5V-24VDC
Input Module

M/N 57C419

Instruction Manual J-3632-2

RELIANCE'.
ELECTRICH[]

The information in this user’'s manual is subject to change without notice.

WARNING
THIS UNIT AND ITS ASSOCIATED EQUIPMENT MUST BE INSTALLED,
ADJUSTED AND MAINTAINED BY QUALIFIED PERSONNEL WHO ARE
FAMILIAR WITH THE CONSTRUCTION AND OPERATION OF ALL EQUIPMENT
IN THE SYSTEM AND THE POTENTIAL HAZARDS INVOLVED. FAILURE TO
OBSERVE THESE PRECAUTIONS COULD RESULT IN BODILY INJURY.

WARNING
INSERTING OR REMOVING THIS MODULE OR ITS CONNECTING CABLES MAY
RESULT IN UNEXPECTED MACHINE MOTION. POWER TO THE MACHINE
SHOULD BE TURNED OFF BEFORE INSERTING OR REMOVING THE MODULE
OR ITS CONNECTING CABLES. FAILURE TO OBSERVE THESE PRECAUTIONS
COULD RESULT IN BODILY INJURY.

CAUTION

THIS MODULE CONTAINS STATIC-SENSITIVE COMPONENTS. CARELESS
HANDLING CAN CAUSE SEVERE DAMAGE.

DO NOT TOUCH THE CONNECTORS ON THE BACK OF THE MODULE. WHEN
NOT IN USE, THE MODULE SHOULD BE STORED IN AN ANTI-STATIC BAG. THE
PLASTIC COVER SHOULD NOT BE REMOVED. FAILURE TO OBSERVE THIS
PRECAUTION COULD RESULT IN DAMAGE TO OR DESTRUCTION OF THE
EQUIPMENT.

Reliance® is a registered trademark of Reliance Electric Company
or its subsidiaries.
Kermit® is a registered trademark of the trustees of Columbia University.

1.0

2.0

3.0

4.0

5.0

Table of Contents

Introductionottt s 1-1
Mechanical/Electrical Descriptionccvvventn 21
2.1 Mechanical Description 2-1
2.2 Electrical Descriptiont 2-1
Installationciiiiii s 3-1
B WIHNG oo 3-1
3.2 Initial Installation 3-1
3.3 Module Replacement i 3-4
Programming ...ttt e 4-1
4.1 Register Organizationccoiiiiiiiiiia... 4-1
4.2 Configuration 4-2
4.3 Reading And Writing Data In Application Tasks 4-3
4.3.1 Ladder Logic Task Example 4-3
4.3.2 BASICTask Exampleccoiiiiiiiinno... 4-3
4.3.3 Control Block Task Examplecooon... 4-4
4.4 Using Interrupts in Application Tasks 4-5
441 BASICTask Example ..., 4-5
4.4.2 Control Block Task Example 4-7
4.5 Restrictions 4-8
4.5.1 Writing Datato Registers 4-8
4.5.2 32BitRegisterReference 4-8
4.5.3 Interrupts in Remote I/ORacks 4-8
4.5.4 Dynamic Modification of Latch Edge Transition......... 4-8
Diagnostics and Troubleshootingccoiiiiiaans 5-1
5.1 IncorrectData ... 5-1
5.2 BUSEIMOr ... o 5-3
5.3 Interrupt Problems 5-4
5.3.1 Nolnterrupts i 5-4
5.3.2 Hardware Event Time-Out 5-5
5.3.3 Hardware Event Count Limit Exceeded 5-5

5.3.4 lllegal Interrupt Detected, 5-6

Appendices

Appendix A
Technical Specificationso i A-1

Appendix B

Module Block Diagramot B-1
Appendix C
Field Connections i C-1

Appendix D
Related Componentst D-1

Appendix E
Defining Variables in the Configuration Task E-1

List of Figures

Figure 2.1 - Typical Input Circuit i 2-2
Figure 2.2 - Module Faceplate it 2-3
Figure 3.1 - Typical Field Connections for Contact Closures 3-1
Figure 3.2 - Typical Field Connections for Open Collector TTL 3-2
Figure 3.3 - Typical Field Connections for LSTTL or CMOS Buffer 3-2
Figure 3.4 - Rack Slot Numbers 3-3

Figure 4.1 - Organization of Register Bits 4-2

1.0

INTRODUCTION

The products described in this instruction manual are manufactured
or distributed by Reliance Electric Company or its subsidiaries.

The 5V-24V Input Module will accept up to a maximum of 32 low level
D-C input signals. The input signals may range from 5 volts through
24 volts. The inputs may be either NPN open collector outputs
(sinking) or contact closures. Both configurations require an external
power supply. Four of the inputs can be programmed to latch pulses
of .7 msec duration or longer. These four inputs can also be used to
generate an interrupt. Input signals have 5000 volt isolation to logic
common. The module contains 8 isolated commons, one for each
group of four inputs.

Typically, this module is used to input on/off signals from devices
such as thumbwheel switches, relay contacts, limit switches,
push-buttons, selector switches, open collector TTL, buffered LSTTL,
and buffered high speed CMOS.

This manual describes the functions and specifications of the
module. It also includes a detailed overview of installation and
servicing procedures, as well as examples of programming methods.

Related publications that may be of interest:

e J-3600 DCS 5000 ENHANCED BASIC LANGUAGE
INSTRUCTION MANUAL

e J-3601 DCS 5000 CONTROL BLOCK LANGUAGE
INSTRUCTION MANUAL

e J-3602 DCS 5000 LADDER LOGIC LANGUAGE INSTRUCTION
MANUAL

e J-3630 AutoMax PROGRAMMING EXECUTIVE INSTRUCTION
MANUAL VERSION 1.0

e J-3649 AutoMax CONFIGURATION TASK MANUAL

e J-3650 AutoMax PROCESSOR MODULE INSTRUCTION
MANUAL

e J-3675 AutoMax ENHANCED BASIC LANGUAGE
INSTRUCTION MANUAL

e J-3676 AutoMax CONTROL BLOCK LANGUAGE
INSTRUCTION MANUAL

e J-3677 AutoMax LADDER LOGIC LANGUAGE
INSTRUCTION MANUAL

e J-3684 AutoMax PROGRAMMING EXECUTIVE
INSTRUCTION MANUAL VERSION 2.0

e J-3750 ReSource AutoMax PROGRAMMING EXECUTIVE
INSTRUCTION MANUAL VERSION 3.0

e |EEE 518 GUIDE FOR THE INSTALLATION OF ELECTRICAL
EQUIPMENT TO MINIMIZE ELECTRICAL NOISE
INPUTS TO CONTROLLERS FROM EXTERNAL
SOURCES

1-1

2.0

2.1

2.2

MECHANICAL/ELECTRICAL
DESCRIPTION

The following is a description of the faceplate LEDs, field termination
connectors, and electrical characteristics of the field connections.

Mechanical Description

The input module is a printed circuit board assembly that plugs into
the backplane of the DCS 5000/AutoMax rack. It consists of a printed
circuit board, a faceplate, and a protective enclosure. The faceplate
contains tabs at the top and bottom to simplify removing the module
from the rack. Module dimensions are listed in Appendix A.

The faceplate of the module contains a female connector socket and
32 LED indicators that show the status of the inputs. Input signals are
brought into the module via a multi-conductor cable (M/N 57C375;
see Appendix D). One end of this cable attaches to the faceplate
connector, while the other end of the cable has stake-on connectors
that attach to two 20 point terminal strips for easy field wiring.

On the back of the module are two edge connectors that attach to
the system backplane.

Electrical Description

The input module contains 32 input circuits for 5-24 volt logic signals.
Each group of four circuits shares a single isolated common. Input
signals have 5000 volt isolation to logic common. Refer to the block
diagram in Appendix B.

Each input circuit consists of a current limiting resistor, a zener diode
to control the switching level, an optical isolator, and a filter to
eliminate spurious signals. The input filter time constant is 0.7 msec
for the latching inputs (bits B17-B20) and 3.3 msec for all other
inputs. A circuit diagram is shown in figure 2.1.

Inputs connected to terminal strip connections B17, B18, B19, and
B20 can also be programmed to generate interrupts on positive or
negative transitions.

2-1

Input

Data
Buffer

I I

Isolator
Y e
I \/\ T T -1 5In4put
<

2-2

Figure 2.1 - Typical Input Circuit

There are 32 LED indicators on the faceplate of the module. The LED
indicators display the status of the logic level circuitry. Proper
operation of an LED indicates that both the input circuit and the logic
level circuitry are operating correctly.

The LEDs are arranged as four groups of eight and are numbered
from 0-31. See figure 2.2. LEDs numbered from 0-15 correspond to
the inputs in register 0. LEDs numbered from 16-31 correspond to
the inputs in register 1.

5-24V DC |
INPUT
57C149

3123157
3022146
2921135
2820124
2719113
2618102
2517 9 1
2416 8 0

:|O|

0]

RELIANCE;
ececTRICED

Figure 2.2 - Module Faceplate

2-3

3.0

3.1

3.2

INSTALLATION

This section describes how to install and remove the module and its
cable assembly.

Wiring

The installation of wiring should conform to all applicable codes.

To reduce the possibility of electrical noise interfering with the proper
operation of the control system, exercise care when installing the
wiring from the system to the external devices. For detailed
recommendations refer to IEEE 518.

Initial Installation

Use the following procedure to install the module:

Step 1.

Step 2.

Step 3.

Turn off power to the system. All power to the rack as well
as all power to the wiring leading to the module should be
off.

Mount the terminal strips (M/N 57C375) on a panel. The
terminal strips should be mounted to permit easy access
to the screw terminals on the terminal strips. Make certain
that the terminal strips are close enough to the rack so that
the cable will reach between the terminal strips and the
module.

Fasten field wires to the terminal strips. Typical field
connections are shown in figures 3.1, 3.2, and 3.3.

Refer to Appendix C for the arrangement of terminal board
connections. Make certain that all field wires are securely
fastened.

— |+ A1
|

A2

/\/

Figure 3.1 - Typical Field Connections for Contact Closures

3-1

- |+ Al
|

A2

/\/

Figure 3.2 - Typical Field Connections for Open Collector TTL

Vce
A1l

A2

So——+0

v \/

3-2

Figure 3.3 - Typical Field Connections for LSTTL or CMOS Buffer

Step 4. Take the module out of its shipping container. Take it out of
the anti-static bag, being careful not to touch the
connectors on the back of the module.

Step 5. Insert the module into the desired slot in the rack. Refer to

figure 3.4. Use a screwdriver to secure the module into the
slot.

Typical 16 Slot Rack

Typical 10 Slot Rack

16

10

P/S o 1 314|516 7|8]9]|10f11] 12| 13] 14| 15
Figure 3.4 - Rack Slot Numbers

Step 6. Attach the field terminal connector (M/N 57C375) to the
mating half on the module. Make certain that the
connector is the proper one for this module. Use a
screwdriver to secure the connector to the module.

Step 7. Turn on power to the system.

Step 8. Verify the installation by connecting the programming

terminal to the system and running the ReSource
Software.

Stop all programs that might be running.

Use the I/O MONITOR function. If the module is in the
local rack, enter the input module slot number and register
(0-1).

If the module is in a remote rack, enter the slot number of
the master remote 1/O module, remote I/O drop number
(also called the remote rack number), input module slot
number, and register (0-1).

One at a time, toggle each of the input devices connected
to the input module to verify that the installation has been
completed correctly.

3-3

3.3

3-4

Module Replacement

Use the following procedure to replace a module:

Step 1.
Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Turn off power to the rack and all connections.

Use a screwdriver to loosen the screws holding the
connector to the module. Remove the connector.

Loosen the screws that hold the module in the rack.
Remove the module from the slot in the rack.

Place the module in the anti-static bag it came in, being
careful not to touch the connectors on the back of the
module. Place the module in the cardboard shipping
container.

Take the new module out of the anti-static bag, being
careful not to touch the connectors on the back of the
module.

Insert the module into the desired slot in the rack. Use a
screwdriver to secure the module into the slot.

Attach the field terminal connector (M/N 57C375) to the
mating half on the module. Make certain that the
connector keys are in the proper position for this module.
Use a screwdriver to secure the connector to the module.

Turn on power to the rack.

4.0

4.1

PROGRAMMING

This section describes how data is organized in the module and
provides examples of how the module is accessed by the application
software. For more detailed information, refer to the individual
programming language manuals listed in section 1.0.

Register Organization

The data in the module is organized as four 16 bit registers. The first
two registers (0 and 1) contain the current state (on or off) of the
input data. The software allows you to define the module as a single
long register of 32 bits, two separate registers of 16 bits each, or as
32 separate bits. These two registers are read only. Refer to

figure 4.1.

There are also two registers (2 and 3) used to control the four
latching inputs, which can be programmed as interrupts. The

information in these registers is typically referenced as individual bits.

Refer to figure 4.1.

41

Registers 0 and 1 - Input Data Status
bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

register 0 r r r r r r r r r r r r r r r r

registeri [r|r | r|l |||l r]rr|rfr]r

Register 2 - Interrupt and Status Control

register 2 B e e I I I S I e A Y e e
Bit 11 - Latch status, B20 Bit 6 - Interrupt enable, B17
Bit 10 - Latch status, B19 Bit 5 - Interrupt enable, B18
Bit 9 - Latch status, B18 Bit 4 - Interrupt enable, B19
Bit 8 - Latch status, B17 Bit 3 - Interrupt enable, B20

Register 3 - Latch Reset and Edge Definition

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

register 3 = = - - |w|mw|mw]rw| =] —| —| —| mw| rw|rw|rw
Bit 11 - Latch reset, B20 *1 Bit 3 - Latch edge, B20
Bit 10 - Latch reset, B19 *1 0 - off to on
Bit 9 - Latch reset, B18 *1 1 - on to off
Bit 8- Latch reset, B17 *1 Bit 2 - Latch edge, B19

Bit 1 - Latch edge, B18
Bit O - Latch edge, B17

*1 0,1, 2,7,and 15 of register 2 are controlled by the operating system and must
not be defined or set by the user.

A latch must be acknowledged by writing a “0” to the proper bit after the latch
has occurred.

B17-B20 refer to inputs. See Appendix C for more information on input connec-
tions.

Figure 4.1 - Organization of Register Bits

4.2 Configuration

Before any application programs can be written, it is necessary to
configure the definitions of system-wide variables, i.e. those that must
be globally accessible to all tasks.

For DCS 5000 and AutoMax Version 2.1 and earlier, you define
system-wide variables by writing a Configuration task. For AutoMax
Version 3.0 and later, you define system-wide variables using the
AutoMax Programming Executive. After these variables are defined,
you can generate the configuration file automatically, which
eliminates the requirement to write a configuration task for the rack. If
you are using AutoMax Version 2.1 or earlier, refer to Appendix E for
examples that show how to define variables in the configuration task.

4-2

4.3

4.3.1

1050

4.3.2

If you are using AutoMax Version 3.0 or later, see the AutoMax
Programming Executive (J-3750) for information about configuring
variables.

Reading And Writing Data In Application
Tasks

In order for an input module to be referenced by application
software, it is necessary to assign symbolic names to the physical
hardware. In AutoMax Version 2.1 and earlier, this is accomplished by
either IODEF or RIODEF statements in the configuration task. In
AutoMax Version 3.0 and later, you assign variable name using the
Programming Executive.

Each application program that references the symbolic names
assigned to the module must declare those names COMMON.

The frequency with which tasks read their inputs and write their
outputs depends on the language being used. Ladder logic and
Control Block tasks read inputs once at the beginning of each scan
and write outputs once at the end of scan. BASIC statements in
BASIC tasks or Control Block tasks read an input and write an output
for each reference throughout the scan.

Ladder Logic Task Example
LIGHT STARTPB run
| | | |

(I 11 ()

The symbolic names LIGHT and STARTPB reference the input
modules that were defined in the rack configuration. The trailing at
symbol “@” is not used in Ladder Logic tasks. The symbolic name
“run” is local to the Ladder Logic task and does not have 1/0O
associated with it.

BASIC Task Example

1000 COMMON LIGHT@ \!Fault Light

1010 COMMON STARTPB@ \IStart Push-button
2000 LOCAL RUN@ \ILine run

3000 !

4000 !

5000 RUN@ = NOT LIGHT@ AND &
(STARTPB@ OR RUN@)

5500 !

6000 END

The symbolic names LIGHT@ and STARTPB@ reference the input
modules that were defined in the rack configuration. The symbolic
name RUN@ is local to the BASIC task and does not have 1/O
associated with it.

4-3

43.3

44

Control Block Task Example

2400
2500
4000
5000

5500
6000

COMMON STARTPB@ \!Start Push-button
LOCAL MOMENTARY@ \!Momentary output
|

CALL TRANSITION (INPUT=STARTPB@, &
OUTPUT=MOMENTARY@)

!

END

The symbolic name STARTPB@ references the input module that
was defined in the rack configuration. The symbolic name
MOMENTARY@ is local to the control block task and does not have
I/O associated with it.

4.4

4.4.1

Using Interrupts in Application Tasks

Interrupts are used to synchronize software tasks with the occurrence
of a hardware event. The input module has four inputs that can be
programmed to generate an interrupt. The module allows you to
synchronize real-world events with application tasks to a minimum of
1.2 msec., depending on the priority level of the task receiving the
interrupt.

In order to use interrupts on the input module, it is necessary to
assign symbolic names to the interrupt control bits and the interrupt
status and control register (2). In AutoMax Version 2.1 and earlier, this
is accomplished with IODEF statements in the configuration task. See
Appendix E for an example. In AutoMax Version 3.0 and later,
symbolic names are assigned using the Programming Executive.
Note that interrupts cannot be used with input modules located in
remote racks.

Only one task may act as a receiver for the interrupt generated by an
input module. That task should declare the symbolic names assigned
to the interrupt control register and bits on the input module as
COMMON.

BASIC Task Example

The following is an example of a BASIC task that handles interrupts
from inputs B17, B18 and B20.

Note that the ‘timeout’ parameter in the EVENT statement is disabled
since interrupts from this module do not generally occur on a timed
basis. The same consideration requires care in using time-based
statements in loops used to read inputs from the module.

1000 COMMON ISCR% \lInterrupt Status/Control Register
1001 COMMON LATCH_EDGE_B17@ \ILatch edge, input B17
1002 COMMON LATCH_EDGE_B18@ \ILatch edge, input B18
1003 COMMON LATCH_EDGE_B20@ \ILatch edge, input B20
1005 !

1010 COMMON LATCH_STATUS_B17@ \ILatch status, input B17
1011 COMMON LATCH_STATUS_B18@ \ILatch status, input B18
1012 COMMON LATCH_STATUS_B20@ \ILatch status, input B20
1015 !

1020 COMMON INTRP_ENABLE_B17@ \lInterrupt enable, input B17
1021 COMMON INTRP_ENABLE_B18@ \lInterrupt enable, input B18
1022 COMMON INTRP_ENABLE_B20@ \lInterrupt enable, input B20
1025 !

1030 COMMON LATCH_RESET_B17@ \ILatch reset, input B17

1031 COMMON LATCH_RESET_B18@ \ILatch reset, input B18
1032 COMMON LATCH_RESET_B20@ \ILatch reset, input B20
1050 !

1060 LOCAL B17_CNT% \lInterrupt counter, input B17
1070 LOCAL B18_CNT% \linterrupt counter, input B18
1080 LOCAL B20_CNT% \linterrupt counter, input B20
2000 !

2001 ! Define the edge transition that will generate an interrupt

2002 !

2010 LATCH_EDGE_B17@ = FALSE \!Off to on

2011 LATCH_EDGE B18@ = FALSE \!Off to on

2012 LATCH_EDGE_B20@ = TRUE \!On to off

3000 !

3001 ! The following statement connects the name HW_EVENT to the

3002 ! Interrupt defined in ISCR%. The event name chosen should

4-6

3003
3004
3005
3006
3007
3010
3011
4000
4001
4002
4010
4011
4012
5000
5001
5002
5010
5011
5012
5500
5600
5700
6000
6001
6002
6003
6004
6005
6006
6007
6008
6010
7000
7001
7002
7003
7004
7005
7010
7020
7030
7040
8000
8005
8010
8015
8020
8050
9000
9005
9010
9015
9020
10020
10010
15000
18000
20000

! be as meaningful as possible. The watchdog timeout has been
I disabled because the interrupt is not periodic.
1
!

!
EVENT A NAME=HW_EVENT, INTERRUPT_STATUS=ISCR%,&
TIMEOUT=DISABLED
!
I The following statements reset the latch status bits
!
LATCH_ACK_B17@=FALSE
LATCH_ACK_B18@=FALSE
LATCH_ACK_B20@=FALSE
!
I The following statements enable interrupts
!
INTRP_ENABLE_B17@=TRUE
INTRP_ENABLE_B18@=TRUE
INTRP_ENABLE_B20@=TRUE
!

complete the remainder of task initialization here

1
1

!

! The next statement synchronizes the task with the external

I event via the interrupt. Task execution will be suspended

I until the interrupt occurs. When the interrupt occurs, if this

I task is the highest priority task waiting to execute, it will

! become active. If it is not the highest priority task, it will

! remain suspended until all higher priority tasks have executed,
I at which point it will become active.

|

WAIT ON HW_EVENT

I The next statements determine which bit generated the interrupt
! by examining the latch status bit. If a latch is

! found, it is reset. The interrupt service routine is

I then executed.

IF NOT LATCH_STATUS_B17@ THEN GO TO 8010

LATCH_RESET_B17@ = FALSE

B17_CNT% = B17_CNT% + 1 \linterrupt service routine for B17
!

! Test B18 interrupt

|

IF NOT LATCH_STATUS_B18@ THEN GO TO 9010

LATCH_RESET_B18@ = FALSE
B18_CNT% = B18_CNT% + !

!

! Test B20 interrupt

|

IF NOT LATCH_STATUS_B20@ THEN GO TO 10010

LATCH_RESET_B20@ = FALSE

B20_CNT% = B20_CNT% + \lInterrupt service routine for B20
!

GO TO 6010

!

!

END

\lInterrupt service routine for B18

4.4.2

Control Block Task Example

The following is an example of a Control Block task that handles an
interrupt from input B19.

Note that the ‘timeout’ parameter in the BASIC statement EVENT is
usually disabled since interrupts from this module do not generally
ocur on a timed basis. The same consideration requires care in using
time-based statements in loops used to read inputs from the module.
The ‘timeout’ parameter is not disabled in the following example
because the interrupt is expected to happen in a specified time

period.

1000 COMMON ISCR% \lInterrupt Status/Control Register
1010 COMMON LATCH_EDGE_B19@ \Latch edge, input B19
1020 COMMON LATCH_STATUS_B19@ \ILatch status, input B19
1030 COMMON LATCH_ENABLE_B19@ \lInterrupt enable, input B19
1040 COMMON LATCH_RESET_B19@ \ILatch reset, input B19
1050 LOCAL B19_CNT% \!Count of interrupts
2000 !

2001 ! Define the edge transition that will generate an interrupt.

2002 !

2010 LATCH_EDGE B19@ = FALSE \IOff to on

3000 !

3001 ! The following statement connects the name HW_EVENT to the
3002 ! Interrupt defined in ISCR%. The event name should be

3003 ! as meaningful as possible. The watchdog timeout has been
3004 ! setto 1800 clock ticks (9.9 sec.). 1 tick equals

3005 ! .0055 seconds. If the time between

3006 ! interrupts exceeds this value, a severe error will be declared
3007 ! and the system will be stopped.

3008 !

3009 !

3010 EVENT NAME=HW_EVENT, LATCH_STATUS=ISCR%, & TIMEOUT=1800
4000 !

4001 ! The following statement resets the latch status bit

4002 !

4010 LATCH_RESET_B19@ = FALSE

5000 !

5001 ! The following statement enables interrupts

5002 !

5010 INTRP_ENABLE_B19@ = TRUE

5200 !

5300 ! complete the remainder of task initilization

5500 !

6000 !

6001 ! The next statement synchronizes the task with the external

6002 ! eventvia the interrupt. Task execution will be suspended

6003 ! until the interrupt occurs. When the interrupt occurs, if this

6004 ! task is the highest priority task waiting to execute, it will

6005 ! become active. If it is not the highest priority task, it will

6006 ! remain suspended until all higher priority tasks have executed.
6007 ! atwhich point it will become active.

6008 !

6010 CALL SCAN_LOOP(TICKS=1200, EVENT=HW_EVENT)

7000 !

7001 ! The next statements determine which bit generated the interrupt
7002 ! by examining the latch status bit. If an interrupt is

7003 ! found, it is reset. The interrupt service routine is

7004 | then executed.

7005 !

7500 !

4-7

4.5

4.5.1

4.5.2

7800 !

8000 LATCH_RESET_B19@ = FALSE

8010 B19 CNT% = B19_CNT% + 1 \linterrupt service routine B19
9000 !

10000 END

Restrictions

This section describes limitations and restrictions on the use of this
module.

Writing Data to Registers

The input registers (0 and 1) on this module are read only. Attempts
to write to them will cause a bus error (severe system error). The
following are examples from programs that write to the module and
should therefore be avoided:

a. Referencing an input from the coil in a Ladder Logic task.

b. Referencing the module on the left side of an equal sign in a
LET statement in a Control Block or BASIC task.

c. Referencing an input as an output in a Control Block
function.

32 Bit Register Reference

WARNING

IF YOU USE DOUBLE INTEGER VARIABLES IN THIS INSTANCE, YOU MUST
IMPLEMENT A SOFTWARE HANDSHAKE TO ENSURE THAT BOTH THE LEAST
SIGNIFICANT AND MOST SIGNIFICANT 16 BITS HAVE BEEN TRANSMITTED
BEFORE THEY ARE READ BY THE RECEIVING APPLICATION PROGRAM.
FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN BODILY INJURY
OR DAMAGE TO EQUIPMENT.

4-8

453

4.5.4

32 bit register references should be used with caution when this
module is placed in a remote rack. The remote 1/O system does not
always transfer registers greater than 16 bits as a unit. As a result, it is
possible for an application program to read the least significant 16
bits of a new value and the most significant 16 bits of the previous
value as a 32 bit register reference.

Interrupts in Remote I/0 Racks

When this module is in a remote rack, the interrupt mode cannot be
used.

Dynamic Modification of Latch Edge Transition

Whenever the edge transition bit is toggled, the corresponding latch
status bit will be reset, regardless of whether an interrupt was
pending. For this reason, edge transition bits should not be modified
by the user after the module has been initialized.

5.0

5.1

DIAGNOSTICS AND
TROUBLESHOOTING

This section explains how to troubleshoot the module and field
connections.

Incorrect Data

Problem: The data is either always off, always on, or different than
expected. The possible causes of this are a module in the wrong slot,
a programming error, or a malfunctioning module. It is also possible
that the input is either not wired or wired to the wrong device. Use the
following procedure to isolate the problem:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Verify that the input module is in the correct slot and that
the 1/O definitions are correct.

Refer to figure 3.4. Verify that the slot number being
referenced agrees with the slot number defined in the
configuration. Verify that the register number and bit
number are correct.

For remote /O installations, also verify that the master slot
and drop number are defined correctly.

Verify that the input is wired to the correct device.

Confirm that all connections at the terminal strip are tight.
Connect a voltmeter to the proper points on the terminal
strip and toggle the device. The voltmeter should alternate
between 0 and the D-C power supply voltage (5-24 volts).
If this does not happen, there is a problem with either the
external device, the D-C power supply, or the wiring to the
terminal strip.

Check the cable for continuity between the faceplate
connector and the terminal strip.

Verify that the input circuit on the module is working
correctly.

Toggle the input device. Verify that the LED associated
with the particular bit is also toggling. If it is not, the input
module is malfunctioning.

Verify that the module can be accessed.

Connect the programming terminal to the system and run
the ReSource Software. Use the /0O MONITOR function.
Toggle the input device to determine whether the bit is
changing state.

If the 1/O MONITOR is able to read the input, the problem
lies in the application software (proceed to step 5). If the
1/0 MONITOR cannot read the inputs, the problem lies in
the hardware (proceed to step 6).

Verify that the user application program is correct.

Verify that the application program that references the
symbolic names assigned to the module has declared
those names COMMON in application tasks.

Verify that the symbolic name in question is being
referenced in the application program. This can be done

5-1

5-2

Step 6.

indirectly by monitoring the name with the VARIABLE
MONITOR function in the ReSource Software.

If operation is intermittent, verify that the task reading the
module is executing fast enough to catch all of the input
changes.

Verify that the hardware is working correctly.

Verify the hardware functionality by systematically
swapping out modules. After each swap, if the problem is
not corrected, replace the original module before
swapping out the next module.

e To test local I/O, first replace the input module. Next,
replace the Processor module (s). If the problem
persists, take all of the modules except one Processor
module and the input module out of the backplane. If
the problem is now corrected, one of the other
modules in the rack is malfunctioning. Replace the
other modules one at a time until the problem
reappears. If none of these tests reveals the problem,
replace the backplane.

e To test remote /O, first verify that the remote 1/0
system is communicating with the drop that contains
the input module being tested. Next, determine
whether the input module is the only module that is not
working. If more than one module is not working
correctly, the problem most likely lies in the remote 1/0
system. If the problem does not lie in the system, it
probably involves the remote rack.

® To test the remote rack, connect a dumb terminal or a
personal computer running terminal emulation
software such as Kermit to the slave remote /0O module
RS-232C port. Set the port parameters on the terminal
or computer to 8 bits, 1 stop bit, no parity and a baud
rate of 1200. Connect the remote 1/0 module (C<CR>
with Kermit). See the Remote I/O instruction manual
(J-3606) for how to test the module.

If you cannot determine the problem, replace the input
module. Next, replace the slave remote I/O module. If
the problem persists, take all of the modules out of the
remote backplane except the slave remote 1/0 module
and the input module. If the problem is now corrected,
one of the other modules in the rack is malfunctioning.
Reconnect the other modules one at a time until the
problem reappears. If the problem proves to be neither
in the remote I/O system nor in the remote rack, try
replacing the backplane.

5.2

Bus Error

Problem: A “31” or “51” through “58” appears on the Processor
module’s LED. This error message indicates that there was a bus
error when the system attempted to access the module. The possible
causes of this error are a missing module, a module in the wrong
slot, or a malfunctioning module. It is also possible that the user is
attempting to write to the wrong registers on the module. Use the
following procedure to isolate a bus error:

Step 1.

Step 2.

Step 3.

Step 4.

Verify that the input module is in the correct slot and that
the 1/O definitions are correct.

Refer to figure 3.4. Verify that the slot number being
referenced agrees with the slot number defined in the
configuration task. Verify that the register number and bit
number are correct.

For remote /O installations, also verify that the master slot
and drop number are defined correctly.

Verify that the module can be accessed.

Connect the programming terminal to the system and run
the ReSource Software. Use the /O MONITOR to monitor
the four registers on the input module. If the I/O MONITOR
is able to monitor the inputs, the problem lies in the
application software (proceed to step 3). If the /0O monitor
cannot monitor the inputs, the problem lies in the
hardware (proceed to step 4).

Verify that the user application program is correct.

Registers 0 and 1 of the input module cannot be written to.
If a BASIC task caused the bus error, the error log will
contain the statement number in the task where the error
occurred. If a Ladder Logic or Control Block task caused
the error, you will need to search the task for any instances
where you used an input as a ladder logic coil or wrote to
it in a Control Block task.

Verify that the hardware is working correctly.

Verify the hardware functionality by systematically
swapping out the input module, the Processor module(s)
and the backplane. After each swap, if the problem is not
corrected, replace the original item before swapping out
the next item.

To test the remote rack, connect a dumb terminal or a
personal computer running terminal emulation software
such as Kermit to the slave remote 1/0 module RS-232C
port. Set the port parameters on the terminal or computer
to 8 bits, 1 stop bit, no parity and a baud rate of 1200.
Connect the remote /O module (C<CR> with Kermit).
See the Remote I/O instruction manual J-3606 for how to
test the module.

If you cannot determine the problem, replace the input
module. Next, replace the slave remote I/O module. If the
problem persists, take all of the modules out of the remote
backplane except the slave remote I/O module and the
input module. If the problem is now corrected, one of the
other modules in the rack is malfunctioning. Reconnect
the other modules one at a time until the problem

5-3

5-4

5.3

5.3.1

reappears. If the problem proves to be neither in the
remote I/O system nor in the remote rack, try replacing the
backplane.

Interrupt Problems

Problem: No interrupts at all, or too many (unexpected) interrupts,
signified by error codes being displayed on the faceplate of the
Processor module. Go through the following steps first before going
on the the more specific troubleshooting steps:

Step 1. Verify that the input module is in the correct slot.
Refer to figure 3.4.
Step 2. Verify that the I/O definitions are correct.

Verfiy that the configuration task contains the proper
interrupt control definitions. Refer to the example in
section 4.6.

Step 3. Verify that the user application program is correct.

Verify that the application program that uses the symbolic
names defined in the configuration task has defined those
names as COMMON.

Compare your interrupt task with the examples given in
sections 4.4.1 and 4.4.2. Make sure that the actions shown
in the examples are performed in the same order in your
task.

No Interrupts

Problem: The task does not execute but no error codes are displayed
on the Processor module faceplate. If interrupts are never received
and the “timeout” parameter in the event definition was disabled, the
task will never execute. Use the following procedure to isolate the
problem:

Step 1. Verify that the user application program is correct.

Verify that your interrupt response task is checking the
proper latch status bit to determine which bit caused the
interrupt. Confirm that when an interrupt has been located,
the latch reset bit is being reset.

Compare your interrupt task with the examples given in
sections 4.4.1 and 4.4.2. Make sure that the actions shown
in the examples are performed in the same order in your
task.

Step 2. Verify that the input is wired to the correct device.

Confirm that all connections at the terminal strip are tight.
Connect a voltmeter to the proper points on the terminal
strip and toggle the device. The volt- meter should
alternate between 0 and the D-C power supply voltage
(5-24 volts). If this does not happen, there is a problem
with either the external device, the D-C power supply, or
the wiring to the terminal strip.

If the device generates a pulse output, use a scope and
verify that the pulse width is at least .7 msec.

5.3.2

5.3.3

Step 3.

Step 4.

Step 5.

Verify that the input circuit on the module is working
correctly.

Toggle the input device. Verify that the LED associated
with the particular bit is also toggling. If it is not, the input
circuit on the module is malfunctioning.

Verify that the module can be accessed.

Connect the programmer to the system and run the
ReSource Software. Use the I/O MONITOR function to
display register 1 and 2. Toggle the input device to
determine whether the bit is changing state. If it is not, the
input circuit on the module is malfunctioning.

Verify that the hardware is working correctly.

Systematically swap out the input module, the processor
module(s), and the backplane. After each swap, if the
problem has not been corrected, replace the original item
before swapping out the next item.

Hardware Event Time-Out

Problem: All tasks in the chassis are stopped and error code “12”
appears on the faceplate of the Processor module. The interrupt has
either never occurred or is occurring at a slower frequency than the
value specified in the “timeout” parameter in the event definition. Use
the following procedure to isolate the problem:

Step 1.

Step 2.

Verify that the timeout value is set correctly.

Check the value specified, if any, in the “timeout”
parameter in the event definition. The unit is ticks. Each
tick is equal to 5.5 msec. The timeout value should be at
least 2 ticks greater than the interrupt frequency. It can
reasonably range up to 1.5 times the interrupt frequency.
Note that the ‘timeout’ parameter is usually disabled since
the interrupt doesn’t usually happen on a timed basis.

Check for no interrupt.
Refer to section 5.3.1.

Hardware Event Count Limit Exceeded

Problem: All tasks in the chassis are stopped and error code “1B”
appears on the faceplate of the Processor module. A hardware
interrupt has occurred but no task is waiting. Use the following
procedure to isolate the problem:

Step 1.

Step 2.

Verify that the user application program is correct.

Verify that your interrupt response task contains either a
“WAIT ON event” or “CALL SCAN_LOOP” statement that
will be executed. Check carefully to determine whether a
higher priority task is preventing the interrupt response
task from running.

Make sure that the ordering of your statements agrees
with the examples in section 4.4.

Verify that the signal from the external device is clean.

Connect a scope to the input terminals and monitor the
pulse waveform from the external device. The waveform

5-5

5-6

5.3.4

Step 3.

should have a clean transition, i.e. no overshoot or
undershoot.

Verify that the hardware is working correctly.

Verify the hardware functionality by systematically
swapping out modules. After each swap, if the problem is
not corrected, replace the original module before
swapping out the next module.

To test local /O, first replace the input module. Next,
replace the Processor module(s). If the problem persists,
take all of the modules except one Processor module and
the input module out of the backplane. If the problem is
now corrected, one of the other modules in the rack is
malfunctioning. Reconnect the other modules one at a
time until the problem reappears. If none of these tests
reveals the problem, replace the backplane.

lllegal Interrupt Detected

Problem: All tasks in the chassis are stopped and error code “1F”
appears on the faceplate of the Processor module. A hardware
interrupt has occurred but no event has been defined.

Step 1.

Step 2.

Verify that the user application program is correct.

Verify that your interrupt response task contains an
“EVENT" statement to be executed. Check carefully to
determine whether a higher priority task is preventing the
interrupt response task from running. Make sure that the
ordering of your statements agrees with the examples in
section 4.4.

Verify that the hardware is working correctly.

Verify the hardware functionality by systematically
swapping out modules. After each swap, if the problem is
not corrected, replace the original module before
swapping out the next module.

To test local I/O, first replace the input module. Next,
replace the Processor module(s). If the problem persists,
take all of the modules except one Processor module and
the input module out of the backplane. If the problem is
now corrected, one of the other modules in the rack is
malfunctioning. Reconnect the other modules one at a
time until the problem reappears. If none of these tests
reveals the problem, replace the backplane.

Appendix A
Technical Specifications

Ambient Conditions
e Storage temperature: —40°C - 85°C
e Operating temperature: 0°C - 60°C

® Humidity: 5-90% non-condensing

Maximum Module Power Dissipation
e 22.6 Watts

Dimensions
e Height: 11.75 inches
® Width: 1.25 inches
® Depth: 7.375 inches

System Power Requirements
e +5volts: 700 mA

Input Circuit
o Number of inputs: 32, 4 of which can be programmed to latch and interrupt

® Maximum turn-on time: 3.3 msec for normal inputs
0.7 msec for latch inputs

® Maximum operating voltage: 24 volts D-C
® Minimum operating voltage: 2.7 volts D-C

e Maximum ON current: 4.95 mA at 5 volts D-C
23.70 mA at 24 volts D-C

® Four inputs per isolated common

® 5000 volt isolation between logic common and input power

A-1

Appendix B

Module Block Diagram

G STy g A S ﬁﬁ faﬁfﬁﬁ?ﬁé

=
>

=
©

>
N

Connector
@

CNO
T W W @ m W W W
O ® N O o A O R

@

@
=

o
N

ﬁfﬁfﬂ

5-24 VDC INPUT MODULE (57C419)

:-» :

.
\

A

I 2
&

\

“vmvm

0

Q
\
ke
/

1

V=Y.

| o= o @]

oo |~

A - Eo b
D g
:-» -

:-> 2
ﬂ* I

X
X

-»J—

mm—v‘

ZW*W‘

ADDRESS
IDBUS 4
ADDRESS :ll
ADDRESS
DECODER BUS
* N
READ MEM
CONTROL |_BYTE HIEN
LOGIC
XFER ACK
Register 0
OUTPUT
DATA
BUFFER
DATA
BUS
N
— V
Register 1
OUTPUT
DATA
BUFFER
Gate
A
INTERRUPT Data B \l—|_|
LOGIC ata Bus
v

BUS

BUS

B-1

Appendix C

Field Connections

Register 0 Register 1

Conn Wire Bit | LED Conn Wire Bit LED

Pin No. Color Code | No. | No. || Pin No. Color Code | No. | No.
Al(+) black B1(+) black/w.s.

A2 white 0 0 B2 red/w.s. 0 16
A3 red 1 1 B3 d green/w.s. 1 17
A4 green 2 2 B4 yellow/w.s. 2 18
A5 yellow 3 3 B5 brown/w.s. 3 19
AB(+) brown B6(+) blue/w.s.

A7 blue 4 4 B7 purple/w.s. 4 |20
A8 purple 5 5 B8 gray/w.s. 5 21
A9 gray 6 6 B9 pink/w.s. 6 |22
A10 pink 7 7 B10 It. green/w.s. 7 |28
Al1(+) white/b.s. B11(+) white/r.s.

A12 red/b.s. 8 8 B12 d green/r.s. 8 |24
A13 d green/b.s. 9 |9 B13 yellow/r.s. 9 |25
A14 yellow/b.s. 10| 10 B14 brown/r.s. 10 | 26
A15 brown/b.s. 11| 11 B15 blue/r.s. 1 |27
A16(+) blue/b.s. B16(+) purple/r.s.
A17 purple/b.s. 12| 12 B17 gray/rs. 12 | 28
A18 gray/b.s. 13| 13 B18 pink/r.s. 13 | 29
A19 pink/b.s. 14| 14 B19 It. green/r.s. 14 | 30
A20 It. green/b.s. | 15| 15 B20 orange/r.s. 15 | 31

b.s. = black stripe

w.s. = white stripe

r.s. = red stripe

C-1

This assembly consists of two terminal strips, a cable, and a mating connector. It

Appendix D

Related Components
57C375 — Terminal Strip/Cable Assembly

is used to connect field signals to the faceplate of the input module.

[0oQ]

(@]t

I

[@let—

[D[SH]

[@let]

(DSt

[@]et

ISE=

[@]et]

DIN—

[@eH]

[DISFH

[@[et—

y

[DISH]

E=

[DISH]

[@]et]

[DISf

=

@ISt

[60]

[0o Q]

I[®]

—elo@]

—IS[®]

ol @]

—ISI®]

—1el@]

—IS[®]

—elo@]

—S[D]

—1el@]

)

—IS[D]

—ela]

—IS[D]

—ol]

—IS[@]

—olo]

—IS[@]

—el]

—ISI®]

olo]

[600]

H o o
[ﬂ/ \Il‘
I I

Appendix E

Defining Variables in the
Configuration Task

Local I/O Definition

This section describes how to configure the input module when it is located in the
same rack as the processor module that is referencing it. Refer to the figure
below. Note that this procedure is used only if you are using the

Programming Executive software version 2.1 or earlier.

Processor Module

f < ,

Ce) (Ce_—e (o) (Ce])(Ced) (=) (Ce) (e (Ce) () -«
2w
EQuER pr—— T
O POWER ON H B B B B
O P READY - - - - -
O SYSTEM READY H
0 sLown Fuse D
g oellll B oclll B oe foe §pelm— ——
| “qoH||| “90d| | “dok| || “9ol| || "4od| ||~ 4CH — —
== == == == =]
== === === === === [==
[z =] |[2] Er | 2] | |2]| |[2] B |2]
R == == == == [e ===
== lnE == == = == D
|| = | == (e = | | | (] =
[s | =) | 1|)| (o] || | o] || (e | (o]
BE= IR RE R REE == R =
[||)| | | | | | | |]
[c2| (=] | |[c2| (=Rl | || ce| || |[c2| || || c2| | |Lc2| E=Ed
Lol =hd| |[e | A (o])| |[o] BB |[e] B | || e | BB D
Lo | b= | |Lo | =R | ||| || | Lo || ||Lo | B |LLo]
[1o| B || [xo| | | || 10| B | [[0] S| [[10] RS | 10| EEE
[||| | (o) B | o B | (L] | | o) EEEED D
[c3| =Rt | [oo B | || oo b | || o] b= | ||| B |[s b
12| R ||| nz| B | |[Lna| || ||| B | [[n2 | || ||n2| D
o= ==l e == mi== ol D
BATTERY pi==limi=iini==niE= D 18]
B"“’“" (oo b=l ||| b | ([| |[os] | || | || o
[ca| B || [ca| | | || .ca| B | ([ca| FEFE|| || ca| RS ||| EEH
1Sk
57491 EEGS FEEER FEEGER SELEER FEEER SEEER —‘
[JCe Jie e —e]) e] [—e]) e] [—e] ° °

]

®
-
®

®

Module

Module in a Local Rack

32 Bit Register Reference

WARNING
IF YOU USE DOUBLE INTEGER VARIABLES IN THIS INSTANCE, YOU MUST
IMPLEMENT A SOFTWARE HANDSHAKE TO ENSURE THAT BOTH THE LEAST
SIGNIFICANT AND MOST SIGNIFICANT 16 BITS HAVE BEEN TRANSMITTED
BEFORE THEY ARE READ BY THE RECEIVING APPLICATION PROGRAM.
FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN BODILY INJURY
OR DAMAGE TO EQUIPMENT.

Use the following method to reference all 32 inputs as a single register. Only one
statement is necessary. The symbolic name of each register should be as
meaningul as possible:

nnnnn IODEF SYMBOLIC_NAME![SLOT=s, REGISTER=0]

When referenced as a long register of 32 bits, register 0 becomes the high order
16 bits.

16 Bit Register Reference

Use the following method to reference a 16 bit register as a single input. For this
module, a maximum of four statements can be included in the configuration task
(one for each register). The symbolic name of each register should be as
meaningful as possible:

nnnnn IODEF SYMBOLIC_NAME%[SLOT=s, REGISTER=r]

Bit Reference

Use the following method to reference individual inputs on the module. For the
entire module, a maximum of 48 statements can be included in the configuration
task (one for each bit that can be read or written by the user). The symbolic name
of each bit should be as meaningful as possible:

nnnnn IODEF SYMBOLIC_NAME@[SLOT=s, REGISTER=r, BIT=b]

where:

nnnnn - BASIC statement number. This number may range from 1-32767.

SYMBOLIC_NAME! - A symbolic name chosen by the user and ending with (!).
This indicates a long integer data type and all references will access registers 0
and 1.

SYMBOLIC_NAME% - A symbolic name chosen by the user and ending with (%).

This indicates an integer data type and all references will access register “r”.

SYMBOLIC_NAME@ - A symbolic name chosen by the user and ending with (@).
This indicates a boolean data type and all references will access bit number “b”
in register “r”.

s - Slot number that the module is plugged into. This number may range from
0-15.

r - Specifies the register that is being referenced. For long integers this number
must be zero. For all other references this number may range from 0-3.

b - Used with boolean data types only. Specifies the bit in the register that is
being referenced. This number may range from 0-15.

E-2

Examples of Local I/O Definitions

The following statement assigns the symbolic name WINDOW! to the input
module located in slot 11:
1000 IODEF WINDOW![SLOT=11, REGISTER=0]

The following statement assigns the symbolic name POSITION% to register 0 of
the input module located in slot 4:

1020 IODEF POSITION%[SLOT=4, REGISTER=0]

The following statement assigns the symbolic name LIGHT@ to bit 9 of register 1
on the input module located in slot 7:

2050 IODEF LIGHT@[SLOT=7, REGISTER=1, BIT=9]

E-3

Remote I/O Definition

This section describes how to configure the module when it is located in a rack
that is remote from the processor module that is referencing it. Refer to the figure
below. Note that when this module is in a remote rack, the interrupt mode cannot
be used.

Q2 o
=] H g)
8 i =
5 = n
o = o
RS S m =
=0 e~
o Q
o €3
= . o 2
2 . Ll x o
0] ulls
(0]
o \
LP el —r——ma
o o o
d >
§ o
q wn
o i o
x : =
O =
© = QC\I
o o
= = EQ.
’—.: o (0] = o Q)e
+—
© 2] [halya]
f L @ i [
e = i
Q@
=}
©
o
= i °
S
>
2 3
:
o = o g
S
o T o
= "5‘_
= Eg_
= o (0]
| xa
E 9223[@

E-4

Module in a Remote Rack

32 Bit Register Reference

WARNING

IF YOU USE DOUBLE INTEGER VARIABLES IN THIS INSTANCE, YOU MUST
IMPLEMENT A SOFTWARE HANDSHAKE TO ENSURE THAT BOTH THE LEAST
SIGNIFICANT AND MOST SIGNIFICANT 16 BITS HAVE BEEN TRANSMITTED
BEFORE THEY ARE READ BY THE RECEIVING APPLICATION PROGRAM.
FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN BODILY
INJURY OR DAMAGE TO EQUIPMENT.

Use the following method to reference all 32 inputs as a single register. Only one
statement is necessary. The symbolic name of the register should be as
meaningful as possible:

nnnnn RIODEF SYMBOLIC_NAME![MASTER_SLOT=m,
DROP=d, SLOT=s, REGISTER=0]

When referenced as a long register of 32 bits, register 0 becomes the high order
16 bits. A 32 bit register reference over remote 1/O should be used with care since
the remote 1/O system cannot guarantee that the entire 32 bit value will be moved
as a single operation. For more information refer to the DCS 5000 Remote 1/0
Instruction Manual (J-3629).

16 Bit Register Reference

Use the following method to reference a 16 bit register as a single input. A
maximum of four statements can be included in the configuration task (one for
each register). The symbolic name of each register should be as meaningful as
possible:

nnnnn RIODEF SYMBOLIC_NAME%[MASTER_SLOT=m,
DROP=d, SLOT=s, REGISTER=r]

Bit Reference

Use the following method to reference individual inputs on the module. For the
entire module, a maximum of 48 statements can be included in the configuration
task (one for each bit that can be read or written by the user). The symbolic name
of each bit should be as meaningful as possible:
nnnnn RIODEF SYMBOLIC_NAME@[MASTER_SLOT=m,

DROP=d, SLOT=s, REGISTER=r, BIT=b]

where:
nnnnn - BASIC statement number. This number may range from 1-32767.

SYMBOLIC_NAME! - A symbolic name chosen by the user and ending with (!).
This indicates a long integer data type and all references will access registers 0
and 1.

SYMBOLIC_NAME% - A symbolic name chosen by the user and ending with (%).
This indicates an integer data type and all references will access register “r”.
SYMBOLIC_NAME@ - A symbolic name chosen by the user and ending with (@).
This indicates a boolean data type and all references will access bit number “b”

.

in register “r”.
m - Slot number of the master remote 1/0 module.

d - Drop number of the slave remote 1/O module that is in the same rack as the
input module. This number may range from 1-7.

s - Slot number that the module is plugged into. This number may range from
0-15.

E-5

E-6

r - Specifies the register that is being referenced. For long integers this number
must be zero. For all other references this number may range from 0-3.

b - Used with boolean data types only. Specifies the bit in the register that is
being referenced. This number may range from 0-15.

Examples of Remote I/O Definitions

The following statement assigns the symbolic name UPPER_LIMIT! to the input
module located in slot 10 of remote 1/O drop 7. This remote drop is connected to
the remote I/O system whose master is located in slot 9 in the master rack:

1000 RIODEF UPPER_LIMIT![MASTER_SLOT=9, DROP=7,
SLOT=10,REGISTER=0]

The following statement assigns the symbolic name LEVEL% to register 1 on the
input module located in slot 4 of remote 1/O drop 3. This remote drop is
connected to the remote 1/O system whose master is located in slot 15 in the
master rack:

1020 RIODEF LEVEL%[MASTER_SLOT=15, DROP=3,
SLOT=4,REGISTER=1]

The following statement assigns the symbolic name STARTPB@ to register 0 bit 9
on the input module located in slot 7 of remote I/O drop 2. This remote drop is
connected to the remote I/O system whose master is located in slot 6 in the
master rack:

2050 RIODEF STARTPB@[MASTER_SLOT=6, DROP=2,
SLOT=7,REGISTER=0, BIT=9]

Sample Configuration Task Defining Interrupts

The following is an example of a configuration task for an input module defining
interrupts:

1000 !

1001 ! Interrupt status and control register (used by

1002 ! the operating system)

1005 |ODEF ISCR%[SLOT=4, REGISTER=2]

1010 !

1011 ! Interrupt enables (one per bit) 0=disable, 1—enable
1012 !

1015 |ODEF INTRP_ENABLE_B17@[SLOT=4, REGISTER=2, BIT=6]
1016 IODEF INTRP_ENABLE_B18@[SLOT=4, REGISTER=2, BIT=5]
1017 IODEF INTRP_ENABLE_B19@[SLOT=4, REGISTER=2, BIT=4]
1018 IODEF INTRP_ENABLE_B20@[SLOT=4, REGISTER=2, BIT=3]
1020 !

1021 ! Latch status (one per bit) 1=being asserted

1022 !

1025 |ODEF LATCH_STATUS_B17@[SLOT=4, REGISTER=2, BIT=8]
1026 |ODEF LATCH_STATUS_B18@[SLOT=4, REGISTER=2, BIT=9]
1027 |ODEF LATCH_STATUS_B19@[SLOT=4, REGISTER=2, BIT=10]
1028 |ODEF LATCH_STATUS_B20@[SLOT=4, REGISTER=2, BIT=11]

1030 !

1031 ! Latch edge transition selection (one per bit)
1032 | 0= Offtoon, 1 = Onto off

1033 !

1034 |ODEF LATCH_EDGE_B17@[SLOT=4, REGISTER=3, BIT=0]
1036 |ODEF LATCH_EDGE_B18@[SLOT=4, REGISTER=3, BIT=1]
1037 |ODEF LATCH_EDGE_B19@[SLOT=4, REGISTER=3, BIT=2]
1038 IODEF LATCH_EDGE_B20@[SLOT=4, REGISTER=3, BIT=3]

1040 !

1041 | Latch reset (one per bit)
1042 | write O = reset status
1043 !

1045 |ODEF LATCH_RESET_B17@[SLOT=4, REGISTER=3, BIT=8]
1046 |ODEF LATCH_RESET_B18@[SLOT=4, REGISTER=3, BIT=9]
1047 |ODEF LATCH_RESET_B19@[SLOT=4, REGISTER=3, BIT=10]
1048 |ODEF LATCH_RESET_B20@[SLOT=4, REGISTER=3, BIT=11]
32767 END

This configuration defines all of the information available on the module. If fewer
than four interrupts are used, the unused definitions should be deleted.

For additional information

1 Allen-Bradley Drive

Mayfield Heights, Ohio 44124 USA
Tel: (800) 241-2886 or (440) 646-3599
http://www.reliance.com/automax

www.rockwellautomation.com

Corporate Headquarters
Rockwell Automation, 777 East Wisconsin Avenue, Suite 1400, Milwaukee, WI, 53202-5302 USA, Tel: (1) 414.212.5200, Fax: (1) 414.212.5201

Headquarters for Allen-Bradley Products, Rockwell Software Products and Global Manufacturing Solutions

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444

Europe/Middle East/Africa: Rockwell Automation SA/NV, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640
Asia Pacific: Rockwell Automation, 27/F Citicorp Centre, 18 Whitfield Road, Causeway Bay, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Headquarters for Dodge and Reliance Electric Products

Americas: Rockwell Automation, 6040 Ponders Court, Greenville, SC 29615-4617 USA, Tel: (1) 864.297.4800, Fax: (1) 864.281.2433
Europe/Middle East/Africa: Rockwell Automation, BriihlstraRe 22, D-74834 Elztal-Dallau, Germany, Tel: (49) 6261 9410, Fax: (49) 6261 17741
Asia Pacific: Rockwell Automation, 55 Newton Road, #11-01/02 Revenue House, Singapore 307987, Tel: (65) 6356-9077, Fax: (65) 6356-9011

Publication J-3632-2 - June 1991 Copyright © 2002 Rockwell Automation, Inc.. Al rights reserved. Printed in U.S.A.

	J-3632-2 5 V-24 VDC Input Module
	Warning Notices
	Table of Contents
	List of Figures
	1.0 Introduction
	2.0 Mechanical/Electrical Description
	2.1 Mechanical Description
	2.2 Electrical Description

	3.0 Installation
	3.1 Wiring
	3.2 Initial Installation
	3.3 Module Replacement

	4.0 Programming
	4.1 Register Organization
	4.2 Configuration
	4.3 Reading And Writing Data In Application Tasks
	4.4 Using Interrupts in Application Tasks
	4.5 Restrictions

	5.0 Diagnostics and Troubleshooting
	5.1 Incorrect Data
	5.2 Bus Error
	5.3 Interrupt Problems

	A Technical Specifications
	B Module Block Diagram
	C Field Connections
	D Related Components
	E Defining Variables in the Configuration Task
	Back Cover

