

Program Statement

CALL LAG(INPUT = input%,
WLG = wig,
WM = nnn.n,
INITIAL_VALUE = initial_value%,
RESET = reset@,
QUTPUT = output%)

20 Qo Qo Qo Qo

Inputs

R (RESET) =

BOOLEAN device reset. The default for this parameter is
FALSE. When this parameter is TRUE, QUTPUT will be
held at INITIAL_VALUE.

IV {INITHAL_VALUE) =
INTEGER initial value. The default for this parameter is
Zero.

I (INPUT) =
INTEGER signal input. This parameter must be specified.
It must be specified as a variable name only (literal value
not accepted).

WLG (ig) =

REAL lag frequency in radians/second. This parameter
must be specified. You must include a decimal point in the
actual value.

43.1

43-2

WM (1om) =

REAL mapping frequency in radians/second. If specified,
this parameter must be entered explicity as a rea! literal.
The default value for this parameter is ws divided by 20
where ws is the frequency in rad/sec. You must include a
decimal point in the actual value.

Outputs

O (OUTPUT) =
INTEGER signal output. This parameter must be specified.

LAG om Limitations

wm is equal to or greater than 0.0013872 divided by TICKS.
wm is equal to or less than 253.866 divided by TICKS,

2
Low Limit = (T) ARCTAN (2 "18)
- (2 {2718))
T

917
T

0.0013872
TICKS

2n
5T

High Limit

_ _253.866
TICKS

where:

T scan period in seconds

number of CPU clock ticks times tick rate
2718 3.814697266E-06

Refer to section 51.0, Special Coefficient Restrictions, for
further restrictions.

Il

43.2 LAG wlg Limitations

wlg is equal to or greater than 0.00137573 divided by TICKS.
wlg is equal to or less than 256.055 divided by TICKS.

Low Limit = C{2°18)

_ wm{2-18)
- TAN mm'T)
2

High Limit = 0.71C
0.71wm

= TAN(wm*T)
2

If om is defaulted (Wm = Ws —- 20):

Low Limit =(2-18) _1_-9?3&

- 0.00137273
TICKS

44.0 LEAD/LAG

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

R
v

— | 1 + (s/wid) o >
—»| WLD 1 + (s/olg)
——l WLG
WM

Function
LAPLACE TRANSFER FUNCTION = 1 + (s/wid
1+ (s/wig)

Program Statement

CALL LEAD_LAG(INPUT = input%,
WLD = wid,
WLG = wilg,
WM = nnn.n,
INITIAL_VALUE = initial_value%,
RESET = resst@,
OUTPUT = output)

0 Lo Qo Lo Lo Ro

Inputs

R (RESET) =

BOOLEAN device reset. The default for this parameter is
FALSE. When this parameter is TRUE, OUTPUT will be
held at INITIAL_VALUE.

IV (INITIAL_VALUE) =

INTEGER initial value. The default for this parameter is
zero.

i (INPUT) =

INTEGER signal input. This parameter must be specified.
it must be specified as a variable name only (literal value
not acceptad).

WLD (wid) =
REAL lead frequency in radians/second. This parameter
must specified. You must include a decimal point in the
actual value.

WLG (wlg) =

REAL lag frequency in radians/second. This parameter
must be specified. You must include a decimal point in the
actual value.

WM (om) =

REAL mapping frequency in radians/second. If specified,
this parameter must be entered explicitly as a real literal.
The default value for this parameter is ws divided by 20
where ws is the frequency in rad/sec. You must include a
decimal peint in the actual value.

Outputs

O (OUTPUT) =
INTEGER signal output. This parameter must be specified.

44 1 LEAD_LAG, wld, wlg, and wm Limitations

wld, wlg, and wm are equal to or greater than 0.001.
wld, wlg, and wm are equal to or less than 2%t divided

by45T
Low Limit = 0.001
High Limit = 2n
4.5T
where:
T scan pericd in seconds

number of CPU clock ticks times tick rate

LEAD_LAG wld:wlg or wlg:wld ratio restrictions
maximum = 20:1
minimum = 2:1

LEAD_LAG ws:wld and ws:mlg ratio restrictions

minimum =4.5:1
where:
ws = scan frequency in radians/second
= 2n
T

scan period in seconds
number of CPU clock ticks times tick rate

44-2

45.0 NOTCH FILTER

This function can be used in AutoMax Control Block tasks only. It
cannot be used in UDC Control Block tasks.

L
|

Function

LAPLACE TRANSFER FUNCTION = s**2 + @n**2
s**2 + wns/Q + wn**2

Program Statement

CALL NOTCH(INPUT = input%,
Q_FACTOR = g_factor,
WN = wn,

RESET = reset@,
OUTPUT = output%)

Qo Qo Qo Qo

Inputs

[{INPUT) =

INTEGER signal input. This parameter must be specified
as a variable name only (literal value not accepted).

Q (Q_FACTOR) =
REAL. filter Q factor. Equal to 1/ {2*damping factor). May

vary from .5 to 100. This parameter must be specified. You
must include a decimal point in the actual value.

WNHN (wn) =

REAL tunable notch filter frequency in radians/sec. May
vary from .01 to 2x / 10T where T = scan time in seconds.
This parameter must be specified. You must include a
decimal point in the actual value.

R (RESET) =
BOOLEAN device reset. The default for this parameter is
FALSE. When this parameter is TRUE, OUTPUT will be
held at zero.

Outputs

O (OUTPUT) =
INTEGER signal output. This parameter must be specified.

*Note that this block is supported only in Version 2.0 and later
Programming Executive software.

45-1

46.0 HIGH-PASS FILTER
(Nth Order High-Pass
Butterworth Filter)

This function can be used in UDC Control Block tasks only. It cannot
be used in AutoMax Control Block tasks.

RESET

INITIAL_VALUE HIGH_PASS
—» INPUT FILTER OUTPUT |——>»
—» WD
ORDER

Function

This function provides a high-pass filter to attenuate input
frequencies that are below the cutoff frequency in UDC tasks. The
order parameter can be used to change the sharpness of the cutoff.

For ORDER=1, LAPLACE TRANSFER FUNCTION = S
S+ @

For ORDER=2, LAPLACE TRANSFER FUNCTION =
g**2
g2 +\r2 sw + m**2
For ORDER=3, LAPLACE TRANSFER FUNCTION =
§**3
s**3 + (25**2* w) + 250**2 + ©**3

Program Statement

CALL HIGH_PASS_FILTER(INPUT = input%,
WLD = wid,
ORDER =1,2,0r3
INITIAL_VALUE = initial_value%,
RESET = reset@,
OUTPUT = output%)

fo Qo Qo Qo Qo

Inputs

RESET =

BOOLEAN output reset. The default for this parameter is FALSE.
This parameter will hold OUTPUT to INITIAL_VALUE when
TRUE.

INITIAL_VALUE =

INTEGER initiat value. The default for this parameter is zero.
When RESET = TRUE, OUTPUT will equal INITIAL VALUE.

INPUT =

INTEGER signal input. This parameter must be specified. There
is no default.

46-1

46.1

46-2

WLD =

REAL lead frequency in radians/second. This parameter must be
specified. You must include a decimal point in the actual value.

ORDER =

Order of the filter transfer function. The default for this parameter
is 1. If you specify this parameter, it must be a literal value (1, 2,
or 3).

Outputs
OUTPUT =

INTEGER signal output. This parameter must be specified.

HIGH_PASS_FILTER wld Limitations

wld low limit depends on the order.
wld must be equal to or iess than 0.999x divided by T.

1st Order 2nd Order 3rd Order
Low Limit = 0.000004 .02 A
T T T

High Limit = __ 0.999n
T

where:

T = scan period in seconds
= number of CPU clock ticks times 0.0005 seconds

47.0 LOW_PASS FILTER
(Nth Order Low-Pass
Butterworth Filter)

This function can be used in UDC Control Block tasks only. It cannot
be used in AutoMax Control Block tasks.

RESET
INITIAL_VALUE LOW_PASS_
——» INPUT FILTER OUTPUT >
— » WG

ORDER

Function

This function provides a low-pass filter to attenuate input
frequencies that are above the cutoff frequency in UDC tasks. The
order parameter can be used to change the sharpness of the cutoff.

For ORDER=1, LAPLACE TRANSFER FUNCTION = [n]
s+ w

For ORDER=2, LAPLACE TRANSFER FUNCTION =
w**2
g**2 +\]_2' s + K**2
For QRDER=3, LAPLACE TRANSFER FUNCTION =
wr*3
§**3 + (25**2 * 0} + 2 sw**2 + w**3

Program Statement

CALL LOW PASS_FILTER(INPUT = input%,
WLG = wlg,
ORDER =1,2,0r3
INITIAL_VALUE = initial_value%,
RESET = reset@,
OUTPUT = output%)

fo Qo Lo Qo Qo

Inputs

RESET =

BOOLEAN output reset. The defauit for this parameter is FALSE.
This parameter will hold OUTPUT to INITIAL_VALUE when
TRUE.

INITIAL_VALUE =

INTEGER initial value. The default for this parameter is zero.
When RESET = TRUE, OUTPUT will equal INITIAL_VALUE.

INPUT =

INTEGER signal input. This parameter must be specified. There
is no default.

47-1

47.1

47-2

WLG =

REAL lag frequency in radians/second. This parameter must be
specified. You must include a decimal point in the actual value.

ORDER =

Order of the filter transfer function. The default for this parameter
is 1. If you specify this parameter, it must be a literal value (1, 2,
or 3).

Outputs

OUTPUT =
INTEGER signal output. This parameter must be specified.

LOW_PASS FILTER wlg Limitations

wlg low limit depends upon the order.
wlg must be equal to or less than 0.999¢ divided by T.

1st Order 2nd Order 3rd Order
Low Limit = 0.000004 .02 1
T T T
High Limit = __ 0.999xn
T

where:

T = scan period in seconds
= number of CPU clock ticks times 0.0005 seconds

48.0 NOTCHN
(Nth Order Notch Filter)

This function can be used in UDC Contro! Block tasks only. it cannot
be used in AutoMax Control Block tasks.

RESET
INITIAL VALUE
—» INPUT
—» Q_FACTOR NOTCHN OUTPUT >
—> WN

ORDER

Function

This function provides a notch filter to attenuate input frequencies
that are at the notch frequency in UDC tasks. The order parameter
can be used to change the sharpness of the notch. The width and
depth ratio of the notch can be affected by the Q factor.

LAPLACE TRANSFER FUNCTION = (S**2 + @**2)*¥i
(s**2 + s0/Q + w**2)**i

note: for ORDER = 2, 4, iwillbe 1, 2

Program Statement

INITIAL_VALUE = initial_value%,
RESET = reset@,
OUTPUT = output%)

CALL NOTGHN({ INPUT = input%, a
Q FACTOR = q_factor%, &
WN = wn, &
ORDER =2o0r 4 &

&
&

Inputs

RESET =

BOOLEAN output reset. The defauit for this parameter is FALSE.
This parameter will hold OUTPUT to INITIAL_VALUE when
TRUE.

INITIAL_VALUE =

INTEGER initial value. The default for this parameter is zero.
When RESET = TRUE, OUTPUT will equal INITIAL_VALUE.

INPUT =

INTEGER signal input. This parameter must be specified. There
is no default.

48-1

48.1

48-2

Q_FACTOR =

REAL filter Q factor. Equal to 1/(2 * damping factor). This
parameter must be specified. The range is 0.5 to 100.0. You
must include a decimal point in the actual value.

WN =

REAL notch filter center frequency in radians/second. This
parameter must be specified. You must include a decimal point
in the actual value.

ORDER =

Order of the filter transfer function. The defauit for this parameter
is 2. If you specify this parameter, it must be a literal value {2 or 4).

Outputs

OUTPUT =
INTEGER signal output. This parameter must be specified.

NOTCHN on Limitations

wn ‘ow limit depends on the ordoer.
wn must be equal to or less than 0.999¢ divided by T.

2nd Order 4th Order
Low Limit = .02 3
T T
High Limit = 0.999n
T

where:

T = scan period in seconds
= number of CPU clock ticks times 0.0005 seconds

INTEGRAL

This function can be used in AutoMax Control Block tasks and UDC
Control Block tasks.

49.0 PROPORTIONAL +

R
— > KP
LP
HP
— |

LM
v
WM
—»{ WILD

s+wld

HM KP—-——s

SP

SM

Function

LAPLACE TRANSFER FUNCTION = KP(s + wld)

S

Program Statement

CALL PROP_INT(INPUT = input%,

KP = Kp,
WLD = wid,
WM = nnn.n,

INITIAL_VALUE = initial_value%,
LIMIT_PLUS = limit_plus%,
LIMIT_MINUS = limit_minus%,

RESET = reset@,

HOLD_PLUS = hold_plus@,
HOLD_MINUS = hold_minus@,
SATURATED PLUS = saturated_plus@,
SATURATED MINUS = saturated minus@,

OUTPUT = output%)

inputs
R (RESET) =

Qo fo Qo 0o Po 0o 0o Ko fo fo Qo Lo

BOOLEAN integrator reset. The default for this parameter
is FALSE. When this parameter is TRUE, OUTPUT will be
held at INITIAL_VALUE.

KP (KP) =

REAL proportional gain. This parameter must be
specified. You must include a decimal point in the actual

value.

49-1

49-2

LP (LIMIT_PLUS) =

INTEGER integrator upper limit. The default for this
parameter is 32767. This parameter will limit OUTPUT
from becoming more positive. It will not prevent the output
value from becoming more negative.

HP (HOLD_PLUS) =

BOOLEAN integrator hold plus. The default tor this
parameter is FALSE. When this parameter is TRUE,
INTEGRATOR will be prevented from beocming more
positive. It will be permitted to go more negative. If KP
changes, the output will change even if HOLD_PLUS is
TRUE.

I (INPUT) =
INTEGER signal input. This parameter must be specified.
HM (HOLD_MINUS) =

BOOLEAN integrator hold minus. The default for this
parameter is FALSE. When this parameter is TRUE,
INTEGRATOR will be prevented from becoming more
negative. It will be permitted to go more positive. If KP
changes, the output will change even if HOLD_MINUS is
TRUE.

LM (LIMIT_MINUS) =

INTEGER integrator lower limit. The default for this
parameter is —32768. This parameter will limit OUTPUT
from becoming more negative. it will not prevent the
output value from becoming more positive.

IV (INITIAL_VALUE) =

INTEGER initial value of integrator. The default for this
parameter is zero.
WM (om) =

REAL mapping frequency in radians/second. If specified,
this parameter must be entered explicitly as a real literal.

The default value for this parameter is s divided by 20.
You must include a decimal point in the actual value.

WLD (wld) =

REAL lead frequency. This parameter must be specified.
You must include a decimal point in the actual value,

49.1

49.2

Outputs

SP (SATURATED PLUS) =

BOOLEAN SATURATED plus output. This parameter is
optional. TRUE if OUTPUT% reaches LIMIT(+).

O {(OUTPUT) =
INTEGER signal output. This parameter must be specified.
SM (SATURATED_MINUS) =

BOOLEAN saturated minus output. This parameter is
optional. TRUE if OUTPUT% reaches LIMIT({-).

PROP_INT wm Limitations

wm is equal to or greater than 2—17 divided by T. wm is equal to or
less than .97 divided by T.

Low Limit = (—%—) ARCTAN (2-18)

-(252)
T
_
T
High Limit = -2
T
where:
T = scan period in seconds
= number of CPU clock ticks times tick rate
Refer to section 51.0, Special Coefficient Restrictions, for i

further restrictions.

PROP_INT wld Limitations

wld is equal to or greater than C times 2-18 divided by KP. wld is
equal to or less than .97 divided by T.

Low Limit = C(2-18)
KP

[218

=\ KP) \TAN (_Wm_T.))

HighLimit = .9

T
if wm is defaulted {wm = ws - 20):

2-18
Low Limit = () (1 835)

49-3

49.3

494

where:
C = bilinear mapping constant

_ oOm
TAN (wm * T)
2

218 = 3.814697266E-06

T = scan period in seconds
= number of CPU clock ticks times tick rate
ws = scan frequency in radians/second
= 21
T

Refer to section 51.0 Special Coefficient Restrictions, for
further restriction notes.

PROP_INT KP Limitations

KP is equal to or greater than 0.001. KP is equal to or less than
128.0.

Low Limit = .001
High Limit = 128.0

Refer to section 51.0 Special Coefficient Restrictions, for
further restriction notes.

50.0 PID

This function can be used in AutoMax Control Block tasks only. it
cannot be used in UDC Control Block tasks.

1SA

ACT
DRV
MAN

DB sP
MC
FF

HP
LP

PID
v
— |
—{FB o] >

LM
HM SM

w3 KP
—» Kl
KD
—_— LT

Function

If MANUAL is true then

ERROR =0
INTEGRATOR = INITIAL_VALUE
SUM = INTEGRATOR

Else
(automatic mode)
If REVERSE_ACTION is true then
ERROR = FEEDBACK - INPUT
Else

ERROR - INPUT - FEEDBACK

P_TERM = ERROR * KP

{_TERM = (ERROR + ERROR (n-1)) * KI * LOOP_TIME / 2

If abs (I_TERM) < DEAD_BAND then
i_ TERM =0

if _TERM > 0 and HOLD_PLUS is true then
|_TERM =0

if _TERM < 0 and HOLD_MINUS is true then
I_TERM =0

INTEGRATOR = INTEGRATOR + I_TERM

If INTEGRATOR > LIMIT_PLUS then
INTEGRATOR = LIMIT_PLUS

If INTEGRATOR < LIMIT_MINUS then
INTEGRATOR = LIMIT_MINUS

50-1

If DERIVATIVE = TRUE then
IF ACTION = FALSE
D_ERROR = —FEEDBACK
Eise D_ERROR = FEEDBACK
End If
Fise
If ACTION = FALSE then
D_ERROR = INPUT — FEEDBACK
Else
D ERROR = FEEDBACK — INPUT
End If
End Hif
Else
D_ERROR = ERROR
D_TERM = (D_ERROR - D_ERROR (n-1}) * KD
SUM = INTEGRATOR + P_TERM + D_TERM

(evaluated if in manual or automatic mode)
SUM = SUM + FEED_FORWARD
CHANGE = SUM-OUTPUT (n-1)

If CHANGE > MAX_CHANGE then
CHANGE = MAX_CHANGE

Else if CHANGE < MAX_CHANGE then
CHANGE = -MAX_CHANGE

OUTPUT = OUTPUT + CHANGE

if OUTPUT >= LIMIT_PLUS then
OUTPUT = LIMIT_PLUS, SATURATED_PLUS = 1

Else if OUTPUT <= LIMIT_MINUS then
QUTPUT = LIMIT_MINUS, SATURATED_MINUS = 1

Else

SATURATED_PLUS = 0, SATURATED_MINUS =0
Note: If ISA is true then KI = KI * KP and KD = KD * KPR,

50-2

|- SAT +
= QUTPUT
= SAT—

G _/f)f
LM
FEEDBACK

g
$ |3
. S = -3
T g 5
[&] 1 + @,
g f—
- it +K
(U] 0w +
- (Dt
z LK
S g W+
[- é
N[
2
E
Nt Z
w
T oo =
[ﬁ% —
g 82" 3 B ol |[% &l
sl [2
T l_f_l = vy Q|" téQl"
EnRE
<
5]
§2|’" éi'”

I
N

+
W),

(D ERROR)

ERROR
A

ACTION

INCR{(W) and IOUT{N) are internal calculations

Figure 50.1 - PID Block Diagram

Program Statement

CALL PID({ISA=<boolean literal>, &
ACTION=<boolean literal >, &
DERIVATIVE = <boolean literal>, &
MANUAL=manual@, &
KP=kp, &
Ki=ki, &
KD=kd, &

&
&

LOOP_TIME=loop_time,
INITIAL_VALUE =initial_value%,

50-3

504

FEED FORWARD=feed_forward%,
INPUT=input%,

FEED

BACK=feedback%,

DEAD_BAND=dead_band%,
MAX_CHANGE=max_change%%,
LIMIT_PLUS =limit_plus%,

LIMIT_MINUS =limit_minus%,
HOLD_PLUS=hold_plus@,
HOLD_MINUS=hold_minus@,
SATURATED PLUS=saturated_plus@,
SATURATED_MINUS=saturated_minus@,
ERROR=error%,

OUTP

Inputs

UT=output%)

ISA (ISA) =
This input selects if K| and KD are scaled by KP If this

Qo Qo0 o Qo Qo Qo Qo Qo Qo Qo o Qo

optional input is programmed, it must be a boolean literal.

If it is not programmed, it defaults to a value of FALSE.
If ISA = TRUE then the Kl and KD coefficients are

automatically multiplied by KP.

If iISA = FALSE then Ki and KD are independent of KP.
ACTION (ACTION) =

This input selects how ERROR is calcuiated. If this

optional input is programmed, it must be a boolean literal.

if it is not programmed, it defaults to a value of FALSE.
If ACTION = TRUE then ERROR = FEEDBACK - INPUT.
if ACTION = FALSE then ERROR = INPUT - FEEDBACK.

DRV {DERIVATIVE) =
This input selects which signal to use in calculating the

dearivative term. If this optional input is programmed, it
must be a boolean literal. If it is not programmed, it

defaults to a value of FALSE.

If DERIVATIVE = TRUE then

IF ACTION = FALSE
D_ERROR = —FEEDBACK

Else D_ERROR = FEEDBACK
End If

Else
If ACTION = FALSE then
D_ERROR = INPUT — FEEDBACK
Else
D_ERROR = FEEDBACK — INPUT
End if

End If

MAN (MANUAL) =

KP (KP) =

KI (K)) =

This input selects between manual and automatic mode of
operation. If this optional input is programmed, it must be
a boolean variable or literal. iIf it is not programmed, it
defaults to a value of FALSE.

If MANUAL = TRUE then the PID block is in manual mode.
Internal variables are reset to zero and the output is the
sum of the INITIAL_VALUE and FEED_FORWARD.

If MANUAL = FALSE then the PID block is in automatic
mode and the selected algorithm is calculated.

This input is the gain on the proportional term. It must be
programmed as a real variable or constant. A decimal
point must be included in a constant value. The value of
KP is dimensionless.

This input is the gain on the integral term. It must be
programmed as a real variable or constant. A decimal
point must be included in a constant value. The units on
Ki are repeats per second ({//seconds).

KD (KD) =

This input is the gain on the derivative term. If this optional
input is programmed, it must be programmed as a real
variable or constant. A decimal point must be included in
a constant value. The units on KD are seconds.

LT (LOOP_TIME) =

This input is used to tell the PID block how often it is being
executed. This parameter must be specified as a constant.
A variable name is not accepted. A decimal point must be
included in a constant value. The units are in seconds. If
the PID block is evaluated on every scan of the task, this
value is the number of ticks per scan times the tick rate. If
the PID block is not evaluated on every scan, this value is
the time in seconds between iterations. The PtD block
must be called on a consistent time basis.

IV (INITIAL_VALUE) =

This input is used to define an initial value for the
integrator. If this optional input is programmed, it must be
an integer variable or constant. If not programmed, it
defauits to a value of zero. When the PID block is in
manual mode, this value is loaded into the integrator.

FF (FEED_FORWARD) -

| (INPUT)

This input is used to define a feed forward variable. If this
optional input is programmed, it must be an integer
variable or constant, If not programmed, it defaults to a
value of zero. FEED_FORWARD is added to SUM to
producse QUTPUT.

]

This input is used to define the set point signal to the PID
block. This parameter must be programmed as an integer
variable. A constant is not accepted.

50-5

50-6

FB (FEEDBACK) =

This input is used to define the feedback signal to the PID
block. This parameter must be programmed as an inleger
variable. A constant is not accepted.

DB (DEAD BAND) =

This input is used to define a deadband on integral
calculation. If this optional input is programmed, it must
be an integer variable or constant. if not programmed, it
defaults to a value of zero. If the absolute value of ERROR
is less than DEAD_BAND, no change is made to the value
of the integrator.

MC (MAX_CHANGE) =

This input is used to define a maximum rate of change of
OUTPUT. If this optional input is programmed, it must be
an integer variable or constant. If not programmed, it
defaulis to a value of 32767.

LP (LIMIT_PLUS) =

This input is used to define a positive limit on the
INTEGRATOR and on QUTPUT. if this optional input is
programmed, it must be an integer variable or constant. If
not programmed, it defaulits to a value of 32767. The
INTEGRATOR is limited to never be greater than this
value. The OUTPUT is limited to never be greater than this
value.

LM (LIMIT_MINUS) =

This input is used to define a minus limit on the
INTEGRATOR and on OUTPUT. If this optional input is
programmed, it must be an integer variable or constant. If
not programmed, it defaults to a value of —32767. The
INTEGRATOR is limited to never be less than this value.
The QUTPUT is limited to never be less than this value,

HP (HOLD_PLUS) =

This input is used to hold increasing the INTEGRATOR. If
this optional input is programmed, it must be a boolean
variable. If not programmed, it defaults io a value of
FALSE. If ERROR > 0 and HOLD_PLUS is true, the
INTEGRATOR is not allowed to become more positive.

HM (HOLD_MINUS) =

This input is used to hold decreasing the INTEGRATOR. If
this optional input is programmed, it must be a boolean
variable. If not programmed, it defaults to a value of
FALSE. If ERROR < 0 and HOLD_MINUS is true, the
INTEGRATOR is not allowed to become more negative.

Outputs

SP (SATURATED PLUS) =

This output is used to indicate that OUTPUT is being
limited by LIMIT_PLUS. If this optional output is
programmed, it must be a boolean variable. if the
calculated value for OUTPUT would be > = LIMIT_PLUS,
this output is turned on. Otherwise, it is turned off.

SM (SATURATED_MINUS) =

This output is used to indicate that OUTPUT is being
limited by LIMIT_MINUS. If this optional input is
programmed, it must be a boolean variable. if the
calculated value for QUTPUT would be <= LIMIT_MINUS,
this output is turned on. Otherwise, it is turned off.

E (ERROR) =

This output is used to define the variable where ERROR
can be displayed. If this optional output is programmed, it
must be an integer variable. The value displayed will be
INPUT — FEEDBACK or FEEDBACK - INPUT as defined
by the ACTION input.

O (QUTPUT) =

This output is used to define the variable where the
resulting calculation will be written. This output is required,
and must be defined as an integer variable. When the PID
block is in manual mode, OUTPUT is the sum of
INITIAL_VALUE and FEED_FORWARD. When the PiD
block is in automatic mode, it is the sum of the KB, Ki, and
KD terms, and FEED_FORWARD.

50.1 KP Limitations

The value of KP is dimensionless. KP is limited to values between
the following limits:

Low limit = 0
High limit = 9.2233717 x 10**18

The smallest value KP can represent {other than 0) is 5.4210107 x
10**(-20).

When KP is programmed as a symbol, values less than zero are
clamped at zero. When KP is programmed as a literal, values less
than zero will cause a compiler error.

50.2 Kl Limitations
K| units are 1/seconds. Kl is limited to values between the following
limits:

Lowlmit= O
High limit = 9.2233717 x 10**18

The smallest value Kl can represent (other than 0) is 5.4210107 x
10**(-20).

50-7

When Kl is programmed as a symbol, values less than zero are
clamped at zero. When Ki is programmed as a literal, values less
than zero will cause a compiler error.

50.3 KD Limitations

KD units are seconds. KD is limited to the following values:

Low limit = 0
High limit = 9.2233717 x 10**18

The smallest value KD can represent (other than 0) is 5.4210107 x
10**(-20).

When KD is programmed as a symbol, values less than zero are
clamped at zero. When KD is programmed as a literal, values less
than zero will cause a compiler errof.

50.4 LOOP_TIME Limitations
LOOP_TIME units are seconds (the time between updates).
LOOP_TIME is limited to the following values:

Lowlimit= .01 or 1.0 x 10**(-2) seconds
High limit = 9.2233717 x 10**18 seconds

Values less than .01 will cause a compifer error.

50.5 DEAD_BAND Limitations

DEAD_BAND is limited to the following values:

Lowlimit= 0
Highlimit = 32767

When DEAD_BAND is programmed as a symbol, values less than
zero are clamped at zero. When DEAD_BAND is programmed as a
literal, values less than zero will cause a compiler error.

50.6 MAX _CHANGE Limitations

When MAX_CHANGE is programmed as a symbol, it is limited to the
following values:

Lowlimit= 0
Highlimit = 32767
Values less than zero are clamped at zero.

When MAX_CHANGE is programmed as a literal, it is limited to the
following values:

Low limit = 1
Highlimit = 32767

Values less than one will cause a compiler error.

50-8

independent Mode: Derivative on Error or Feedback (n)

s - domain functional block:

[Kp where:
E(s) - errorin
frequency domain

E(s) ‘ > Ki/s t)— —» U(s)
where:

“ | F(s) - feedback in
F(s) ,__' | —1 3 Kd*s frequency domain
DRV ——p»
Z - domain functional block:

— Kp
£ Ki*T*(Z + 1) # U
» > >
@ * 7z) 1 @)
l I | Kd* (Z - 1)

Flz) —»— | »
DRV ——p

T*2Z

where:
E(z) - error in z-domain
F(z) - feedback in z-domain

Difference Equation:
Error(n) = Input{n) - Feedback(n} if action = FALSE or
Feedback{n) - Input(n) if action = TRUE

Dev_err(n) = Error{n) if derivative = FALSE or
Feedback(n) if derivative = TRUE
Incr(n) =
(P term) Kp * [Error{n) - Error{n — 1)]

(Iterm} + K1 *[Error{n} + Error{(n — 1)]
(Dterm) + K2*[Dev_err(n) — 2*Dev_err(n—1) + Dev_err(n—2)]
+ Incr_remainder{(n—1)

Output{n) = Output{n—1)} + Incr(n)

%
Ki*T ko = Kd

where: K1 = —_—
2 T

50-9

ISA Mode: Derivative on Errar{n) or Feedback (n)

s - domain functional block:

E(s) 9o » Ki/s ——Iv—n Kp > U(s)
where:
H | E(s) - error in

F(s) —»— | —» Kd*s frequency domain
DRV —» F(s) - feedback in

frequency domain

Z - domain functional block:

Ki*T*(Z + 1) Y
E(z) L 4 > @ 1) ‘P—D Kp [VU@

Kd*{(Z -1
) {1 > mL
DRY —»

where:
E(z) - error in z-domain
F(z) - feedback in z-domain

Difference Equation:
Error(n) = Input{n) - Feedback(n) if action = FALSE or
Feedback(n) - Input(n) if action = TRUE

Deav_err{n) = Error(n) if derivative = FALSE or
Feedback(n) if derivative = TRUE

Incr(n) =
Kp * ([Error(n) - Error{n — 1)]
(Iterm) + K1 *[Error(n) + Error(n — 1)]
(Dterm) + K2 *[Dev_err(n) - 2*Dev_err{n—1) + Dev_err(n—2)]
+ Incr_remainder{n—1)

Output(n) = Output(n—1) + Incr(n)
Ki*T Kd

K2 =
2 T

where: K1 =

50-10

51.0 SPECIAL COEFFICIENT
RESTRICTIONS

This section is relevant to the following control blocks: LAG,
DIFF_LAG, INTEGRATE, and PROP_INT.

The input signal to these control biocks is in the range —32768 to
+32767. The output signal, however, may be limited to something
less than this range. The cause of this output range limitation is a
trade-off between the range and resolution of the internal math
used. As the coefficient value decreases in size, resolution is
retained at the expense of range. In the majority of cases, this
should not pose a problem due to the normalization factor of 1PN =
4095.

These blocks contain an integrator. As the integrator coefficient
value decreases, its output value may be limited to less than a 16-bit
value in order to retain resolution and still use 32-bit math. The
following shows the relationship between

coefficient value and output limitation.

Coefficient Value Max Quiput Range
2-18 10 .124596 +8191
125 to .249992 +16383
.25 to max_val +32767
The integrator coefficient for each biock can be calculated as
follows:
LAG: Kx = wlg
C
DIFF_LAG: Kx = wlg
Cc
INTEGRATE: Kx = Kl
C
PROP_INT: Kx = wld x Kp
Cc
where:
wm
C =TaN (m T)
2
T = scan period in seconds.

If wm is defaulted (not programmed), then

oum= ws = 2_31 =
20 20T 10T
and

51-2

o Laor)
TAN (-510)

314159
= — T
158386444

= 19835
T

The DIFF_LAG block is a special case because the integrator is in
the feedback path:

INPUT OUTPUT
+

wig

]

If the integrator output is limited, the QUTPUT is limited to the input
minus the output of the integrator. Therefore, if the integrator output
is limited to 8191 and the input is set to 32767, the output will setlle
out to 32767 — 8191 = 24576, not zero, as would be expected with
a DIFF_LAG function. Therefors, if the coefficient value can cause
the integrator output to be limited to less than +32767, make sure
that the input does not exceed the limit of the integrator.

52.0 DC DRIVE CURRENT
MINOR LOOP

This function can be used in AutoMax Control Block tasks only. It
cannot be used in AutoMax PC3000 Control Block tasks or UDC
Control Block tasks.

INPUTS TPUT
[0 CNTL SLOT
Physcial DIG IO SLOT
Configuration
AC_LINE_FREQ LINE_PERIOD
SYNC_LOCKED
REFERENCE | FDBK
FDBK_GAIN
REF_RATE REF_RATE_OUT
Loop Control
REF_LAG REF_LAG_OUT Outputs
Loop Control KP
DC_TIME
Pi_W_LEAD INTEGRAL_GAIN
DELTA
AG_FACTOR
BRIDGE_POL
CC_THRESH
CML_RUN DC_CML_STATE
MAX_M_DROPOUT
CML_COAST_STOP
INSWITCH_POSA Drive |/O
Sequencing MCR_SELECT Controller
Cantrol INSWITCH_POSB Board (57406)
CML_TEST Switch Inputs
INFAULT_RESET
TEST _BRPOL
TEST_ALPHA
I0C_OUT
I0C_THRESH
Test Mode - EXT IET OUT
LIM_BAR
SYNC_LOSS OUT
SPEED_FDBK
DIGITAL_TACH TACH_LOSS _OUT Drive Faults
TACH_LOSS STOP and Diagnosti
OSV_OuT Outputs
OSV_FDBK
OSV_THRESH PHROT_FLT_OUT
NONSTAND PHROT BAD_SCR_OUT
. AUTO_PHROT BAD_SCR_NUM
Drive Faults - - -
FAULT_RESET DIAG_DATA

52-1

PROGRAM STATEMENT:

CALL DC_DRIVE CML(
10_ CNTL SLOT = io _cntl_slot%,
DIG_IO_SLOT = dig_io_slot,
AC_LINE_FREQ = ac line_freq%,
REFERENCE = reference%,
REF_RATE = ref_rats,
REF_LAG = ref_lag,
KP = kp,
PI_ W _LEAD = pi_w_lead,
AG _FACTOR = ag_ factor%
CC_THRESH = cc_thresh%,
CML_RUN = cml_run@,
CML_COAST STOP = cml_coast_stop@,
MCR_SELECT = mor select@
MAX_M_DROPOUT = max_m_dropout,
CML "TEST = cml_test@,
TEST BRPOL - test_brpol@,
TEST_ALPHA test_alpha%,
I0C_THRESH = ioc_thresh%,
LIM_BAR = lim_bar%,
DIGITAL_TACH = digital_tach@,
SPEED | FDBK = speed_fdbk%,
TACH_(OSS _STOP = tach_loss_stop@,
Osv_ FDBK = osv _fdbk%,
OSV_THRESH = osv_thresh%,
NONSTAND PHROT = nonstand_phrot@,
AUTO_PHHOT = auto_phrot@,
FAULT_RESET = fault_reset%,
DC | CML STATE = dc_ _cml_state@,
SYNC_ LOCKED = sync_locked@,
LINE_PERIOD = line_period%,
INSWITCH POSA = inswitch_posa@,
INSWITCH POSB = inswitch_posb@,
INFAULT RESET = infault_reset@,
DC TiME dc_time%,
BRIDGE_POL = bridge_pol@,
REF_RATE_OUT = ref rate_out%,
REF LAG_OUT = ref_lag_out%,
FDBK_GAIN = fdbk_gain%,
|_FDBK = i fdbk%,
INTEGHAL "GAIN = integral_gain%,
DELTA = delta%,
IOC_OUT = ioc_out@,
SYNC LOSS ouT = sync_loss_out@,
TACH LOSS “OUT = tach _loss out@,
OSv _OUT = 0SV = osv out@
EXT_ JET _OUT = ext_iet out@,
PHROT FLT OUT = “phrot_fit out@,
BAD SCH OUT = bad_scr_out@,
BAD SCR NUM = bad_ _scr_num%,
DIAG_DATA = diag_data%)

NOTE: FORCE is supported for inpuls (unless otherwise stafed).
FORCE is not supported for outputs.

20 20 Qo 20 o Qo Ro o Qo o Qo Po o o Po Qo Co Qo Po KO Lo RO GO Qo o RO PO Qo o PO Po Lo PO Do o Lo Lo o fo Lo Qo o Lo Po Do Lo Qo Qo Lo o

52-2

Function

Performs the current minor loop regulation for S6R DC motor drives.
This includes standard drive sequencing from M-contactor control to
enabling of the current minor loop and all inherent drive fault
detections and processing. This block can only be used for systems
that include drives. A task that includes the CML block cannot
include a SCAN_LOOP block.

A CML task requires a hardware interrupt line. Refer to the AutoMax
Enhanced BASIC Language Instruction manual (J-3675) for
information on interrupt line allocation.

The Processor running the task that contains the CML block must
be set to the default tick rate (5.5ms).

52.1 Input Keyword Definitions

The phrase “fixed at task initialization” means that this input must be
defined before the statement CALL DC_DRIVE_CML is executed
after the task is first turned on. The value of this input at this time will
be the value used until the task is turned off.

If any dynamic input is unacceptable, such as being out of range, an
error will be logged. The value will not be used and the last
acceptable input is retained. In such instances, the user input value
may not reflect the actual value used.

When the task is initially turned on, the existing values for dynamic
inputs are initialized to zero (FALSE for boolean variables) before
chaecking the programmed value. Therefore, if the programmed
value is unacceptable when the task is initially turned on, the value
used will be zero, or FALSE (180 degrees in the case of
TEST_ALPHA%).

52-3

Table 1 - Input Parameters Summary

Parameter Data Type | Symbol or| Dynamic Range Default
Keyword Literal 1
IO_CNTL_SLOT Integer % | Literal No 0to 15 None
DIG_IO_SLOT Integer % | Literal No 0to 15 None
AC_LINE_FREQ Integer % | Literal No 48 to 62 60
REFERENCE Integer % | Symbol Yes —-4095to None
+4095
REF_RATE Real Either Yes 0.00035 to 0.0
11.37(60Hz)
REF_LAG Real Either No 1 to 500(60Hz) 200.0
1 to 400{50Hz)
KP Real Either Yes 0.010 4.0 None
Pl W LEAD Real Either No 10.0 to 500.0 None
AG_FACTOR Integer% Either No 1 to 300 1
CC THRESH Integer% Either Yes 0 to 32767 0
CML_RUN Boolean@ | Symbol Yes True/False None
MAX_M_DROPOUT Real Either No 0.1101.0 0.1
CML COAST STOP | Boolean@ | Symbol Yes True/False False
MCR SELECT Boolean@ | Either Yos True/False False
CML TEST Boolean@ | Either Yes True/False False
TEST_BRPOL Boolean@ | Either Yes True/False False
(bridge#1)
TEST ALPHA Integerss Either Yes O to 180 180
I0C THRESH Integer% Either No 100 to 400 None
LIM_BAR Integer% Either No 100 to 400 None
SPEED_FDBK Integer% | Symbol Yes 4085=1PN No tach
loss
DIGITAL TACH Boolean@ | FEither No True/False True
TACH LOSS STOP | Boolean@ | Either No True/False True
OSV_FDBK Integers Either Yes +32767 No OSV
__fault
OSV _THRESH integer% Either No 0 to 32767 0
NONSTAND PHROT| Boolean@ | Either Yes True/False False
AUTO PHROT Boolean@ | Either No True/False False
FAULT RESET Boolean@ | Symbol Yes True/False None

value is read in.

1 Dynamic indicates whether the parameter value will be recognized if modified
after the task has been turned on.
No: The value is read in only once when the task is initially turned on.
Yes: See the detailed description for that parameter to determine when the new

524

52.1.1

52.1.2

Physical Configuration Inputs

IO_CNTL_SLOT%: The slot number of the drive I/O controller
module.

Must be a single word integer entered as a literal
(variable name not accepted).

Range = 0 to 15 in steps of 1.
Fixed at task initialization.

No default exists for this input; it must be entered.

DIG 10_SLOT%: The slot number of the drive digital /O
module.

Must be a single word integer entered as a literal
{variable name not accepted).

Range = 0to 15in steps of 1.
Fixed at task initialization.
No default exists for this input; it must be entered.

AC_LINE_FREQ%: The frequency {in hertz) of the AC line power to
the drive.

Must be a single word integer entered as a literal (variable name
not accepted). if it is known to vary, the lowest expected
frequency must be entered.

Range = 48 to 62 in steps of 1.
Fixed at task initialization.
Defauit = 60 (Hz).

Loop Control inputs

REFERENCE%: Symbol assigned as the reference to the
current minor loop (CML).

Must be a single word integer variable name (literal not
accepted).

A plus value turns the forward power unit on (bridge #1: 1 THY
through 6 THY). A minus value turns the reverse power unit on
(bridge #2: 11 THY through 16 THY).

Range is +4095 through —4095 in steps of 1. This range
limitation is not enforced by the CML itself; it must be enforced by
the application task generating this signal. Exceeding this range
will cause unpredictabls results.

May be maodified dynamically. Latched at the start of every CML
scan (nominally 1/2.7778 msec at 60 Hz AC line frequency).

No default exists for this input; it must be entered.

REF_RATE: Symbol or value assigned as the CML reference rate
limit.

Must be a real number (variable name or literal accepted),
entered as the time in seconds for a reference step change of 0
to current reference limit (LIM_BAR).

Range = .00035 to 11.37 (60 Hz AC line frequency).

52-5

¢ May be modified dynamically. Latched-in once every system
clock tick while the drive is running {(DC_CML_STATE@ =
TRUE).

e Default = 0 second {i.e., rate limit function removed)

e The internally calculated rate in counts/scan is
RATE = (LIM_BAR/INPUT) * (sec/scan)

o where:
LIM_BAR = 4095 internally {always)
sec/scan = 1 divided by 6 times the power bridge AC line
frequency

RATE is limited. RATE is equal to or greater than zero. RATE is equal
to or less than 32767. Therefore, the limits on REF_RATE vary as a
function of the measured AC line frequency to the DC drive power
bridge.

REF_LAG: Symbol or value assigned as the CML reference lag
break frequency (wlg).

¢ Must be a real number in rad/sec (variable name or literal
accepted).

e Range is 1 through 500 rad/sec {at 60 Hz line) and 1 through 400
radfsec (at 50 Hz line) in steps of 1 rad/sec.

® Fixed at task initialization

o Default = 200.0 rad/sec.

KP: Symbo! or value assigned as the CML proportional gain.
e Must be a real number (variable name or literal accepted}.
e Range is 0 through 4.0 in steps of .0009765 (1/1024).

o May be modified dynamically. Latched-in once every
system clock tick while the drive is running (DC_CML_STATE®@ =
TRUE).

® No default exists for this input; it must be entered.

PI_W_LEAD: Symbol or value assigned as the CML P+| lead break
frequency.

& Must be a real number in rad/sec (variable name or literal
accepted).

e Range = 10 through 500 rad/sec in steps of 1 radfsec.
e Fixed at task initialization.
o No default exists for this input; it must be enteraed.

AG_FACTOR%: Symbol or value assigned as the CML adaptive gain
factor, which is the maximum ratio betwean the integrat gain from
continuous conduction to discontinuous conduction.

e Must be a single word integer (variable namae or literal accepted).
e Range = 1 through 300 in steps of 1.

e Fixed at task initialization.

e Default = 1 {non-adaptive current loop}.

52-6

CC_THRESH%: Symbol or value assigned as the continuous
conduction threshold value used in the adaptive gain logic.

e Must be a single word integer (variable name or literal accepted).

Range = 0 through 32767 in steps of 1.

May be modified dynamically.
Default = 0.

52.1.3 Sequencing Control Inputs
CML_RUN@: Symbol assigned to the CML run/stop switch input.
¢ Must be a boolean variable name (literal not accepted).
e TRUE (ON) = run CML; FALSE (OFF) = stop CML.

e May be modified dynamically. Latched-in once every system
clock tick.

e No default exists for this input; it must be entered.
MAX_M_DROPOUT: Symbol or value used as the CML maximum
M-contactor dropout time.

¢ Must be a real number (variable name or literal accepted) in
seconds.

e This value represents the maximum time in seconds between a
stop request (CML_RUN = FALSE) and the opening of the
M-contactor. Two conditions will cause the M-contactor to be
opened during a stop sequence: CML feedback indicates
discontinuous conduction or the MAX_M_DROPOUT time
expires. This parameter is only required for applications with
exceptionally iong motor electrical time constant values (Te)
which may take more than .1 second (default value) for
discontinuous conduction to be reached.

e Range = 0.1 through 1.0 second.
e Fixed at task initialization.

e Default = 0.1 second.

CML_COAST_STOP@: Symbol or value assigned as the CML
coast-stop request input.

e Must be a boolean variable name {literal not accepted.)
e TRUE (ON) = coast-stop reguest.

e May be modified dynamically. Latched-in once every system
clock tick while the drive is running (DC_CML_STATE®@ =
TRUE).

e Default = FALSE.

MCR_SELECT @: Symbol or value assigned as the motor contactor
relay used on the drive digital I/O module when sequencing the DC
drive on,

® Must be a boolean value (variable name or literal accepted).

¢ TRUE {ON) = RMCR (reverse MCR); FALSE (OFF) = FMCR
(forward MCR}.

52-7

52.1.4

52.1.5

52-8

¢ May be modified dynamically. Latched-in when sequencing the
drive on (that is, rising edge of CML_RUN@ = TRUE).

e Default = FALSE {FMCR).

Test Mode Inputs

CML TEST @: Symbo! or value assigned as the CML test/normal
switch input.

e Must be a boolean value (variable name or literal accepted).

¢ TRUE (ON) = CML test mode; FALSE (OFF) = CML normal
mode.

¢ [|n test mode the CML will run open loop using the TEST_ALPHA
input as the firing angle.

¢ May be modified dynamically. Latched-in once every system
clock tick while the drive is in standby (DC_CML_STATE@ =
FALSE).

e Default = FALSE (normal).

TEST_BRPOL @: Symbol or value assgined as the bridge polarity
while in TEST mode.

e Must be a boolean value {variable name or literat accepted).

e TRUE (ON) = bridge #2 (reverse); FALSE (OFF) = bridge #1
{forward).

® May be modified dynamically. Latched-in once very system clock
tick while the drive is in standby (DC_CML_STATE@ = FALSE).

e Default = FALSE [bridge #1 (forward)]

TEST_ALPHAZ%: Symbol or value assigned as the alpha firing angle
while in TEST mode.

¢ Must be a single word integer (variable name or literal accepted),
entered in degrees.

e Range = 0 to 180 degrees in steps of 1 degree.

e May be modified dynamically. Latched-in and processed once
every system clock tick while the drive is running and in test
mode (DC_CML_STATE@ = TRUE .AND. CML_TEST@ =
TRUE).

o Default = 180 degrees.

Drive Faults Programming Inputs

|OC_THRESH%: Symbol or value assigned as the percentage of
full-load motor current used as the instantaneous overcurrent
threshold level.

Instantaneous
{OC_THRESH% = Overcurrent Threshold * 100
Fuli-Load
Motor Current (In)

e Must be a single word integer (variable name or literal accepted).
¢ Range = 100 through 400 in steps of 1.

e |0C THRESH must be less than 1.8(LIM_BAR) or an |0C
calculation error witl occur at task initialization.

¢ Fixed at task initialization.

e No default exists for this input; it must be entered.

LIM_BAR%: Symbol or value assigned as the percentage of
maximum current to full-load motor current.

LIM_BAR% = -'L"ﬁ-—* 100

This input describes the current feedback scaling (10V/LIM_BAR).

e Must be a single word integer (variable name or literal accepted).

Range = 100 through 400 in steps of 1.

Fixed at task initialization.

No default exists for this input; it must be entered.

WARNING

SPEED_FDBK

EQUIPMENT.

IN SPEED REGULATOR CONFIGURATION MUST BE
PROGRAMMED TO PROVIDE TACH LOSS PROTECTION. FAILURE TO OBSERVE
THIS PRECAUTION COULD RESULT IN BODILY INJURY OR DAMAGE TO

SPEED FDBK%: Symbol assigned to the speed feedback point to
be used when determining tach loss drive fault. Input must be
scaled such that 4095 = 100% speed.

® Must be a single word integer variable name (literal not
accepted).

e Latched-in during tach loss fault processing. FORCING of this
input is not supported.

o No default exists for this input; if not entered, tach loss fault will
not be detected or pracessed.

DIGITAL_TACH@: Symbol or value that indicates whether the digital
tach speed feedback board is used with the drive. Used to configure

the hardware overspeed circuitry.

e TRUE(ON) = digital tach; FALSE (OFF) = no digital tach.

e Must be a boolean value (variable name or literal accepted).
e Range = TRUE, FALSE.

® Fixed at task initialization.

¢ Default = TRUE.

TACH_LOSS_STOP@: Symbol or value assigned as the tach toss
fault response. TRUE (ON) = initiate a coast-stop; FALSE (OFF} =
indicate fault occurrence only.

e Must be a boolean value (variable name or literal accepted).
¢ Range = TRUE,FALSE.

e Fixed at task initialization.

e Default = TRUE (coast-stop on tach loss).

52-9

WARNING

IN SPEED REGULATOR CONFIGURATION, OSV_FDBK MUST BEPROGRAMMED
TO PROVIDE OVERSPEED PROTECTION. FAILURE TO OBSERVE THIS
PRECAUTION COULD RESULT IN BODILY INJURY OR DAMAGE TO EQUIPMENT.

OSV_FDBK%: Symbo! assigned as the feedback point used when
determining overspeed/overvoltage drive fauit.

e Must be a single word integer variable name (literal not
accepted).

e Latched-in during overspeed/overvoltage fault processing.
FORCING of this input is not supported.

¢ No default exists for this input; if not entered,
overspeed/overvoltage fault will not be detected or processed.

OSV_THRESH?%: Symbol or value assigned as the
overspeed/overvoltage threshold.

e Must be a single word integer (variable name or literal accepted).
e Range = 0 through 32767 in steps 1.
® Fixed at task initialization.

¢ Default = 0.

NONSTAND_PHROT@: Boolean value which selects the phase
rotation direction of the drive.

e TRUE (ON) = nonstandard (forward rotation = A,B,C); FALSE
(OFF) = standard (reverse rotation = C,B,A)

e Must be a boolean value (variable name or literal accepted).

¢ May be modified dynamically. Latched-in during incorrect phase
rotation fault processing.

¢ Range = TRUE, FALSE.
e Default = FALSE (standard = reverse rotation = C,B,A).

AUTO PHROT®@: Boolean value which selects automatic phase
rotation. Selecting auto phase rotation allows the drive to
automatically compensate for a discrepancy between the
programmed NONSTAND_PHROT value and the actual phase
rotation determined by the DC drive /O controlter module hardware.

e TRUE (ON) = auto phase rotation; FALSE (OFF) = no auto
phase rotation.

e Must be a boolean value (variable name or literal accepted).
¢ Range = TRUE,FALSE.

® Fixed at task initialization.

e Default = FALSE (no auto phase rotation).

FAULT_RESET @: Symbol assigned as the drive fault reset request
signal.

e Must be a boolean variable symbol name (literal not accepted)

e May be modified dynamically. Latched-in once every clock tick
while the drive is in standby (DC_CML_STATE = FALSE).

52-10

o No default exists for this input; it must be entered.

52.1.6 Drive Controller Module {(57C406) Switch Outputs

These outputs are always updated once every system clock tick.

INSWITCH_POSA@: Symbol assigned to the signal representing the
state of position A of the 3-position mementary test switch on the
DC drive /O controller module.

¢ TRUE (ON) = switch in position A; FALSE (OFF) = switch not in
position A.

INSWITCH POSB@: Symbol assigned to the signal representing
the state of position B of the 3-position momentary test switch on
the DC drive I/O controller module.

e TRUE (ON) = switch in position B; FALSE (OFF) = switch notin
position B.

INFAULT_RESET @: Symbol assigned to the signal representing the
state of the momentary 2-position fault reset switch on the DC drive
I/O controller module.

e TRUE {ON) = switch closed; FALSE (OFF) = switch open.

52.2 Output Keyword Definitions

All outputs are optional and do not need to be programmed.

52.2.1 Loop Control Outputs

The following keywords define the names assigned to the available
CML output values. They are always updated once every system
clock tick.

DC CML_STATE @: Symbol assigned to the signal representing the
state of the Current Minor Loop.

e TARUE (ON) = run; FALSE (OFF) = standby.

SYNC_LOCKED @: Symbol assigned to the signal representing the
state of the line sync Phase Locked Loop (PLL) function.

o TRUE (ON) = locked; FALSE (OFF) = not locked.

LINE_PERIOD%: Symbol assigned to the signal representing the
value for line period, in plsec, computed by the PLL function.

e Nominal Range = 16129 (62 Hz) through 20833 (48 Hz) in steps
of 1.

The following outputs are only updated while the CML is in the RUN
mode. While in the STANDBY mode, they will retain the value they
had during the last scan of the most recent RUN mode. They are set
to zero (FALSE) when the task is initially turned on.

DC_TIME®%: Symbol assigned to the value representing the
measured time, in psec, for which the feedback current = 0 since
the last CML scan.

e Range = 0 through 3472 in steps of 1 lusec.

BRIDGE_POL @: Symbol assigned to the value representing the
polarity of the power unit currently on.

52-11

52.2.2

5212

e TRUE (ON) = bridge #2 {reverse); FALSE (OFF} = bridge#1
(forward).

REF_RATE_OUT%: Symbol assigned to the value representing the
output of the CML reference rate limit function.
¢ Nominal Range = 4095 through —4095 in steps of 1.

e Maximum Range = 32767 through —32767 in steps of 1.

REF_LAG_OUT%: Symbol assigned to the value representing the
output of the CML reference lag function.

¢ Nominal Range = 4095 through -4095 in steps of 1.

e Maximum Range = 32767 through —32767 in steps of 1.

FDBK_GAIN%: Symbol assigned to the value representing the CML
feedback gain factor. This value is the gain in decimal times 1024.
The feedback gain is chosen dynamically based on DC_TIME%.

e Range = 512 {0 1280 in steps of 1:0.5 through 1.25 in steps of
1/1024.

|_FDBK%: Symbol assigned to the value representing the CML

current feedback output signal.

¢ Nominal Range = 4095 through -4095 in steps of 1 {LiM_BAR
through —LIM_BAR).

e Maximum Range = 10238 through -10238 in steps of 1.

INTEGRAL_GAIN%: Symbol assigned to the value representing the
CML integral gain factor. This value is the gain in decimal times
1024. The integral gain is chosen dynamically based on DC_TIME%.

e Range = 0 through 32767 in steps of 1.0 through 31.999 in steps
of 1/1024.

DELTA%: Symbol assigned to the value representing the delta value,
in psec, being used by the CML phase firing control (DELTA in
degrees = 180 - ALPHA in degrees).

e Range = 0 through 10417 in steps of 1.

Drive Faults and Diagnostic Outputs

The following keywords define the names assigned to the
available drive faults' output values. They are always updated once
every system clock tick.

I0C_OUT @: Symbol assigned as the output state of the 10C drive
fault.

¢ Must be a boolean variable name.

EXT_IET_OUT @: Symbol assigned as the output state of the
external IET {instantaneous electronic trip) drive fault.

¢ Must be a boolean variable name.

SYNC_LOSS_OUT @: Symbol assigned as the output state of the
tine sync lost drive fault.

¢ Must be a boolean variable name.

TACH_LOSS OUT @: Symbol assigned as the output state of the
tach loss drive fault.

¢ Must be a boolean variable name,

52.3

OSV_0OUT @: Symbol assigned as the output state of the over
speed/overvoltage drive fault.

e Must be a boolean variable name.
PHROT_FLT_OUT @: Symbol assigned as the output state of the
incorrect phase rotation drive fault.

® Must be a boolean variable name.

BAD SCR_OUT @: Symbol assigned as the output state of the
shorted SCR diagnostic drive fault. Programming this parameter
enables the shorted SCR diagnostic procedure. Refer to section
45.3.1 Shorted SCR Diagnostic in this manual.

o Must be a boolean variable name.

BAD SCR_NUM %: Symbol assigned as the number of the
suspected shorted SCR. Refer to section 45.3.1 Shorted SCR
Diagnostic in this manual.

e Must be an integer variable name.

The following output is updated only white the CML is in the RUN
mode. While in the STANDBY mode, it will retain the valus it had

during the last scan of the most recent RUN mode. It is set to zero

(FALSE) when the task is initially turned on.

DIAG_DATA_%: Array assigned as the output of the CML diagnostic

data collection procedure. Refer to section 45.3.2 Diagnostic Data

Collection in this manual.

o Must be a two-dimensional array dimensioned as 38 elements by

2 slements (37,1).

e \When specifying this parameter in the CALL statement only, the

array name without any subscript specification must be entered;

for example, DIAG_DATA = diag_data%.

e The data declaration statement (LOCAL or COMMON) defines it
as an array dimensioned (37,1); for example, LOCAL diag_data%

(37,1).

Power Module Diagnostic Enhancements

The power module diagnostic enhancements provide the detection

of a shorted SCR as well as a blown fuse {(missing phase) and an
open SCR gate [ead. The DC_DRIVE_CML block provides the
detection of a shorted SCR and also collects specific data and

stores it into an array in a circular queue manner. This data can then

be processed by a BASIC task running at a slower rate and lower

priority.

52-13

52.3.1

52-14

Shorted SCR Diagnostic

Two output parameters support this portion of the diagnostic:

e BAD_SCR_OUT, which is the boolean flag indicating that a fault
has been detected.

e BAD SCR_NUM, which is an integer value indicating the number
of the suspected shorted SCR.

The shorted SCR diagnostic is enabled by programming the
parameter BAD_SCR_OUT. The parameter BAD_SCR_NUM is
optional. If BAD_SCR_OUT is not programmed, the shorted SCR
diagnostic will not be executed.

The diagnostic requires that individual gate leads be fired with the
results evaluated each CML scan. It must be performed by the
DC_DRIVE_CML block.

The diagnostic procedure is performed whenever a RUN request is
made. This occurs on the rising edge of CML_RUN with all run
permissive signals present. SYNC_LOCKED must be TRUE. Run
permissive into the digital I/O must be TRUE and no drive faults can
be active (TRUE).

The diagnostic consists of firing individual gates on the forward (#1)
bridge for up to 9 line cycles. The current feedback as a result of
each firing will be evaluated to determine if some sort of short circuit
exists. The firing angle will begin at zero microseconds (0 degrees
delta) and increase each line cycle up to a maximum of 800
microseconds or until a failure is concluded.

The Dierikon diagnostic option, applicable only to the Dierikon S6R
module, fires SCRs in both the motoring and the regenerative bridge
for up to 18 cycles of the line.

If the diagnostic concludes that no problem exists, DC_CML_STATE
will be set TRUE. If this diagnostic is enabled, a delay of
approximately 180 milliseconds between the RUN request and the
assertion of DC_CML_STATE will be incurred.

A shorted SCR diagnostic failure is considered a drive fault and is
treated as such. If a failure is detected, the following will occur:

e aboolean output from the CML (BAD_SCR_OUT@) will be set
indicating the failure,

e an integer output from the CML (BAD_SCR_NUM%) will be set
equal to the number of the suspected, and SCR, and

e fault code “87" will be displayed on the processor module LEDs,
which will also be logged in the task's error log.

With an SCR configuration, the BAD_SCR_NUM parameter will
indicate one of the two possible SCRs suspected of failing:

Suspected
BAD_SCR_NUM Shorted SCRs

1ori4
20r15
3orib
4o0r11
S5or1i2
6or13

DR HWHN -

A shorted SCR fault is a atched drive fault requiring a drive fault
reset command to clear the fault condition. As with all drive fauits, a
slart attempt (run request) will be ignored if any fault condition
exists.

52.3.2 Diagnostic Data Collection

The DIAG_DATA output parameter supports the diagnostic dala
collection portion of the power module diagnostics. This parameter
defines the storage array in which real time data is accumulated in a
circular queue. (See Table 2.) It is an optional parameter and is
unique to the DC_DRIVE_CML block in that it is a two-dimensional
array. The array provides the interface between the current minor
loop and a background task that processes this information to
diagnose a missing line phase or an open SCR gate lead.

Consistent with the parameter definition, only the array name for the
DIAG_DATA parameter and not the dimensions is entered
(DIAG_-DATA = diag_data%). The array is dimensioned in the
variable declaration statement:

COMMON diag_data%(37,1).
The dimensions must be 37 to 1 providing 38 by 2 elements.

While the drive is in the normal RUN mode, a data record is added
to the DIAG_DATA array each CML scan. it is not written to while the
drive is in STANDBY mode or TEST mode, or during a coast-stop
sequence (Fauit Stop). The CML scan period is nominally 2.778
milliseconds with a 60 Hz AC line frequency.

52-15

Table 2 - Organization of DIAG_DATA Array

0.0)
(1,0)
(2,0)
(3,0)

(4.0)
(5,0)

(34,0)
(35.,0)
(36,0)
(37,0)

@.1)
(1.1)

(2,1)
(3,1)
(4,1)

(5,1)

(34,1)

(35,1)
(36,1)
(37,1)

PAGE NUMBER

NEXT_ENTRY (page 0)

Current Feedback
Current Reference
SCR Gate Command

))
((

Current Feedback
Current Reference
SCR Gate Command

(not used)

NEXT_ENTRY (page 1)

Current Feedback
Current Reference
SCR Gate Command

))
((

))
((

Current Feedback
Current Reference
SCR Gate Command

J)
tf

(0 = page 0, non zero = page 1)

record 1 (scan 0, 12, 24, 36,...)

record 12 (scan 11,23,35,47....)

record 1 (scan 0, 12, 24, 36,...)

record 12 (scan 11, 23, 35, 47,...)

52-16

The information provided in the array is defined as follows:
diag_date%(0,0) = PAGE_NUMBER

This value defines which data ‘page’ is to be actively updated by

the CML task.

If diag_data%;(0,0) = 0, the CML will update page 0 of the

2-dimensional array.

If diag_data%(0,0) < > 0, the CML will update page 1 of the

2-dimensional array.

diag_data%(1,x) = NEXT_ENTRY

This value is the number to the next data record to be written to
the page by the CML. It will have a value between 1 and 12

inclusive.

Before the PAGE_NUMBER is modified by the background task
such that page x is used by the CML, NEXT_ENTRY must be set

equal to zero (0).

if NEXT_ENTRY is ever set to a value which is out of range, it will

be clamped to 0 by the CML.

e NEXT_ENTRY, after swapping page x out, will equal the number
of the next record which would have been written to on the next
CML scan.

A data record contains 3 fields:

1. The first field is the tatest current feedback signal. This is equal
to |_FDBK currently pravided as a CML output. This is the
feedback signal at the loop summing junction. This field is
subtracted from the second field which produces the CML error
signal.

2. The second field is the latest current reference signal. This is
equal to REF_LAG_OUT, currently provided as a CML output.
This is the reference signal at the loop summing junction.

3. The third field is the gate command word indicating the SCR
gates that are to be pulsed to produce the current feedback
signal of the next scan.

52.4 Tach Loss Delta Threshold Adjustment

The tach loss fault function bases its decision on the logic:

if armature voltage > 40% and SPEED_FDBK < 5%, then tach loss
fault is concluded.

Since armature voltage feedback is not always available, the
average of 16 CML scans of the armature firing angle 'DELTA’ is
used to approximate armature voltage. The DELTA value is
approximately equal to 40% armature voltage. It is calculated to be
109 degrees (alpha = 71 degrees). The value of SPEED_FDBK
representing 5% speed is equal to 205. This assumes 1PN = 4095.

If these threshold levels are not adequate, tach loss faults may
occur. Problems are most likely to occur in two situations:

1) A large Te motor having a largs IR disp.

2) A severely notched or distorted AC line which yields less output
voltage than expected for a given firing angle.

To provide for operation in these situations, the tach loss deita
threshold may be increased.

52.4.1 Making Tach Loss Adjustments

A register on the drive I/O controller module (M/N 57C406) holds the
tach loss delta threshold value specified in degrees. The register is
set to its default value during initialization of the DC_DRIVE_CML
block. If a change from the default value is required by the
application, the statement to write to this register should be added
to the initialization section of a task which is of lower priority than the
DC_DRIVE_CML block task. (In most systems the CML task is the
highest priority task.) Note that each time the CML task is restarted
this register will be reinitialized by the DC_DRIVE_CML block.

52-17

WARNING

DONOTALTER THE FIRING ANGLE DEFAULT VALUE WITHOUT VERIFYING THAT
THE DRIVE PARAMETERS REQUIRE SUCH MODIFICATIONS AS DEFINED IN
THE SAFETY INSTRUCTIONS BELOW. FAILURE TO OBSERVE THESE
PRECAUTIONS COULD RESULT IN BODILY INJURY OR DAMAGE TO
EQUIPMENT.

The value for the tach loss delta threshold must be selected by
using equations (1) and (2). Equation (1} gives the upper limit for the
value and equation {2) determines if it is safe to make such a
change.

1) DELTA THRESHOLD < = 180-ARCOS[{0.75*VDC) / {1.35*VLL)]

DELTA THRESHOLD = Register 4136 on drive /O controller
(57C4086). The value must be between 0 and 127, inclusive.

VDC = Maximum armature voltage, (base speed armature
voltage)

VLL = Nominal AC line voltage feeding the drive.

ARCOS = Arc cosine function, (inverse cosine)
2) JBAR > = 0.2 seconds 1

JBAR = (WR*WR*SB)/(308*T)

WR2 = Minimum rotational inertia (empty core)} expressed in Ib.
ft.2

SB = Base speed of motor expressed in RPM. For the field
weakened operation case, it is appropriate to use the maximum
speed desired for the particular application. This will give
conservative results since 100% torque is not usually available
above base speed.

T = Maximum torque expressed in ft. ibs. Maximum torque
occurs at maximum armature current (LIMBAR).

1= If The time to reach the maximum safe speed for the
application is less than 0.2 seconds, then no change in
DELTA THRESH is allowed.

Drive /O Controller Default
Board Reqister Number Value Description
4136 109 Tach loss delta

threshold (degrees)

This register value is limited from 0 to 127 degrees inclusive by the
tach loss function before its use. Note, however, that the limited
value will not be overwritten into register 4136, i.e. if register 4136 is
sel outside of the 0 to 127 degree limit, the register value will not
reflect the value used by the tach loss function.

Changes to the tach loss delta threshold (register 4136) can be
made at any time and will be recognized by the tach loss function.
Dynamic modification of this register, however, is of little use, except
at system startup, and is strongly discouraged. Refer to section
45.7, the Drive I/C Controller Write Registers.

52-18

52.5 Line Synchronization Filter Adjustments

The purpose of the line sync phase lock loop (PLL) function,
incorporated into the DC_DRIVE_CML block, is to stabilize the AC
line synchronization point used by the drive's phase firing process.
The PLL is required to compensate for drive-induced "notching’ and
other noise disturbances in the AC line. The default adjustments to
the PLL are such that its output moves very slowly due to
perturbations on its input. For a stable AC line generator the default
adjustments provide optimal line synchronization stability and
tracking, requiring no PLL adjustments by the application software.

For applications where the AC power to the drive is provided by a
local plant power generator (e.g. diesel alternator) or any power
source which cannot maintain a 'suitable fixed’ output frequency,
adjustments to the PLL may be necessary. Problems will most likely
become apparent when a step change in load is experienced by the
power generator. When the step change in load is applied, the
generator's output frequency will deviate from the desired output
frequency until its regulator can correct for the error. During these
transient periods, the PLL's output may not be able to change fast
enough to follow the AC line. A gradual increase in phase shift
occurs every cycle until the line returns to its original frequency or a
fault trip limit is reached. To allow normal operation under these
conditions, the PLL’s filters for frequency and phase must have their
limits changed to allow faster tracking of changes in the AC line’s
frequency.

52.5.1 PLL Filter Adjustments

Two PLL filter adjustments are available: one specifies the maximum
change made in-phase and the other specifies the maximum
change mads in period, both in units of microseconds per line
cycle.

Two registers on the drive I/O controller module (M/N §7C406) have
been designated for this purpse. They are set to their default values
during initialization of the DC_DRIVE_CML block. if changes from
the default values are required by the application, the statements to
write to these registers should be added in the initialization section
of a task which is lower

priority than the DC_DRIVE_CML block task. (In most systems the
CML task is the highest priority task.) Note that each time the CML
task is restarled these registers wilt be reinitialized by the

0C _DRIVE_CML block.

Drive IfO Controller Default
Board Register number Value Description
4137 4 PLL maximum phase
change (isec)
4138 2 PLL maximum period

change (Jsec)

Neither value should be set less than or equal to zero or line sync
loss faults will result. The value of the phase change limit (register
4137) must be twice the value of the period change limit (register
4138).

52-19

52.6

52-20

The greater these values become, the faster the PLL will
compensate for changes in the AC line. This includes phase and
frequency changes as well as noise disturbances. Therefore, as
these values are increased, disturbances to the AC line may be
reflected in phase firing control and ultimately the CML itself.
Maintaining tight current control and operation without sync loss
faults is the tradeoff which must be made when making PLL
adjustments.

As a comparative guideline, increasing the maximum phase change
limit {register 4137) to a value of 80 and the maximum period
change limit {register 4138) to a value of 40 will provide a significant
increase in PLL response. 80 microseconds is nearly 2 degrees
relative to a 60 Hz line. Applications requiring values greater than
these are considered extreme cases.

The largest phase change limit that will cause changes to the PLL
function is 2000. Values greater than 2000 will have no more effect
than a value of 2000 since the maximum phase error permitted by
the PLL is fixed at 2000 microseconds.

Fast Bridge Change

The deadtime for systems without the fast bridge change feature
can range from 3 milliseconds to 70 milliseconds. Fast bridge
change reduces the deadtime to approximately 2 milliseconds.
Deadtime is directly related to the motor's CEMF when the bridge
change request is made and the amplitude of the current reference
signal. The bridge change deadtime is defined as the time from
reaching zero current on one bridge to producing current on the
other bridge.

There are three requirements in order to provide the fast bridge
change feature. First, the hardware must provide an armature
voltage feedback signal to the drive analog I/C board (M/N 57C405).
Second, the application software must enable the fast bridge
change logic. Third, the motor’'s inductance must be small enough
to allow safe fast bridge changes without crossfires. See Table 4.

Table 3 - Maximum Armature Inductance for Fast Bridge Change

230VAC 460VAC 575VAC 660VAC 4— Line Voltage
RATED 1 240VDC 500VDC 600VDC 700VDC &— Max. Drive Voltage

1500.0 .8431 1.5644 2.1079 2.3466
1400.0 0.9034 1.6761 2.2584 2.5142
1300.0 0.8729 1.8051 2.4321 2.7076
1200.0 1.0639 1.9555 2.6348 2.9332
1100.0 1.1497 2.1332 2.8743 3.1999
1000.0 1.2647 2.3466 3.1618 3.5199
850.0 1.3313 2.4701 3.3282 3.7051
800.0 1.40562 2.6073 3.5131 3.9110
6850.0 1.4879 2.7607 3.7197 41410
800.0 1.5809 2.9332 3.9522 4.3998
750.0 1.6863 3.1288 4.2157 4.6932
700.0 1.8067 3.3522 4.5168 5.0284
650.0 1.9457 3.6101 4.8643 5.4152
600.0 2.1079 3.9110 5.2696 5.8664
550.0 2.2995 4.2665 5.7487 6.3998
500.0 2.5294 46932 6.3236 7.0397
475.0 2.6626 4,9402 6.6564 7.4102
450.0 2.8105 5.2146 7.0262 7.8219
425.0 2.9758 5.5214 7.4395 8.2820
400.0 3.1618 5.8664 7.9045 8.7997
375.0 3.3726 6.2575 8.4314 9.3863
350.0 3.6135 6.7045 9.0337 10.0568
325.0 3.8914 7.2202 9.7286 10.8303
300.0 421567 7.8219 10.5393 11.7329
275.0 4.5990 8.5330 11.4974 12.7995
250.0 5.0589 9.3863 12.6471 14.0794
225.0 5.6209 10.4292 14.0524 15.6438
200.0 6.3236 11.7329 15.8089 17.5993
190.0 6.6564 12.3504 16.6410 18.5256
180.0 7.0262 13.0365 17.5654 19.5548
170.0 7.4395 13.8034 18.5987 20.7051
160.0 7.9045 14.6661 19.7611 21.9991
150.0 8.4314 15.6438 21.0785 23.4657
140.0 9.0337 16.7613 22.5842 25.1419
130.0 9.7286 18.0506 24.3214 27.0759
120.0 10.56393 19.5548 26.3482 29.3322
110.0 11.4974 21.3325 28.7435 31.9988
100.0 12.6471 23.4658 31.6178 35.1986
90.0 14.0524 26.0731 35.1309 39.10986
80.0 15.8089 29.3322 39.5223 43.9983
70.0 18.0673 33.5225 45.1683 5(0.2838
60.0 21.0785 39.1096 52.6964 58.6644
50.0 25.2943 46.9315 63.2356 70.3972
40.0 31.6178 58.6644 79.0445 B87.9966
300 42.1571 78.2192 105.3927 117.3288
20.0 632356 117.3288 158.0891 175.9931
10.0 126.4713 234.6575 316.1781 351.9863

RATED | = THE MOTOR'S RATED CURRENT FOR 100% TORQUE
ALL VALUES ARE IN AMPERES AND MILLIHENRIES.

52-21

52.6.1

52.6.2

2.7

52-22

Hardware Requirements

To provide the fast bridge change feature, hardware must provide
and isolate the scale armature voltage. Armature voltage must be
scaled according to the following table and the result fed into the
drive analog 1/0O module (M/N 57C405) through connector P4 from
pin 5 (—) to pin 12 (+).

ARMATURE VOLTAGE TRANSFORMER SCALING

Transformer Nominal Scaling to 57C405

rating (Vrms) voltage (Vrms] Vin (Vrms) @Vo=5V Gain
240 230 250 02
397 380 413.54 o121
480 460 500 01
575 550 598.96 (~600) 00835
690 660 718.75 00696

Software Requirements

The fast bridge change software enable switch is located on the
drive |/O controller module (M/N 57C406) at bit 0 of register 4146.
This switch is initialized to the default value of ‘off' (0) during
initialization of the DC_DRIVE_CML _ block. To enable the fast bridge
change feature, an application task of lower priority than the CML
task must set this bit (register 4146, bit 0) to ‘on’ (1).

The state of register 4146, bit 0 is latched by the CML task while the
drive is in standby. Therefore, enabling and disabling the fast bridge
change feature can only be accomplished while the drive is in
standby (DC_DRIVE_STATE = false). Note that each time the CML
task is restarted the fast bridge change enable bit will be reinitialized
(turned off) by the DC_DRIVE_CML block. If the fast bridge change
software is enabled in an application which does not have the
required hardware, an 10C fault will occur.

Drive |/O Controller Write Registers

The drive /O controller module (B/M 57C406) contains the following
registers which an application task can write to.

Register No. Default Value Description

4136 109 Tach loss delta threshold
(degrees)

4137 4 PLL maximum phase change
(Msec)

4138 2 PLL maximum period change
(Msec)

4146 bit 0 0 Fast bridge change enable

4146 bit 1 0 SCR diagnostics for Dierikon

$6 and Industrial Controls’ S6
& S6Rs; set to 1 for Dierikon
S6R DC drives

4146 hit 2-15 n/a (undefined)

Accesses to the drive I/O controller module (M/N 57C4086) delay
execution of the microprocessor on that module. Therefore,
accesses (reads and writes) made by the application software to the
M/N 57C406 module must be kept to a minimum and only made
when absolutely necessary. Towards this end, it is strongly
recommended that any accesses to the above registers be made
during the initialization section of an application task(s). Note that
the application task must be a BASIC task and not a control block
task. The reason for this is that control tasks will latch the state of ali
common variables at the start of each scan and store them locally,
regardless of whether any run-time references to those variables are
made. Creating a separate BASIC task which does nothing but
initialize the above write registers to the values required by the
application will minimize references to the M/N 57C406 module.

52-23

53.0 EXECUTION TIME

53.1

53.2

ESTIMATES

Execution time can be affected by remark statements within a task.
There are two forms of the remark statement: REM and |. Remark
statements using "REM" are stripped off before the task is
downloaded and, therefors, do not affect execution time. However,
remark statements using “1” do require execution time when the task
runs on the Processor. For tasks that will run on 6010/6011
Processors, use a value of 40 microseconds as the time for each
remark. For tasks that will run on 7010 Processors, use a value of
9.88 microseconds as the time for each “1” remark. For tasks that
will run on UDC modules, use 2.37 microseconds as the time for
each “|” romark. The amount of text that follows the “I” does not
affect the execution time; no text requires the same time as a full line
of text. For computing CPU usage for the task, only those remark “1”
statements that occur after the SCAN_LOOP block need be
considered. Those that occur before the SCAN_LOOP block are
executed only once and, therefore, need not be considered.

AutoMax Processor and AutoMax PC3000 |
Control Block Tasks

The execution times for all contro! block statements programmed in

a particular AutoMax task can be summed with the

SCAN_LOOP/END time to estimate the total task execution time.

This value divided by the scan time (TICKS * tick rate in seconds)

gives the estimated CPU usage for the control block task. Refer to
Table 4 for AutoMax Processor block execution times. Refer to

Table 6 for AutoMax PC3000 block execution times. Note that the

times listed are valid for Version 3.4 and later of the AutoMax |
Programming Executive software.

UDC Tasks

The execution times for all Control Block statements programmed
into a particular UDC Control Block tasks can be summed with the
SCAN_LOOP/END time to estimate execution time for that UDC
Controt Block task. If two Control Block tasks will be running on a
particular UDC module, the estimated execution times of both tasks
must be added together. The total execution time divided by the tick
rate (.56 milliseconds) will equal the minimum value you should enter
for the TICKS parameter in the SCAN_LOOP block. Note that you
must enter the same value for the TICKS parameter in the
SCAN_LOOP block for both tasks. The maximum value you can
enter for the TICKS parameter is 20 (10 milliseconds). Refer to Table
5. Note that the times listed are valid for Version 3.4A of the AutoMax
Programming Executive software.

53-1

Table 4 - Maximum Execution Time Summary - AutoMax Tasks

Block Name

7010 Processor
Maximum Time (lisec)

6010/6011 Processor
Maximum Time (Asec)

ABSOLUTE_VALUE
ALARM

AMPLIFIER

AND

BIT_SELECT
COMPARE
COUNTER
DIFFERENCE
DIFF_LAG

END

FUNCTION
INTEGRATE
INVERTER

LAG

LATCH

LEAD LAG

LIMIT

MOVE
MULTIPLY_DIVIDE
NOTCH

OR

PACK_BITS

PID

PROP_INT
PULSE_MULT

RAMP

READ BITS

READ _WORDS
RUNNING_AVERAGE
SAMPLED_AVERAGE
S CURVE

SCALE

SCAN_LOOP

SEARCH
SELECT
SHIFT BITS
SHIFT WORDS
SUMMER
SWITCH
TRANSITION
UNPACK BITS
WRITE BITS
WRITE " WORDS
|<REM>

9.16

11.16 + n(2.48)
13.16 + k(3.12)
10.80 + j{1.88)
26.04 + n%1. 20
11.24 + n{1. 16
15.64

10.80

33.04

13.82 + t (2.0) + i (1.6)
+ b(2.2) + d(2 .5)
23.56

39.14

10.84

26.52

15.04

68.60

18.20

10.40 + p(2.32)
13.76

85.16

10.24 + j(1. 88)
24.28 + j(1. 44)
124.00

40.32

18.32

27.72

24.32 + n11.12)
25.76 + n({1. 28)
28.64

29.00

11.36

23.40 + n(1. 44)
25.56 + j (1.36)
25.52 + J{0.36)
9.88

41

44 + n(11)

62 + k(13.8)

41 + j(8.3)

118 + n(6.5)

45 + n(5.5)

61

44

154

60 +t (3.2) + i(2.8)
+ b(4 .3) + d{4 .9)
93

193

48

118

68

284

69

a9 + p(11)

71

393
41 + j(8.3)
110 + j(5)
515

193

86

122

106 + nf.a;
111 + n{5.6
125

125

282

48

106 + n({7.3)
103 + j (6)
110 + j(1.9)
40

~oa3gx——ac
LI | | | N B

referanced by the task

number of common boolean variables referenced by the task
number of common double integer varables referenced by the task
number of common integer variables referenced by the task
total number of inputs programmed

tota! number of input pairs programmed

number of slements searched

total number of outputs programmed

total number of inputfoutput palrs programmed

total number of common integer, boclean, and double integer variables

53-2

Table 5 -Maximum Execution Time Summary - UDC Tasks

UDC Module
Block Name Maximum Time {lisec)
ABSOLUTE_VALUE 8.30
ALARM 10.10 + n(1.80)
AMPLIFIER 15.30 + k{1.80}
AND 10.60 + j(1.45)
COMPARE 7.50 + n{2.25)
COUNTER 16.90
DIFFERENCE 7.97
DIFF_LAG 41.50
END 130.00 + i(2.40) + b{2.50)
+ d(3.30) +z
FUNCTION 20.30
INTEGRATE 58.60
INVERTER 9.40
LAG 41.00
LAGN 39.25 + 0(4.00)
LEADN 39.25 + 0(4.00)
LATCH 14.85
LEAD LAG 39.70
LIMIT 15.05
MOVE 10.40 + p(1.80)
MULTIPLY_DIVIDE 13.80
NOTCHN 64.25 + 0(20.00)
OR 8.90 + j(1. 45)
PACK_BITS 16.16 + n(1.25)
PROP_INT 70.85
PULSE_MULT 18.96
RAMP 24.96
RUNNING AVERAGE 26.94
SAMPLED AVERAGE 25.94
S CURVE 35.01
SCALE 18.30
SCAN_LOOP 350.00 + i(2.20) +b(2.00)
+ d{3.30) + x
SELECT 12.50 + j(1.50)
SUMMER 10.00
SWITCH 12.55
TACHLOSS QVERSPEED 22.00
THERMAL OVERLOAD 48.10
TRANSITION 11.90
UNPACK_BITS 14.40 + n{1.90)
1<REM> 2.37
b = number of common boolean variables referenced by the task
d = number of common double integer variables referenced by the task
i = number of commaon Integer variables referenced by the task
j = total number of inputs programmed
K = total numbear of input pairs programmed
n = total number of outpuls programmed
o = ‘“order” of filter
p = total number of input/output palrs programmed
x = avg. feedback message overhead per task; add 312 psec whan only 1 task

executas.

N
|

axacutes

= avg. setpoint message overhead per task; add 100 psec when only 1 task

53-3

534

Table 5 - Maximum Execution Time Summary - AutoMax PC3000 Tasks

PC3000
Block Name Maximum Time ([isec)
ABSOLUTE_VALUE 6.44
ALARM 7.8 + n{1.76)
AMPLIFIER 9.2 + k(2.20)
AND 7.56 +j(1.32)
BIT SELECT 18.24 + n(0.84)
COMPARE 7.88 + n(0.80)
COUNTER 10.96
DIFFERENCE 7.56
DIFF LAG 23.12
END 9.68 + 1(1.40) + i(1.12) +
b(1.56) + d(1.76)
FUNCTION 16.48
INTEGRATE 27.40
INVERTER 7.6.0
LAG 18.56
LATCH 10.52
LEAD LAG 48.04
LIMIT 12.76
MOVE 7.28 + P(1.64)
MULTIPLY_DIVIDE 9.64
NOTCH 59.60

OR 7.16 + j(1.32)
PACK_BITS 17.00 + j(1.00)

PID 86.80

PROP INT 28.24

PULSE_MULT 12.84

RAMP 19.40

READ BITS 17.04 + nEO.BO)

READ WORDS 18.04 + n{0.92)
RUNNING AVERAGE 20.04
SAMPLED_AVERAGE 20.32

S CURVE 32.92

SCALE 15.72

SCAN LOOP 56.00 + t{1.76) +b(2.68) + d(2.88)
SEARCH 13.88 + m((0.48)
SELECT 7.96 + j(1.76)
SHIFT_BITS 12.80 + p(1.44
SHIFT_"WORDS 12.48 + p(1.20
SUMMER 7.88

SWITCH 8.08

TRANSITION 7.96

UNPACK_BITS 16.40 + n(1.00)
WRITE_HITS 17.88 + j(0.96)
WRITE_WORDS 17.88 + j(0.28)
|<REM> 6.92

b = number of common boolean variables referenced by the task

d = number of common double integer variables referencad by the task
i = number of common integer variables referanced by the task

| = tolal number of inputs programmed

k = tolal number of input pairs programmed

m = number of elements searched

n = total number of outputs programmed

p = total number of input/output pairs programmed

t = total number of common integer, boolean, and double integer variables

referenced by the task

RE 1857LC2 Printed in U.S.A.

Forward To: Reliance Electric - RGA
Technical Publications
25001 Tungsten Road
Cleveland, OH 44117

Technical Writing
intemal Use:

DIF #

VxS DRIVES & INDUSTRIAL CONTROLS
DOCUMENTATION IMPROVEMENT FORM

Document Number:

Page Number(s):

Comments: (Please give chapters, page numbers or specific paragraphs that the change will af-
fect. Include markups from the document or attach additional pages if necessary.)

What will this improvement suggestion provide?

Originator: City: State: ZIP:
Company: Phone: ()
Address: Date:

Technical Writing Internal Use: i
Follow-Up Action:

Writer: Date:

Thank you for your comments . . . N Roclewell Avtomation
Reliance Electric

Rellance Electric / 24703 Euclid Avenue / Cleveland, Ohioc 44117 / 216-266-7000

#N Roclkewell Astomation

Reliance Electric

Printed in U.S.A. J-3676-5 November, 1996

	J-3676-5, AutoMax Control Block Language
	Table of Contents
	1.0 Introduction
	1.1 Compatibility with Earlier Versions
	1.2 Additional Information
	1.3 Related Hardware and Software

	2.0 Programming For AutoMax Systems
	2.1 Configuration
	2.2 AutoMax Application Tasks
	2.3 Universal Drive Control Application Tasks
	2.4 AutoMax Programming Conventions

	3.0 Control Block Programming
	3.1 Format of Control Blocks
	3.2 Task Execution
	3.3 Variable Definition and Initialization

	4.0 Scan Loop
	5.0 Absolute Value
	6.0 Alarm
	7.0 Amplifier
	8.0 And
	9.0 Bit Select
	10.0 Compare
	11.0 Counter
	12.0 Difference
	13.0 Function Generator
	14.0 Inverter
	15.0 Latch
	16.0 Limit
	17.0 Move
	18.0 Multiply and Divide
	19.0 Or
	20.0 Pack Bits
	21.0 Pulse Multliplier
	22.0 Ramp
	23.0 Read Bits
	24.0 Read Words
	25.0 Running Average
	26.0 S Curve
	27.0 Sampled Average
	28.0 Scale
	28.1 Overflow Handling
	28.2 Application Notes

	29.0 Search
	30.0 Shift Bits
	31.0 Shift Words
	32.0 Select
	33.0 Summer
	34.0 Switch
	35.0 Tach Loss and Overspeed
	35.1 Setup Calculations and Block Equations

	36.0 Thermal Overload
	36.1 Setup Calculations and Block Equations
	36.2 Special Notes

	37.0 Transition
	38.0 Unpack Bits
	39.0 Write Bits
	40.0 Write Words
	41.0 Differentiator Lag
	41.1 DIFF_LAG wm Limitations
	41.2 DIFF_LAG wlg Limitations

	42.0 Integrate
	42.1 Integrate wm Limitations
	42.2 Integrate K1 Limitations
	42.3 Calculating K1 for Integrate Time Domain Applications

	43.0 Lag
	43.1 Lag wm Limitations
	43.2 Lag wlg Limitations

	44.0 Lead/Lag
	44.1 Lead_Lag, wld, wlg, and wm Limitations

	45.0 Notch Filter
	46.0 High-Pass Filter (Nth Order High-Pass Butterworth Filter)
	46.1 High-Pass_Filter wld Limitations

	47.0 Low_Pass_Filter (Nth Order Low-Pass Butterworth Filter)
	47.1 Low_Pass_Filter wlg Limitations

	48.0 NOTCHN (Nth Order Notch Filter)
	48.1 Notchn wn Limitations

	49.0 Proportional + Integral
	49.1 Prop_Int wm Limitations
	49.2 Prop_Int wld Limtations
	49.3 Prop_Int KP Limitations

	50.0 PID
	50.1 KP Limitations
	50.2 KI Limitations
	50.3 KD Limitations
	50.4 LOOP_TIME Limitations
	50.5 DEAD_BAND Limitations
	50.6 MAX_CHANGE Limitations

	51.0 Special Coefficient Restrictions
	52.0 DC Drive Current Minor Loop
	52.1 Input Keyword Definitions
	52.2 Output Keyword Definitions
	52.3 Power Module Diagnostic Enhancements
	52.4 Tach Loss Delta Threshold Adjustment
	52.5 Line Synchronization Filter Adjustments
	52.6 Fast Bridge Change
	52.7 Drive I/O Controller Write Registers

	53.0 Execution Time Estimates
	53.1 AutoMax Processor and AutoMax PC3000 Control Block Tasks
	53.2 UDC Tasks

	DIF Form
	Back Cover

